1 Static Analysis of the Price of Anarchy

1.1 Some Examples

1.1.1 Pigou’s Example

\[\ell(x) = 1 \]

\[\ell(x) = x \]

- Optimal solution: split flow \(\frac{1}{2} / \frac{1}{2} \) via both edges. Then,

\[OPT = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} \]

- But then: Agents on top edge are unhappy and start to migrate to bottom edge.

- Equilibrium (all agents happy): Total flow on bottom edge. Then \(cost = 1 \)
1.1.2 Braess’ Paradox

- First ignore dashed edge.
- Optimal solution: split flow $\frac{1}{2}$ via both paths. Then,

$$OPT = \frac{1}{2} \cdot \left(\frac{1}{2} + 1 \right) + \frac{1}{2} \cdot \left(1 + \frac{1}{2} \right) = \frac{3}{2}$$

- Now, insert dashed edge:
- Optimal solution stays the same
- Equilibrium: All agents use zigzag path. Then, $\text{cost} = 1 \cdot (1 + 1) = 2$.

1.2 The Wardrop Model

We are given a
- directed graph $G = (V, E)$
- k commodities with source-sink pairs s_i, t_i and flow demands r_i, $i \in [k]$, normalise $\sum_{i \in [k]} r_i = 1$.
- denote set of paths between s_i and t_i by \mathcal{P}_i, let $\mathcal{P} = \bigcup_{i \in [k]} \mathcal{P}_i$ (for simplicity, let the \mathcal{P}_i be disjoint)
- latency functions on the edges $\ell_e : [0, 1] \mapsto \mathbb{R}_0^+$ (non-negative, non-decreasing, differentiable)
- The triple (G, r, ℓ) is an instance of the routing problem.

Agents induce flow and latency:
- flow vector $(f_P)_{P \in \mathcal{P}}, f_e = \sum_{P \ni e} f_P$.
- a flow is feasible if it satisfies the flow demands and flow conservation
• edge latency: $\ell_e(f) = \ell_e(f_e)$

• path latency: $\ell_P(f) = \sum_{e \in P} \ell_e(f)$

• edge cost: $c_e(f) = f_e \cdot \ell_e(f)$.

• total social cost (average latency):

$$C(f) = \sum_{e \in E} c_e(f) = \sum_{e \in E} f_e \ell_e(f) = \sum_{P \in P} f_P \ell_P(f)$$

There are at least two different interpretations for this model:

1. We consider an infinite set of agents each of which controls an infinitesimal amount of flow. Each agent picks a path of its own.

2. There is one agent per commodity i that controls a flow of size r_i, but this flow can be split over several paths.

Agents strive to minimise their own latency. A flow is at equilibrium if no agent has an incentive to shift their flow unilaterally:

Definition 1 (Nash equilibrium). A feasible flow f is at a Nash equilibrium iff for every commodity $i \in [k]$, every two paths $P_1, P_2 \in P_i$ with $f_{P_1} > 0$, and every $\delta \in [0, f_{P_1}]$ the following holds. For the modified flow \tilde{f} where a flow amount of δ is shifted from P_1 to P_2, i.e.,

$$\tilde{f}_P = \begin{cases}
 f_P - \delta & \text{if } P = P_1 \\
 f_P + \delta & \text{if } P = P_2 \\
 f_P & \text{otherwise},
\end{cases}$$

we have $\ell_{P_1}(f) \leq \ell_{P_2}(\tilde{f})$.

Using continuity and monotonicity of the latency functions and letting δ tend to 0 we obtain from this definition a very useful characterisation due to Wardrop, commonly called Wardrop’s principle or Wardrop equilibrium.

Lemma 1 (Wardrop’s principle). A feasible flow vector f is at a Nash equilibrium iff for every commodity $i \in [k]$, every two paths $P_1, P_2 \in P_i$ with $f_{P_1} > 0$, we have $\ell_{P_1}(f) \leq \ell_{P_2}(f)$.

Furthermore, if f is a Nash equilibrium we see that all used paths of the same commodity have minimal latency whereas unused paths may have
larger latency. Let $L_i(f)$ denote this minimal latency for commodity i and a Nash equilibrium f. Then,

$$C(f) = \sum_{i \in [k]} r_i \cdot L_i(f).$$

Remember, the price of anarchy is

$$\rho(G, r, \ell) = \frac{\max_{f \text{ Nash}} C(f)}{\min_{f \text{ feasible}} C(f)}.$$

1.3 Characterising Optimal Flows

- Optimal flow: minimise the value of $C(f)$.
- among all feasible flows f.
- Formulation as a convex program:

$$\min \sum_{e \in E} c_e(f)$$

subject to

$$\sum_{P \in \mathcal{P}} f_P = r_i \quad \forall i \in [k]$$

$$f_e = \sum_{P \ni e} f_P \quad \forall e \in E$$

$$f_P \geq 0 \quad \forall P \in \mathcal{P}$$

- The linear constraints of this program define a convex polyhedron.
- We assume that the terms $c_e(f) = f_e \cdot \ell_e(f)$ are convex.
- However, the number of variables is exponential in the network size (f_P). This can be reduced.

1.3.1 Marginal Cost

- What does shifting flow from path P_1 to P_2 imply?
- Cost of the edges in P_1 reduces, cost of P_2 increases.
- If cost of P_1 reduces more than cost of P_2 increases, total cost decreases, i.e., we are not minimal.
• Define marginal cost
\[\ell'_e(x) = c'_e(x) = c_e(x) \frac{d}{dx}, \quad c'_p(f) = \sum_{e \in P} c'_e(f_e). \]

• Observation: A flow is optimal iff marginal cost of used paths is equal for all paths of the same commodity.

Lemma 2 (Characterisation of optima via marginal cost). A feasible flow \(f \) is optimal iff for all commodities \(i \in [k] \), paths \(P_1, P_2 \in [k] \), \(f_{P_1} > 0 \) we have \(c'_{P_1}(f) \leq c'_{P_2}(f) \).

Now, observe the similarity of this characterisation of optimal flows and Nash flows.

Theorem 1 (Equivalence of Nash equilibria and optima w.r.t. marginal cost). Assume \(x \cdot \ell_e(x) \) is convex for all \(e \in E \) and let \(\ell'_e(x) = (x \cdot \ell_e(x)) \frac{d}{dx} \) for all \(e \in E \). Then a feasible flow \(f \) is optimal for \((G, r, \ell)\) if and only if \(f \) is at a Nash equilibrium for \((G, r, \ell^*)\).

Proof. The characterisations of optima for \((G, r, \ell)\) by Lemma 2 and Nash equilibria for \((G, r, \ell^*)\) by Lemma 1 are identical. \(\square\)

Observe that \(\ell'_e(x) = (\ell_e(x)x)' = \ell_e(x) + \ell'_e(x)x \) consists of two terms. The first is the per-unit latency incurred by additional flow whereas the second accounts for the increased cost of the flow that is already using the edge.

1.4 Existence of Nash Equilibria

Theorem 2 (Existence and essential uniqueness of Nash equilibria). An instance \((G, r, \ell)\) with nondecreasing latency functions admits a flow at Nash equilibrium. Moreover, if \(f \) and \(\tilde{f} \) are Nash equilibria, \(C(f) = C(\tilde{f}) \).

Proof. Remember Rosenthal’s potential for congestion games
\[\Phi = \sum_{e \in E} \sum_{i=1}^{x_e} d_e(i) \]

In the continuous case we use the integral:
\[H(f) = \sum_{e \in E} h_e(f_e) \quad \text{with} \quad h_e(x) = \int_0^x \ell_e(u) \, du. \]
Consider the convex program:

\[
\min \sum_{i \in [k]} h_e(f)
\]

subject to

\[
\begin{array}{l}
\sum_{P \in \mathcal{P}} f_P = r_i \quad \forall i \in [k] \\
f_e = \sum_{P : e \in P} f_P \quad \forall e \in E \\
f_P \geq 0 \quad \forall P \in \mathcal{P}
\end{array}
\]

Proof of existence:

- Note that \(h'_e(x) = \ell_e(x) \)
- Hence, the optimality condition from Lemma 2 matches the characterisation for Nash equilibria from Lemma 1.
- Objective function \(H \) is convex (by monotonicity of the \(\ell_e \)), and the solution space is nonempty and convex \(\Rightarrow \) an optimum exists.

Proof of essential uniqueness:

- Consider Nash equilibria \(f \) and \(\tilde{f} \)
- Since both are feasible, the convex combination \(f_\alpha = \alpha \cdot f + (1 - \alpha) \cdot \tilde{f} \) for \(\alpha \in [0, 1] \) is also feasible by convexity of the solution space.
- \(h_e \) must be linear between \(f_e \) and \(\tilde{f}_e \) since otherwise for \(\alpha \in (0, 1) \), we would have \(H(f_\alpha) < H(f) = H(\tilde{f}) \) which would contradict optimality of \(f \) and \(\tilde{f} \).
- Hence, \(\ell_e = h'_e \) must be constant between \(f_e \) and \(\tilde{f}_e \) for all \(e \in E \).
- Also \(L_i(f) = L_i(\tilde{f}) \) for all \(i \) and finally \(C(f) = C(\tilde{f}) \).

1.5 Upper Bounding the Price of Anarchy

1.5.1 A Bound for Latency Functions of Limited Steepness

As we have seen, the price of anarchy depends on the steepness of the latency function. This is formalised in the following theorem.

Theorem 3. Suppose for every \(e \in E \) and all \(x \in [0, 1] \),

\[
x \cdot \ell_e(x) \leq \alpha \cdot \int_0^x \ell_e(u) \, du.
\]

Then, the price of anarchy \(\rho(G, r, \ell) \leq \alpha \).
Proof. Let \(f \) denote a Nash flow and \(f^* \) denote a system optimal flow for \((G, r, \ell)\).

\[
C(f) = \sum_{e \in E} \ell_e(f_e) f_e \quad \text{(definition)}
\]

\[
\leq \alpha \sum_{e \in E} \int_0^{f_e} \ell_e(u) \, du \quad \text{(hypothesis)}
\]

\[
\leq \alpha \sum_{e \in E} \int_0^{f_e^*} \ell_e(u) \, du \quad \text{(since } f \text{ minimises } H)\)
\]

\[
\leq \alpha \sum_{e \in E} \ell_e(f^*) f_e^* \quad \text{(by monotonicity of } \ell_e)\)
\]

\[
= \alpha C(f^*) .
\]

This yields an upper bound on the price of anarchy for polynomial latency functions:

Corollary 1. Suppose latency functions have the form \(\ell_e(x) = \sum_{i=1}^{d} a_{e,i} x^i \) for a positive integer \(d \) and \(a_{e,i} \geq 0 \). Then

\[
\rho(G, r, \ell) \leq d + 1 .
\]

Proof.

\[
x \cdot \ell_e(x) = \sum_{i=1}^{d} a_{e,i} x^{i+1} \leq (d + 1) \sum_{i=1}^{d} \frac{a_{e,i}}{i+1} x^{i+1} = (d + 1) \int_0^x \ell_e(u) \, du .
\]

For linear latency functions, this yields an upper bound on the price of anarchy of two. A more involved analysis yields a better upper bound that matches our examples from the beginning:

Theorem 4. Suppose latency functions are linear with positive slope and offset. Then

\[
\rho(G, r, \ell) \leq \frac{4}{3} .
\]
1.5.2 A Bicriteria Bound

Theorem 5. If \(f \) is a flow at Nash equilibrium for \((G, r, \ell)\) and \(f^* \) is feasible for \((G, 2r, \ell)\), then \(C(f) \leq C(f^*) \).

Proof.

- We construct a helper instance with latency functions where the cheap part is cut away:
 \[
 \bar{\ell}_e(x) = \begin{cases}
 \ell_e(f_e) & \text{if } x \leq f_e \\
 \ell_e(x) & \text{if } x \geq f_e
 \end{cases}
 \]

- Denote the respective cost function by
 \[
 \bar{C}(f) = \sum_{e \in E} f_e \cdot \bar{\ell}_e(f_e)
 \]

- We bound the cost we can “lose” by using these latency functions. For any edge \(e \in E \) and \(x \geq 0 \):
 \[
 x(\bar{\ell}_e(x) - \ell_e(x)) \leq \ell_e(f_e)f_e
 \]
 (If \(x \geq f_e \) the difference is zero, and if \(x \leq f_e \), the difference is maximised to \(\ell_e(f_e)f_e \) if \(\ell_e \) drops to 0 left of \(f_e \).)

- Now consider the total additional cost by evaluating \(f^* \) with respect to \(\bar{C} \) instead of \(C \):
 \[
 \bar{C}(f^*) - C(f^*) = \sum_{e \in E} f^*_e(\bar{\ell}_e(f^*_e) - \ell_e(f^*)) \leq \sum_{e \in E} \ell_e(f_e)f_e = C(f) \quad (1)
 \]

- Let 0 denote the zero flow. Then, for commodity \(i \in [k] \) and \(P \in P_i \)
 \[
 \bar{\ell}_P(f^*) \geq \bar{\ell}_P(0) \geq L_i(f)
 \]
 (Hence,
 \[
 \bar{C}(f^*) \geq \sum_{i \in [k]} \sum_{P \in P_i} L_i(f) f^*_P = \sum_{i \in [k]} 2L_i(f) r_i = 2C(f) \quad (2)
 \]

- Combining Equations (1) and (2) we obtain
 \[
 C(f^*) \geq \bar{C}(f^*) - C(f) \geq 2C(f) - C(f) = C(f)
 \]

References