Exercise 4.1: (5 points)
Consider an algorithm for the oblivious routing problem on $M(n,3)$ that uses paths that fix the individual dimensions subsequently, i.e., a packet from $a = (a_0, a_1, a_2)$ to $b = (b_0, b_1, b_2)$ is routed on a shortest path via (b_0, a_1, a_2) and (b_0, b_1, a_2).

What is the running time of a routing algorithm using these paths?

Exercise 4.2: (5 points)
Prove Remark 2.10 b) from the script:

Remark 2.10 b). Consider a network M with n nodes and degree c, and $m \leq n$ fixed source nodes and m fixed sink nodes. Every oblivious routing protocol needs at least

$$\Omega \left(\frac{m}{\sqrt{c \cdot n}} \right)$$

steps in the worst case.

Exercise 4.3: (5 points)
For a positive constant k, consider the following random experiment: $k \cdot n$ balls are thrown uniformly at random into n bins. Let L_i be the random variable that describes the number of balls in bin i. Prove that $\max_{i} \{L_i\} = \mathcal{O}(k + \log n)$ with high probability, i.e., for every fixed constant c, there exists an $\alpha_c > 0$ such that

$$\Pr \left[\max_{i \in [n]} L_i \leq c \cdot (k + \log n) \right] \geq 1 - n^{-\alpha_c}.$$