Exercise 1 (2 points)

Proof that flush when full (FWF) is also a marking algorithm.

Exercise 2 (2 points)

Think of the following modification of the paging problem, we call it Δ^--paging. The additional input parameter Δ has the following effect: If page p_i is requested in step l ($x_l = p_i$), the adversary can NOT ask for the pages $\{p_i-\Delta, \ldots, p_i+\Delta\}$ in step $l + 1$. Thus, $x_{l+1} \notin \{p_i-\Delta, \ldots, p_i+\Delta\}$.

Show that it is possible to create an instance I from an instance for the normal paging problem I' such that I has Δ additional pages and all proofs for the competitive ratios of the different algorithms still hold.

Exercise 3 (4 points)

Think of the following modification of the paging problem, we call it Δ^+-paging. The additional input parameter Δ has now the following effect: If page p_i is requested in step l ($x_l = p_i$), the adversary can ONLY ask for the pages $\{p_i-\Delta, \ldots, p_i+\Delta\}$ in step $l + 1$. Thus, $x_{l+1} \in \{p_i-\Delta, \ldots, p_i+\Delta\}$.

Does this restriction for the adversary help the algorithm? Proof your answer.

Exercise 4 (4 points)

Think of the following modification of the paging problem, we call it 2List-paging. The adversary has two Lists L_1 and L_2 of pages and corresponding pointers l_1 and l_2. One is sorted in ascending order and the other one in in descending order. Thus $L_1 = [p_{k+1}, \ldots, p_m, p_1, \ldots, p_k]$ and $L_1 = [p_m, \ldots, p_1]$. The adversary can ask for a page that are on the pointer positions. They are initialized with 0 and increase if the corresponding List is used. So, in the first step, the adversary can only ask for p_{k+1} or p_m. If p_{k+1} is requested, l_1 is increased by one and the adversary can ask for page p_{k+2} or p_m. If a pointer reaches the end of the List, it is set to 0 and starts from the beginning.

Does this modification help the algorithm? Proof your answer.

Exercise 5 (4 points)

A hungry cow stands in front of the farmers fence. She knows that if she follows the fence in one direction she will reach the barn where she can eat. But she does not know the correct direction.

As a cow, she does the obvious: she walks one cow meter to one direction, then back and 2 cow meters into the other direction, then back and so on. Thus, the cow walks in step $i \in \{0, \ldots\}$ 2^i steps into one direction measured from the start. Proof that this approach cannot have a competitive ratio smaller than 9.