Contents I

1. **Introduction**
 - Line-Graph and Coloring
 - Edge-Colouring
 - Theorems

2. **Hardness of the Edge-Colouring**
 - Proof of Hoyer

3. **Algorithms**
 - Proof of König
 - Proof of Vizing

4. **Colour with Greed**
 - Simple Bounds
 - Algorithm
 - Examples

5. **Theorem of Brooks**
 - Statements
 - Proof

6. **Girth**
 - Statements
 - Proof

7. **Colouring with known \(\chi(G) \)**
 - Basics
 - Theorems

8. **Complexity**
 - Negative Theorems
 - Positive Theorems
Definition of Coloring

- A graph $G = (V, E)$ is k-colorable iff:
 - $\exists f : V \mapsto \{1, \ldots, k\} : \forall (a, b) \in E, f(a) \neq f(b)$.
- The mapping f is called **coloring** of G.
- $\chi(G)$ is the **chromatic number** $\chi(G)$ of G, iff
- G is $\chi(G)$-colorable, but G is not $(\chi(G) - 1)$-colorable.

Definition

Sei $G = (V, E)$ Graph.

$$\alpha(G) = \max\{ |V'| ; V' \subset V \land \forall a, b \in V' : (a, b) \notin E \}$$

$$\omega(G) = \max\{ |V'| ; V' \subset V \land \forall a, b \in V' : (a, b) \in E \}$$

$$\chi(G) = \min\{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}$$
Definition (Line-Graphs)

Let $G = (V, E)$ be an undirected graph. $L(G) = (E, E')$ is called line-graph of G, iff

$$E' = \{(e, e') \mid e, e' \in E \land e \cap e' \neq \emptyset\}.$$

A graph H is called line-graph, iff a graph G exists, with $L(G) = H$.
Example 1

\[\chi(G) \]

Line-Graph and Coloring (3:4)
Example 2

\[\chi(G) \]

Line-Graph and Coloring (3:6)
Example 3

\[
\chi(G)
\]

Line-Graph and Coloring (3:8)
Edge-Colouring I

Definition

The Edge-Colouring-Problem for a graph G corresponds to the node-colouring of $L(G)$:

$$\chi'(G) = \chi(L(G)).$$

Theorem (Vizing 1965)

$$\chi'(K_{2n}) = 2n - 1 \text{ and } \chi'(K_{2n+1}) = 2n + 1.$$

Theorem

$$\chi'(G) \geq \omega(L(G)) \geq \Delta(G).$$

$$\Delta(G) = \max_{v \in V(G)} \{\deg(v)\}$$
Edge-Colouring II

Theorem (Holyer)

The d-Edge-Colouring-Problem is NP-complete for $d \geq 3$.

Theorem (König 1916)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

Theorem (Vizing 1964)

Any graph with degree Δ is $\Delta + 1$ edge-colourable (Running-Time $O(nm)$).
Proof I (Holyer)

- This component assembles a negation.
 - W.l.o.g. \((a, b)\) and \((h, i)\) are coloured the same and
 - \((c, d), (j, k), (g, l)\) use three different colours.

- We will use this to represent variables and
- will use an odd cycle to represent the clauses.
1. Case: \((h, i)\) and \((l, g)\) are coloured equal.

The colour \((i, e)\) and \((i, j)\) and show in the following:

\((a, b)\) and \((h, i)\) are coloured the same and

\((c, d), (j, k), (g, l)\) use three different colours.

2. Case: \((j, k)\) and \((l, g)\) are coloured the same.

In a same way we may proof:

\((c, d)\) and \((j, k)\) are coloured the same and

\((a, b), (h, i), (g, l)\) use three different colours.
Proof III (Holyer)

- **3.Case:** \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.
- **Case 3a:** \((i, j)\) has the same colour as \((l, g)\)
- Show in the following:
- This case does not happen.
Proof IV (Holyer)

3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.

Case 3b: \((i, j)\) use the third colour.

Show in the following:

\((c, d)\) and \((j, k)\) are coloured the same and

\((a, b), (h, i), (g, l)\) use three different colours.
4. Case: \((h, i), (j, k)\) and \((l, g)\) are coloured with three different colours.

Show in the following:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
Proof VI (Holyer)

- We will now merge two of these construction to create a more powerful one.
- This new construction has three “Exits” (pairs of dedicated edges).
- An exit has the value “false” iff both edges are colours the same (otherwise “true”).
- For this new component we have:
 - If the left [or right] exit is “false”, then all exits are “false”.
 - If the left [right] exit is “true”, then the right [left] exit is “true”.
Proof VI (Holyer)

- We combine now at least three components in a cyclic way, to represent a variable.
- This component has at least three “Exits” (pairs of dedicated edges).
- For this component holds:
- All exits have the same logical value.
Proof VII (Holyer)

- To verify a clause the exits [may be after an additional negation] of the corresponding literals are joined with an odd cycle.
- For this component we have:
- If all exits have the value "false", then we need four colours.
Proof (König)

Theorem (König)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

- Show how to colour an edge (a, b) in $O(n)$ time.
- Let c_a, c_b be the unused colours at the nodes a, b.
- If $c_a = c_b$, we may colour (a, b) with c_a.
- Observe now the graph $H_{a,b}$, who consists only of edges coloured with c_a, c_b.
- $H_{a,b}$ consists of a disjoined set of paths and cycles.
- a and b are the endpoints of two different paths.
- Thus we may exchange the colours of one path.
- Running-Time: store for each node and colour the corresponding edge.
Proof (Vizing)

Theorem (Vizing)

Any graph with degree Δ is $\Delta + 1$ edge-colourable (Running-Time $O(nm)$).

- Proof by induction on the number of edges.
- Let $\Delta = \Delta(G)$ and $e = (x, y) \in E$.
- For $G - e$ exists an edge colouring $c : E \setminus \{e\} \mapsto \{1, 2, \cdots, \Delta + 1\}$.
- Note: At each node are $\Delta + 1 - \deg(v) \geq 1$ colours free.
- For $v \in V$ let F_v be the set of free colours.
- If $F_x \cap F_y \neq \emptyset$ holds we may colour (x, y).
- So assume for the following: $F_x \cap F_y = \emptyset$
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.

If in round \(k \) the following hold:

- The edge \((x, y_k) \) could be recoloured to colour \(f \in F_x \cap F_{y_k} \) with \(f \not\in \{b_1, b_2, \ldots, b_{k-1}\} \).

Then do the following:

- \(c((x, y_k)) = f \)
- \(c((x, y_i)) = b_i \) for \(1 \leq i < k \).

We call this operation \(\text{Shift}(k, f) \).
We will now construct such a sequence.

What happens if the recolouring is not possible.

Then we have: \(y_{k+1} \in \{y_1, y_2, \ldots, y_k\} \),

I.e. \(y_{k+1} = y_i \) and \(b_k = b_{i-1} \).

Then we have \(i \neq 1 \) and \(i \neq k \).

Let \(a \in F_x \).

Consider \(H(a, b_k) \); the subgraph using the colours \(a \) and \(b_k \).

In each component of \(H(a, b_k) \) the colours may be exchanged.

At the node \(y_k \) starts a path \(P \) of \(H(a, b_k) \).

Let \(z \) be the other endpoint of path \(P \).
Proof III (Vizing)

- Recall $a \in F_x$.
- Recall $b_k \in F_{y_{i-1}}$.
- Note P contains no edges of the form (x, y_j) ($1 \leq j \leq k$) with the exception of (x, y_i).
- If $z = x$ holds, we also have (x, y_i) in P.
- We will now consider the following cases:
 - $z = y_{i-1}$
 - $z = x$
 - $z \notin (x, y_{i-1})$. I.e. $z \notin \{y_1, y_2, \ldots, y_k\}$

\[\text{edge-sequence } (y_1, \ldots, y_k) \quad y_1 = y, \quad b_j \in F_{y_j}, \quad c((x, y_{j+1})) = b_j\]
Proof IIIa (Vizing)

- Note: \(a \in F_x, b_k \in F_{y_{i-1}} \) and
- \(P \) contains no edges of the form \((x, y_j)\) \((j \in \{1, \ldots, k\\setminus\{i\}\})\)
- If \(z = x \) holds, we also have \((x, y_i)\) in \(P \).

Case: \(z = y_{i-1} \)

- Both edges at the ends of \(P \) are coloured with \(a \).
- Exchange the colours on \(P \).
- After this, the colour \(a \) is not used at \(y_{i-1} \).
- Do \(\text{Shift}(i - 1, a) \) as the final step.
Proof IIIb (Vizing)

• Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and

P contains no edges of the form (x, y_j)
$(j \in \{1, \ldots, k\\backslash\{i\}\})$

• If $z = x$ holds, we also have (x, y_i) in P.

• Case: $z = x$

 • Exchange the colour on P.
 • Then the colour $b_k = b_{i-1}$ is not used at x.
 • Do $\text{Shift}(i - 1, b_{i-1})$ as the final step.
Proof IIIc (Vizing)

- Note: \(a \in F_x, b_k \in F_{y_{i-1}} \) and
- \(P \) contains no edges of the form \((x, y_j)\) \((j \in \{1, \ldots, k\}\setminus\{i\})\)
- If \(z = x \) holds, we also have \((x, y_i)\) in \(P \).

- Case: \(z \not\in (x, y_{i-1}) \)
 - Exchange the colours on the path \(P \) (if there are edges).
 - Then the colour \(a \) is not used at \(y_k \).
 - Do \(\text{Shift}(k, a) \) as the last step.
Some Bounds

Note

Let \(G = (V, E) \) be a graph. Then the following hold: \(\chi(G) \geq \omega(G) \).

Note

Let \(G = (V, E) \) be a graph with \(|V| = n \). Then we have: \(\chi(G) \geq n/\alpha(G) \).

Theorem

Let \(G = (V, E) \) be a graph with \(|E| = m \). Then: \(\chi(G)(\chi(G) - 1) \leq 2m \).

- Let \(k = \chi(G) \).
- There exist \(k \) independent sets \(I_i \) with \(i \in \{1, \ldots, k\} \).
- Between \(I_i \) and \(I_j \) \((i \neq j) \) exists at least one edge.
- From which we get \(k \cdot (k - 1)/2 \) edges in total.
Colour with Greed

Let $G = (V, E)$ be a graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: $\text{GreedyColour}(G, \sigma)$.

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

Colour: $c(v_1) := 1$.

Colour: $c(v_i) := \min\{k \in \mathbb{N} | k \neq c(u) \forall u \in \Gamma(v_i) \cap V_{i-1}\}$

Number of colours: $\text{GreedyColour}(G, \sigma) := |\{c(v) | v \in V\}|$.

We have: $\chi(G) \leq \text{GreedyColour}(G, \sigma) \leq \Delta(G) + 1$.

For odd cycles and cliques holds:

- $\chi(G) = \text{GreedyColour}(G, \sigma) = \Delta(G) + 1$.

Running time: $O(|V| + |E|)$
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.
2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
 - $E_n = \{\{v_i, w_j\} \mid v_i \in V_n, w_j \in W_n, i \neq j\}$

Note:
- $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n))$.
- $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n)) = n$.
- But $\chi(B_n) = 2$.
Error-Analysis

Theorem

• Let $\varepsilon, \delta > 0$ and $c < 1$.
• For large enough n exists graphs G_n with:
 • $\chi(G_n) \leq n^\varepsilon$ and
 • on $o(n^{-\delta})$ orderings Greedy will use $c \cdot \frac{n}{\log n}$ colours.

Lemma

There is an ordering σ^* with: $\text{GreedyColour}(G, \sigma^*) = \chi(G)$.

Lemma

$\min_{\sigma \in S_n} \text{GreedyColour}(G, \sigma) = \chi(G)$ hold.
Improvements

- Note: for v_i are at most $d_{G_i}(v_i)$ colours unusable.
- Let $b(\sigma) = \max_{1 \leq i \leq n} d_{G_i}(v_i)$ with $\sigma = (v_1, v_2, \ldots, v_n)$.
- $\chi(G) \leq \min_{\sigma \in S_n} b(\sigma)$
- The ordering σ which gives the minimum is constructable.
 - Choose v_n with the minimal degree.
 - Recursively compute the ordering on $G - v_n$.
- Such an ordering is called: “smallest-last”
Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subseteq G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

- $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subseteq G} \delta(H)$
- Let H^* be a subgraph of G with: $\delta(H^*) = \max_{H \subseteq G} \delta(H)$.
- Let j be the smallest index with: H^* is a subgraph of G_j for some permutation σ. Then we get:
 - $\max_{H \subseteq G} \delta(H) = \delta(H^*) \leq d_{H^*}(v_j) \leq d_{G_j}(v_j) \leq b(\sigma)$
 - Furthermore: $\max_{H \subseteq G} \delta(H) \leq \min_{\sigma \in S_n} b(\sigma)$.
 - The claim follows by: $\min_{\sigma \in S_n} b(\sigma) \leq b(\sigma_{sl})$.
Implications I

Lemma

Let $G = (V, E)$ and σ_{sl} smallest-last ordering. Then the following hold:

$$\chi(G) \leq GreedyColour(G, \sigma_{sl}) \leq 1 + \max_{H \subset G} \delta(H)$$

Running Time: $O(|V| + |E|)$.
Lemma

Let $G = (V, E)$ connected and not $\Delta(G)$-regular. Then $\chi(G) \leq \Delta(G)$ holds.

- Let v_1 a node with $d(v_1) < \Delta(G)$.
- Choose ordering $\sigma = (v_1, v_2, v_3, \ldots, v_n)$ by breadth-first-search from v_1.
- Call $\text{GreedyColour}(G, \sigma^{-1})$. Then the following hold:
 - $d(v_1) < \Delta(G)$, d.h. $c(v_1) \leq \Delta(G)$
 - v_i has a non-coloured neighbour, thus $c(v_i) \leq \Delta(G)$ holds.
Statements

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected, consider block B:
 - If B is regular, then B is not $\Delta(G)$-regular.
 - If B is not regular, colour the graph using the above algorithm.
 - In both cases we use at most $\Delta(G)$ colours.
- If G two-connected and not regular, then colour again using the above algorithm.
- If G two-connected and regular, continue as follows:
Proof

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
- If G is two-connected and not regular: (done)
- If G is two-connected and regular, then continue:
 - Choose v_1 with neighbours v_{n-1} and v_n, who are neighbours, such that $G - \{v_{n-1}, v_n\}$ is still connected.
 - Compute $v_2, v_3, \ldots, v_{n-2}$ using breadth-first-search from v_1 on $G - \{v_{n-1}, v_n\}$.
 - Colour with $\text{GreedyColour}(G, \sigma^{-1})$.
 - v_{n-1} and v_n get the same colour.
 - Thus at most $\Delta(G) - 1$ colours are not usable for v_1.
Lemma

Let \(G = (V, E) \) two-connected, regular with at least three nodes. Let \(G \) be no clique nor a cycle. Then there exists \(x, y \in V \) with \(\text{dist}(x, y) = 2 \) and \(G - x - y \) is connected.

- Let \(v \in V \) with \(d(v) = \Delta(G) \).
- Then is \(H := G[\{v\} \cup \Gamma(v)] \) not complete.
- Thus there exists \(x', y' \) in \(\Gamma(v) \) with \(\text{dist}(x', y') = 2 \).
- If \(G - \{x', y'\} \) is connected, we are done!
- If not, is \(x', y' \) a minimal separator.
- We have \(\Delta(G) \geq 3 \) and \(d(v) \geq 3 \).
- Let \(C \) be the component in \(G - \{x', y'\} \), which contains \(v \).
Implications

- There exists x in C with x is neighbored to x' or y'.
- This hold for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $\text{dist}(x, y) = 2$.
- We will now show that $G - \{x, y\}$ is connected.
 - x' and y' are in $G - \{x, y\}$ connected.
 - Show: Each node in $G - \{x, y\}$ is connected with x' or y'.
 - $G - x$ is connected.
 - Each node from $C - x$ is connected by a path P with x' or y', without using y.
 - $G - y$ is connected.
 - Each node from $(V \setminus C) - y$ is connected by a path P with x' or y', without using x.
 - Running time: $O(|V| + |E|)$.

Running time: $O(|V| + |E|)$.

Proof:

- There exists x in C with x is neighbored to x' or y'.
- This hold for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $\text{dist}(x, y) = 2$.
- We will now show that $G - \{x, y\}$ is connected.
 - x' and y' are in $G - \{x, y\}$ connected.
 - Show: Each node in $G - \{x, y\}$ is connected with x' or y'.
 - $G - x$ is connected.
 - Each node from $C - x$ is connected by a path P with x' or y', without using y.
 - $G - y$ is connected.
 - Each node from $(V \setminus C) - y$ is connected by a path P with x' or y', without using x.
 - Running time: $O(|V| + |E|)$.

Proof:
Theorems

Theorem (Mycielski’s)

For each number \(k \) there is a graph \(G \) with:
1. \(\chi(G) = k \) and
2. \(\omega(G) = 2 \).

Theorem (Erdös)

For each numbers \(k \), \(l \) there is a graph \(G \) with:
1. \(\chi(G) = k \) and
2. The shortest cycle has length \(l \).

We will show only the first theorem:
1. \(M_i \) has no triangles.
2. \(\chi(M_i) = i \).
Proof (Construction)

- $M_3 = C_5$
- Let v_1, v_2, \ldots, v_n be the nodes of M_k.
- M_{k+1} has the following additional nodes u_1, u_2, \ldots, u_n and w.
- Add the following edges:
 - $\{w, u_i\}$ for $1 \leq i \leq n$ and
 - $\{u_i, x\}$ iff $\{v_i, x\} \in E(M_k)$.
Proof (Construction)

- Note:
 - \{u_1, u_2, \ldots, u_n\} is a stable set.
 - \(\Gamma(v_i)\) is a stable set.
 - Thus there are no triangles in \(M_{k+1}\).
- \(\chi(M_{k+1}) \leq k + 1:\)
 - \(c(w) = k + 1\) and
 - \(c(u_i) = c(v_i)\).
Proof (Construction)

- If \(\chi(M_{k+1}) = k \), we have:
 - w.l.o.g.: \(c(w) = k \) and therefore:
 - \(\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\} \),
 - \(\{c(u_i) \mid 1 \leq i \leq n\} = \{1, \ldots, k-1\} \),

 - Choose a colouring \(c \) with
 \(|\{i \mid c(v_i) = k\}| \) minimal.

- If \(k \neq c(v_i) \neq c(u_i) \) for some \(i \),
 - change the colours: \(c(u_i) := c(v_i) \).

- Let \(v_j \) be a node with \(c(v_j) = k \).

- Then we have:
 - \(\{c(a) \mid a \in \Gamma(v_j)\} = \{1, \ldots, k-1\} \)
 - \(\{c(a) \mid a \in \Gamma(u_j)\} = \{1, \ldots, k\} \)

- Contradiction!
Computing the Colouring

Theorem (Widgerson 1983)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(\sqrt{n})$ colouring.

Proof:

- If $\chi(G) = 3$ holds, $\chi(G[\Gamma(v)]) \leq 2$ is true.
- We colour the nodes by checking their degree:
- As long as there is a node v with $\deg_G(v) \geq \sqrt{n}$ colour $\Gamma(v)$ using two colours
- After at most \sqrt{n} steps we get a subgraph with at most \sqrt{n} nodes.
- Colour this subgraph with new colours.
- The number of colours is at most: $2 \cdot \sqrt{n} + \sqrt{n} = 3 \cdot \sqrt{n}$.
- Detailed analysis show: $\sqrt{8 \cdot n}$.
Computing the Colouring

Theorem (Blum 1994)

Let $G = (V, E)$ *be a graph with* $\chi(G) = 3$. *Then we may efficiently compute a* $O(n^{3/8})$ *colouring.*

Theorem (Karger, Motwani, Sudan 1994)

Let $G = (V, E)$ *be a graph with* $\chi(G) = 3$. *Then we may efficiently compute a* $O(n^{1/4})$ *colouring.*

Theorem (Blum, Karger 1996)

Let $G = (V, E)$ *be a graph with* $\chi(G) = 3$. *Then we may efficiently compute a* $O(n^{3/14})$ *colouring.*
Theorems

Theorem

The 3-colouring-problem is for graphs of degree ≤ 4 NP-complete. The k-colouring-problem is NP-complete.

Theorem

Let $k \geq 3$ and $c = 1/(2 + 3 \cdot \log(k + 1))$. Then the k-colouring-problem on graphs with girth $\lceil c \log c \rceil$ is NP-complete.

Theorem

The colouring-problem could not be approximated by a constant factor (Assuming $P \neq NP$).

Theorem

To compute a 4-colouring for a 3-colourable graph is NP-hard.
Theorems

Lemma

If $\mathcal{P} \neq \overline{\mathcal{NP}}$, then there is no polynomial time algorithm with an approximation-factor of $4/3$ for the colouring-problem.

Theorem (Garry, Johnson 1976)

If $\mathcal{P} \neq \overline{\mathcal{NP}}$, then there is no polynomial time algorithm with an approximation-factor of 2 for the colouring-problem.

Theorem (Land, Jannakakis 1993)

If $\mathcal{P} \neq \overline{\mathcal{NP}}$, then there is for any $\varepsilon > 0$ no polynomial time algorithm with an approximation-factor of n^ε for the colouring-problem.

Theorem (Feige, Kilian 1996)

If $\mathcal{P} \neq \mathcal{ZPP}$, then there is for any $\varepsilon > 0$ no polynomial time algorithm with an approximation-factor of $n^{1-\varepsilon}$ for the colouring-problem.
Theorems

Lemma

*Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.***

- If $|V| \leq 2/c$ then just colour G:
 - Colour the graph by greedy algorithm using all permutations of the nodes.
 - Running time: $O((2/c)! \cdot \left(\frac{2}{c}\right)!)$.
 - Running time: $O(1)$ and error factor 1.

- If $|V| > 2/c$ then colour G:
 - Split $V(G)$ in $\lfloor c \cdot n \rfloor$ Parts of size $\left\lfloor \frac{n}{\lfloor c \cdot n \rfloor} \right\rfloor$ or $\left\lceil \frac{n}{\lfloor c \cdot n \rfloor} \right\rceil$.
 - Each part has size $\leq \frac{n}{cn-1} + 1 \leq \frac{2}{c} = O(1)$.
 - Each part may be coloured optimal in constant time.
 - Total number of colours: $\frac{|cn| \cdot \chi(G)}{\chi(G)} \leq cn$.
Theorems

Theorem (Johnson 1974)

The colouring-problem could be approximated within a factor of $O(n/\log n)$ in time $O(nm)$.

Theorem

The colouring-problem could be efficiently approximated within a factor of $O(n(\log n) - 3(\log \log n)/2)$.
Questions

- How hard is the edge-colouring-problem?
- How many colours needed to colour the edges of a clique?
- How could the edges of a bipartite graph be coloured?
- What is the upper bound for the number of colours for the edge-colouring?
- What is the idea of the proof of Vizing?
- How hard is the node-colouring-problem?
- What bounds are known?
- What error is possible when using greedy-colouring?
Legend

n : Not of relevance

g : implicitly used basics

i : idea of proof or algorithm

s : structure of proof or algorithm

w : Full knowledge