Contents I

1. Introduction
 - Problems
 - Types of Communication
 - Notations
 - Basics

2. Broadcast
 - Lower Bound
 - First Results
 - Trees

3. Complexity

4. Broadcast on Networks
 - Definition and first Results
 - Complexity
 - First Results
 - CCC
 - SE
 - BF
 - DB

5. Lower Bounds
 - Degree of the Nodes
Definition of a Broadcasts and Accumulation

Definition of Broadcast:

Given are $G = (V, E)$ and $v \in V$.

- v has information $I(v)$ and
- no node from $V \setminus \{v\}$ knows $I(v)$.
- Each node of $V \setminus \{v\}$ has to receive information $I(v)$.

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$ and
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Gossip

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$ and
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.

Definition (Gossip):

Given is $G = (V, E)$.

- Each node of $w \in V$ has information $I(w)$ and
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Each node of $v \in V$ should receive the information $\bigcup_{w \in V} I(w)$.
Types of Communication

- Telegraph-Mode: Communication is directed.
 - Is also called one-way communication.
- Telephone-Mode: Information is exchanged.
 - Is also called two-way communication.
- Communication only between neighbours.
- Communication is done in rounds.
- In each round the active edges are a matching.
- Each round uses one time-unit.
Types of Communication

- In the broadcast-problem the information of one node is transferred to all others.
- The accumulation-problem is a “inverse” broadcast.
- A gossip distributes the sum of all informations to all nodes.
- In each round the communication is done by a matching.
- The communication on an edge may be one-way or two-way, depending on the mode.
- The size of send date is ignored.
Definition

- By $\text{comm}(A)$ we denote the complexity (number of rounds) of a communication-algorithm.

- $r(G) = \min\{\text{comm}(A) \mid A \text{ is a one-way algorithm for the gossip-problem on } G\}$

- $r_2(G) = \min\{\text{comm}(A) \mid A \text{ is a two-way algorithm for the gossip-problem on } G\}$

- $b(v, G) = \min\{\text{comm}(A) \mid A \text{ is a one-way algorithm for the broadcast-problem on } G \text{ and } v\}$

- $b_2(v, G) = \min\{\text{comm}(A) \mid A \text{ is a two-way algorithm for the broadcast-problem on } G \text{ and } v\}$

- $a(v, G) = \min\{\text{comm}(A) \mid A \text{ is a one-way algorithm for the accumulations-problem on } G \text{ and } v\}$

- $a_2(v, G) = \min\{\text{comm}(A) \mid A \text{ is a two-way algorithm for the accumulations-problem on } G \text{ and } v\}$
Definition

- \(b(G) = \max\{b(v, G) \mid v \in V\} \)
- \(b_2(G) = \max\{b_2(v, G) \mid v \in V\} \)
- \(a(G) = \max\{a(v, G) \mid v \in V\} \)
- \(a_2(G) = \max\{a_2(v, G) \mid v \in V\} \)
- \(\min b(G) = \min\{b(v, G) \mid v \in V\} \)
- \(\min a(G) = \min\{a(v, G) \mid v \in V\} \)
First Results

- For each graph \(G \) and \(v \in V \) we have:
 - \(a_2(v, G) = b_2(v, G) \)
 - \(a(v, G) = b(v, G) \)
 - \(a(G) = b(G) \)
 - \(\text{mina}(G) = \text{minb}(G) \)
 - \(b(v, G) = b_2(v, G) \)
 - \(b(G) = b_2(G) \)

- Note: reverse broadcast is accumulation.

- There exists a graph \(G \) with: \(r(G) = 2 \cdot r_2(G) \).

- Note: 2-clique or cycle of length four.

- The following holds: \(\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G) \).

- The inequalities result from the definitions.

- \(\text{minb}(L(n)) = \lceil n/2 \rceil \)

- Optimal broadcast on a line start in the center of the line.

- \(b(L(n)) = n - 1 \)

- A message from the left has to traverse all edges.
First Results II

Lemma:

For each graph G with $|V| \geq 2$ we have:

- $b(G) \leq r(G) \leq 2 \cdot \min b(G)$
- $b(G) \leq r_2(G) \leq 2 \cdot \min b(G) - 1$

Proof: Consider the following steps.

- Let $v \in V$ with $b(v, G) = \min b(G) = \min a(G) = z$.
- Let $A = E_1, E_2, \cdots E_z$ be the corresponding one-way broadcast-algorithm.
- Let $B = F_1, F_2, \cdots F_z$ be the corresponding one-way accumulation-algorithm.
- Then is $F_1, F_2, \cdots F_z, E_1, E_2, \cdots E_z$ one-way gossip-algorithm.
- Note: in the two-way case holds: $F_z = E_1$.
- Note: For $L(2 \cdot n)$ we have equality.
First Results III

Lemma:
For each even n with $n \geq 8$ exists a Graph G with n nodes and

$\bullet \ b(G) = r(G)$

Proof (for $n = 8$):

Both broadcasts together are a gossip-algorithm.
First Results IV

- \(\text{rad}(G) \leq \minb(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subseteq E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\minb(G) \leq \minb(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).
- \(\minb(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2 \).
- \(r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).

\[
\begin{align*}
\text{diam}(G) &= \max\{\text{dist}(u, v) \mid u, v \in V\} \\
\text{rad}(v, G) &= \max\{\text{dist}(v, x) \mid x \in V\} \\
\text{rad}(G) &= \min\{\text{rad}(v, G) \mid v \in V\}
\end{align*}
\]
Lower Bound

Lemma

Let $G = (V, E)$ be a graph with n nodes. Then we have:

- $b(G) \geq \min b(G) \geq \lceil \log n \rceil$

Proof:

- Let $A(t)$ be the number of informed nodes after t rounds.
- $A(0) = 1$
- $A(t + 1) \leq 2 \cdot A(t)$
- $A(t) \leq 2^t$
- At the end $2^t \geq n$ must hold.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff

- the root of T_i has i successors $v_0, v_1, \cdots, v_{i-1}$ and
- v_j is the root of a T_j.
First Results

Lemma

We have:

1. \(\min b(K(n)) = b(K(n)) = \lceil \log n \rceil\) and
2. \(\min b(HQ(m)) = b(HQ(m)) = m\).

Proof \((K(n))\):

\[
\text{for } t = 1 \text{ to } \lceil \log n \rceil \text{ do } \\
\quad \text{for all } i \in \{0, 1, \cdots, 2^{t-1} - 1\} \text{ do in parallel } \\
\qquad \text{if } i + 2^{t-1} \leq n \text{ then } \\
\qquad \quad i \text{ sends to } i + 2^{t-1}
\]

Proof \((HQ(m))\):

\[
\text{for } i = 1 \text{ to } m \text{ do } \\
\quad \text{for all } a_1, a_2, \cdots, a_{i-1} \in \{0, 1\} \text{ do in parallel } \\
\qquad a_1a_2\cdots a_{i-1}00\cdots 0 \text{ sends to } a_1a_2\cdots a_{i-1}10\cdots 0
\]
First Results II

Lemma

For all $k, m \geq 2$ we have: $\min_b(T_k(m)) = k \cdot m$.

Idea of proof:

- $b(\varepsilon, T_k(m)) = k \cdot m$.
- $b(\varepsilon, T_k(m)) \leq b(\nu, T_k(m))$.
- Note that ν has to inform ε.
- and ε has to inform the other successors.
Complexity

Definition:

The special Broadcast-Problem is:

- Given: $G = (V, E)$, $v \in V$ and $k \in \mathbb{N}$.
- Question: Does $b(v, G) \leq k$ hold?

Definition:

The Broadcast-Problem is:

- Given: $G = (V, E)$ and $k \in \mathbb{N}$.
- Question: Does $b(G) \leq k$ hold?
Complexity

Theorem:
The special Broadcast-Problem on trees is in \mathcal{P}.

- The algorithm computes recursively the broadcast-time from a node (which we consider as root) in its subtree.
- For the leafs is this time 0.
- When all broadcast-times are computed for all successors of the root, we sort these times.
- After this we may compute the order of subtrees of the root in which we forward the information from the root.
- Example: 5 subtrees have broadcast-times 10, 10, 9, 9, 7. Then we inform these subtrees in the same order. The total broadcast-time from the root is $\max(10 + 1, 10 + 2, 9 + 3, 9 + 4, 7 + 5) = 13$.

Theorem:
The Broadcast-Problem on trees is in \mathcal{P}.
The special Broadcast-Problem is in \mathcal{NP}.

Proof: simple exercise (if we have the idea).

- IF a message from node v has to be send to node w and the remaining time is the same as the distance between v and w, then we call this message critical.

- I.e. the messages has to be forwarded towards w without any delay.

- If the shortest path between v and w unique, then we know precisely the way (times and places) the messages has to traverse towards w.

- If there exists an other node w' with: $\text{dist}(v, w) = \text{dist}(v, w') + 1$ and the shortest path towards w' splits from the path from v to w, then is the message also critical on this path.
Idea of the Proof

Broadcast from a_0 in 9 rounds:

Thus each node a_i, b_i has to be informed in round i.
Idea of the Proof (Part A)

Broadcast from a_0 in 9 rounds:

May be extended to any number of “paths”.
Idea for the Variables

Consider the following situation:

- There are unique shortest paths from \(v \) to \(w, w', w'' \), which share the same splitting node.
- Assume that \(\text{dist}(v, w) - 2 = \text{dist}(v, w') = \text{dist}(v, w'') \) holds and that the message on the path from \(v \) towards \(w \) is critical.
- Then will be one of the other paths (i.e. from \(v \) to \(w' \)) critical.
- The other path (i.e. from \(v \) to \(w'' \)) is not critical:
 - We may delay the message on that path one time or
 - we may inform an additional node in the last step. informieren.
- We have now the idea for the “variable”: one path from \(v \) to \(w' \) is critical or the other path from \(v \) to \(w'' \) is critical.
Idea of the Proof (Part B)

Broadcast from \(a_0 \) in 9 rounds:

Thus we have a “Variable”.
3-SAT

Definition

A boolean formula F is in 3-CNF (EXACT-3-CNF):

$$F(x_1, x_2, \ldots, x_r) = \bigwedge_{i=1}^{m} c_i$$

(clauses) $c_i = (l_1^i \lor l_2^i \lor l_3^i)$ \quad \forall 1 \leq i \leq m

(literals) $l_j^i = \begin{cases} \neg x_k \text{ oder } x_k \text{ für ein } k : 1 \leq k \leq r \end{cases}$ \quad \forall 1 \leq i \leq m, \forall 1 \leq j \leq 3

An assignment is a function $W : \{x_1, x_2, \ldots, x_r\} \mapsto \{0, 1\}$.
It is NP-complete to test, if there is an assignment which satisfies F.
Idea of the Proof (Part C)

Thus we have many “variables”.
The last Step

- So far we are able to construct any number of variables.
- But the clauses are still missing.
- In 3-SAT a clause has to be satisfied by some variable.
- We may represent a clause by a node, which may only be informed the variables (paths), which are not critical (which represent the boolean value “true”). We have now the full idea for the reduction to 3-SAT.
Thus we have a "clause".
Idea of the Proof

- Consider a boolean formula \mathcal{F} from $3-SAT$:
- Generate for each of the n variables from \mathcal{F} a critical path (Part A).
- Generate for each of the above critical paths an alternative (Part B).
- Thus we have now all literals.
- Generate for each literal x paths, if the literal occurs in \mathcal{F} x times (Part C).
- Generate for each clause a construction given by Part D.
Complexity

Theorem:
The special broadcast-problem on graphs of degree 3 is in \mathcal{NPC}.

Proof: it is easy to build the above construction with nodes of degree ≤ 3.

Theorem:
The special broadcast-problem on planar graphs of degree 3 is in \mathcal{NPC}.

Idea of proof: The planar 3-SAT is in \mathcal{NPC}. That is the dependency graph between clauses and variables is planar.

Definition:
Let \mathcal{F} be a boolean formula in KNF. Let V be the variables and C be the clauses. The dependency graph is:

$$G_\mathcal{F} = (V, C, \{\{v, c\} \mid v \text{ is in } c\})$$
Complexity

Theorem:
The broadcast-problem on planar graphs of degree 3 is in \(\mathcal{NP} \).

Proof:
- Extend the above construction, such that there is a unique “hardest” node.
- Add to the above construction a very long path.
- Thus the broadcast from the start node of the long path is the hardest.
Complexity

Definition:

The gossip-problem is:

- Given: \(G = (V, E) \) and \(k \in \mathbb{N} \).
- Question: Does \(r_2(G) \leq k \) hold?

Theorem:

The gossip-problem is in \(\mathcal{NP} \).

Proof: Extend the above construction, such that there is a unique “hardest” node.
Definition:

The one-way gossip-problem is:
- Given: $G = (V, E)$ and $k \in \mathbb{N}$.
- Question: Does $r(G) \leq k$ hold?

Theorem:

The one-way gossip-problem is in \mathcal{NP}.

Proof: Extend the above construction, such that there is a unique “hardest” node.
And prevent the blocking of critical messages.
Lemma

We have:

- \(b(\text{CCC}(k)) \leq 5k + O(1) \)
- \(b(\text{BF}(k)) \leq 4.5k + O(1) \)
- \(b(\text{SE}(k)) \leq 4k + O(1) \)
- \(b(\text{DB}(k)) \leq 3k + O(1) \)

Proof: Use the following statements:

- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
Theorem:

We have: \(\lceil \frac{5k}{2} \rceil - 2 \leq \min b(\text{CCC}(k)) = b(\text{CCC}(k)) \leq \lceil \frac{5k}{2} \rceil - 1. \)

The following parts are proven:

- \(\min b(\text{CCC}(k)) \geq \lceil \frac{5k}{2} \rceil - 2 \)
- Algorithm for \(\lceil \frac{5k}{2} \rceil - 1 \) will be presented.
CCC, Proof \(\text{minb}(\text{CCC}(k)) \geq \lceil 5 \cdot k/2 \rceil - 2 \)

- \(\text{diam}(\text{CCC}(k)) = \lceil 5/2 \cdot k \rceil - 2 \)
- The statement holds for even \(k \).
- Let \(k \) be odd.
- Let \((0,00 \cdots 0)\) be the origin of the message.
- The nodes \((\lfloor k/2 \rfloor, 11 \cdots 1)\) and \((\lceil k/2 \rceil + 1, 11 \cdots 1)\) are both in distance \((\lceil 5 \cdot k/2 \rceil - 2) \).
- Thus we need one round more than the diameter.
- The statement holds, because the CCC is node-symmetric.
CCC, Algorithm for \(\left\lceil \frac{5 \cdot k}{2} \right\rceil - 1 \)

Algorithm \textsc{Broadcast-CCC}_k

\((0, 00\ldots 0)\) sends to \((0, 10\ldots 0)\);

for \(i = 0\) to \(k - 1\) do begin

\hspace{1em} for all \(a_0, \ldots, a_{i-1} \in \{0, 1\}\) do in parallel

\hspace{2em} \((i - 1, a_0 \ldots a_{i-1}00 \ldots 0)\) sends to \(i, a_0 \ldots a_{i-1}00 \ldots 0)\);

\hspace{1em} for all \(a_0, \ldots, a_{i-1} \in \{0, 1\}\) do in parallel

\hspace{2em} \((i, a_0 \ldots a_{i-1}00 \ldots 0)\) sends to \((i, a_0 \ldots a_{i-1}10 \ldots 0)\);

end;

for all \(\alpha \in \{0, 1\}^k\) do in parallel

\hspace{1em} Broadcast on cycle \(C_\alpha(k)\) starting from \((k - 1, \alpha)\);
Theorem:

We have: \(\min_b(\text{CCC}(k)) = b(\text{CCC}(k)) \leq \lceil 5 \cdot k/2 \rceil - 2. \)

Idea of proof: Change the first phase and send in both directions.
Theorem:

We have: \(\min b(SE(k)) = b(SE(k)) = 2 \cdot k - 1 \)

Proof:

- The diameter provides the lower bound.
- Note \(SE(k) \) is not node-symmetric.
- We have to provide an algorithm for any node \(v \).
- Algorithm has to be without conflicts.
SE, Proof

For each $w = a_1 a_2 \ldots a_k \in \{0, 1\}^k$, let

- $w_1 = a_1$ and
- $w(t) = a_t a_{t+1} \ldots a_k$ (for $1 \leq t \leq k$)
- $w(k + 1) = \varepsilon$.

Let $\alpha = a_1 a_2 \ldots a_k$ in SE_k be the origin.

$\alpha = a_1 a_2 \ldots a_{k-1} a_k$ sends to $a_1 a_2 \ldots a_{k-1} \bar{a}_k$ (exchange);

for $t = 1$ to $k - 1$ do

for all $\beta \in \{0, 1\}^t$ do in parallel

begin

if $\alpha(t) \notin \{\beta_1\}^+$

then $\alpha(t) \beta$ sends to $\alpha(t + 1) \beta a_t$ (shuffle);

$\alpha(t + 1) \beta a_t$ sends to $\alpha(t + 1) \beta \bar{a}_t$ (exchange)

end;
SE, Proof

\[\alpha = a_1a_2 \ldots a_{k-1}a_k \text{ sends to } a_1a_2 \ldots a_{k-1}\bar{a}_k \text{ (exchange);} \]

for \(t = 1 \) to \(k - 1 \) do
 for all \(\beta \in \{0, 1\}^t \) do in parallel begin
 if \(\alpha(t) \notin \{\beta_1\}^+ \)
 then \(\alpha(t)\beta \) sends to \(\alpha(t + 1)\beta a_t \) (shuffle);
 \(\alpha(t + 1)\beta a_t \) sends to \(\alpha(t + 1)\beta\bar{a}_t \) (exchange) end;

Show: There are no conflicts!

- There is no conflict for the exchange-edges, because the last bit give a unique sender and receiver.
- Assume there is a conflict by the shuffle-edges.
- We have \(\alpha(t)\beta = \alpha(t + 1)\gamma a_t \) for some \(\beta, \gamma \in \{0, 1\}^t \).
- Then we have:
 \[a_t\alpha(t + 1) = \alpha(t + 1)\gamma_1 \Rightarrow a_t = a_{t+1} = \ldots = a_k = \gamma_1 \Rightarrow \alpha(t) \in \{\gamma_1\}^+ . \]
- This is a contradiction: shuffle-edges for \(\alpha(t) \in \{\gamma_1\}^+ \) are not used.
SE, Proof

\[\alpha = a_1a_2 \ldots a_{k-1}a_k \text{ sends to } a_1a_2 \ldots a_{k-1}\bar{a}_k \text{ (exchange)}; \]

\[\text{for } t = 1 \text{ to } k - 1 \text{ do} \]

\[\text{for all } \beta \in \{0, 1\}^t \text{ do in parallel begin} \]

\[\text{if } \alpha(t) \not\in \{\beta_1\}^+ \]

\[\text{then } \alpha(t)\beta \text{ sends to } \alpha(t + 1)\beta a_t \text{ (shuffle)}; \]

\[\alpha(t + 1)\beta a_t \text{ sends to } \alpha(t + 1)\beta \bar{a}_t \text{ (exchange)} \text{ end}; \]

Show: All nodes are informed!

- Show by induction: After \(2 \cdot r + 1\) rounds are all nodes \(\alpha(r + 2)\beta, \beta \in \{0, 1\}^{r+1}\) informed.
- IS: \(r = 0\) is obvious.
- All nodes \(\alpha(r + 1) \not\in \{\beta_1\}^+, \beta \in \{0, 1\}^{r+1}\) will be informed, because all nodes \(\alpha(r + 2)\beta\) have already received the information.
- If \(\alpha(r + 1) \in \{\beta_1\}^+, \beta \in \{0, 1\}^{r+1}\) holds, then we have \(\alpha(r + 2)\beta a_{r+1} = \alpha(r + 1)\beta_1\beta a_{r+1}\).
- This node has been informed before.
Theorem:

We have: $\left\lfloor \frac{3m}{2} \right\rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m$

- The diameter gives the lower bound.
- Algorithm will be provided in the following.
BF (Idea of proof)

- Distribute the information in two ways:
 - Prefer in the first strategy the cycle-edges.
 - Prefer in the second strategy the cross-edges.
- Split the butterfly into two isomorph parts.
- Choose for each part a different strategy.
- Distribute in the last phase on the cycles.

\[
\left\lfloor \frac{3m}{2} \right\rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m
\]
BF (Proof I)

Splitting of $BF(m)$ in F_0 and F_1:

- F_0 has nodes: $\{(l, \alpha 0) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
- F_1 has nodes: $\{(l, \alpha 1) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
- F_0 and F_1 are isomorph.

$\#_0(w)$ denotes the number of 0’en in w.
$\#_1(w)$ denotes the number of 1’en in w.

$\left\lfloor \frac{3m}{2} \right\rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m$
Consider F_0: from node $v_0 = (0,00\cdots00)$ exists a unique path of length $m - 1$ to $w_0 = (m - 1, \alpha 0)$ for $\alpha \in \{0, 1\}^{m-1}$.

Consider F_1: from node $v_1 = (m - 1, 00\cdots01)$ exists a unique path of length $m - 1$ to $w_1 = (0, \alpha 1)$ for $\alpha \in \{0, 1\}^{m-1}$.

First step of the algorithm v_0 informs v_1.

Then we use in F_0 and F_1 two different strategies.
BF (Proof III)

- **Aim:** Inform in \(\lfloor 3m/2 \rfloor\) steps the nodes \(w_0 = (m - 1, \alpha 0)\) and \(w_1 = (0, \alpha 1)\) for \(\alpha \in \{0, 1\}^{m^{-1}}\).

- If a node \(w_0 = (m - 1, \alpha 0)\) gets informed, then it informs in the next step \(w_1 = (0, \alpha 1)\) (if necessary).

- If a node \(w_1 = (0, \alpha 1)\) gets informed, then it informs in the next step \(w_0 = (m - 1, \alpha 0)\) (if necessary).

\[\lfloor 3m/2 \rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m\]
BF (Proof IV)

- In F_0 a informed node $(l, \alpha 0)$ sends first to $(l + 1, \alpha 0)$ and then to $(l + 1, \alpha(l)0)$. \([\alpha(l) = \alpha_1 \ldots \bar{\alpha}_l \ldots]\)
- In F_1 a informed node $(l, \alpha 1)$ sends first to $(l + 1, \alpha(l)1)$ and then to $(l + 1, \alpha 1)$.
- The time to inform from $v_0 = (0, 00 \cdots 00)$ a node $w_0 = (m - 1, \alpha 0)$ is: $1 + \#_0(\alpha) + 2\#_1(\alpha) = m + \#_1(\alpha)$.
- The time to inform from $v_1 = (m - 1, 00 \cdots 01)$ a node $w_1 = (0, \alpha 1)$ is: $1 + 2\#_0(\alpha) + \#_1(\alpha) = m + \#_0(\alpha)$.
BF (Proof V)

Case 1: m is odd:

- **Case 1.1: \(\#_1(\alpha) < (m - 1)/2: \)**
 Node \(w_0 \) will be informed from \(v_0 \) at time
 \(m + \#_1(\alpha) < (3m - 1)/2 = \lfloor 3m/2 \rfloor. \)

 After this \(w_0 \) sends to \(w_1 \).

 \(w_1 \) is informed at time \(\lfloor 3m/2 \rfloor. \)

- **Case 1.2: \(\#_0(\alpha) < (m - 1)/2: \)**
 node \(w_1 \) will be informed from \(v_0 \) at time
 \(m + \#_0(\alpha) < (3m - 1)/2 = \lfloor 3m/2 \rfloor. \)

 \(w_0 \) will be informed from \(w_1 \) at time \(\lfloor 3m/2 \rfloor. \)

- **Case 1.3: \(\#_0(\alpha) = \#_1(\alpha) = (m - 1)/2: \)**
 \(w_0 \) is informed at time
 \(m + \#_1(\alpha) = (3m - 1)/2 = \lfloor 3m/2 \rfloor. \)

 \(w_1 \) is informed at time \(m + \#_0(\alpha) = (3m - 1)/2 = \lfloor 3m/2 \rfloor. \)
BF (Proof V)

Case 2: m is even:

- **Case 2.1:** $\#_1(\alpha) \leq (m - 2)/2$:
 node w_0 will be informed from v_0 at time $m + \#_1(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor$.
 Thus node w_1 will be informed at time $\lfloor 3m/2 \rfloor$.

- **Case 2.2:** $\#_0(\alpha) \leq (m - 2)/2$:
 node w_1 will be informed from v_0 at time $m + \#_0(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor$.
 Thus node w_0 will be informed at time $\lfloor 3m/2 \rfloor$.

In the last phase we distribute the information on the cycles.

- Running time is: $\lceil m/2 \rceil$ rounds.
- Total running time: $\lfloor 3m/2 \rfloor + \lceil m/2 \rceil = 2m$
Theorem:

We have: \(d \leq \min b(DB(d)) = b(DB(d)) \leq \lfloor 3/2 \cdot (d + 1) \rfloor. \)

Proof:

- Idea \((y_1, y_2, \ldots, y_d)\) informs \((y_2, \ldots, y_d, y_1)\) and \((y_2, \ldots, y_d, \overline{y_1})\).
- The order is given by the parity.
- Let \(\alpha = \#_1(y_1, y_2, \ldots, y_d) \mod 2.\)
- \((y_1, y_2, \ldots, y_d)\) informs first \((y_2, \ldots, y_d, \alpha)\) and then \((y_2, \ldots, y_d, \overline{\alpha})\).
- \((0011000)\) informs first \((0110000)\) and then \((0110001).\)
DB (Proof)

- For $k \in \{0, 1\}$ consider the path P_k
 from (y_1, y_2, \ldots, y_d) to $(z_1, z_2, \ldots, z_{d-1}, z_d)$.

 $$(y_1, \ldots, y_d), (y_2, \ldots, y_d, k), (y_3, \ldots, y_d, k, z_1), (y_4, \ldots, y_d, k, z_1, z_2), \ldots$$
 $$\ldots, (y_d, k, z_1, \ldots, z_{d-2}), (k, z_1, \ldots, z_{d-1}), (z_1, \ldots, z_{d-1}, z_d))$$

- Let $v_{0i} = (y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2})$ the i-th node on P_0.
- Let $v_{1i} = (y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2})$ the i-th node on P_1.
- We have different times (1 or 2) for sending:
 - $(y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 0, z_1, \ldots, z_{i-2}, z_{i-1})$
 - $(y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 1, z_1, \ldots, z_{i-2}, z_{i-1})$.
- Thus the sum of running times is on P_0 and P_1: $3(d + 1)$.
- Thus the running time for the broadcast is: $\lceil 3(d + 1)/2 \rceil$.

Degree of the Nodes

Theorem:

Let $n \geq 5$ and $G = (V, E)$ be a graph with n nodes:

- If $\Delta(G) = 3$ holds, we have: $b(G) \geq \min b(G) \geq 1.4404 \log(n) - 3$.
- If $\Delta(G) = 4$ holds, we have: $b(G) \geq \min b(G) \geq 1.1374 \log(n) - 2$.

Proof:

- Let A be a broadcast-algorithm.
- Let $\text{Broad}_i^A(v_0)$ be the set of nodes, which are informed from v_0 by A in i rounds.
- Let $\text{Rec}_i^A(v_0) = \text{Broad}_i^A(v_0) \setminus \text{Broad}_{i-1}^A(v_0)$.
- Let $\text{Rec}_0^A(v_0) = \{v_0\}$.
- We have: $|\text{Broad}_i^A(v_0)| = \sum_{s=0}^{i} |\text{Rec}_s^A(v_0)|$.
Building the Idea

We consider here only the case $\Delta(G) = 3$. The case $\Delta(G) = 4$ is similar.

- The initial node may send at most three times.
- The initial node sends only in rounds 1, 2, 3.
- Any other nodes will be informed at time t via an edge e.
- No further node may be informed via e.
- Thus any other node may send at most two times.
- If a node v is informed in round t by w, then did w receive the information at round $t - 1$ or $t - 2$.
- Thus the number of newly informed nodes in round $t > 3$, is at most the number of nodes which got informed in rounds $t - 1$ and $t - 2$.
Proof

- Let $A(i) = |Rec_i^A(v_0)|$.
- $A(0) = 1$
- $A(1) = 1$
- $A(2) = 2$
- $A(3) = 4$
- $A(i) = A(i - 1) + A(i - 2)$ für $i \geq 4$.
- Show by induction: $A(i) \leq 1.61804^i$ for $i \geq 0$.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):

- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broad}_t^A(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.
- Proof of the second statement may be done in the same way.
More Results

Consequence:
\[b(DB_k) \geq \min b(DB_k) \geq 1.1374 \cdot k - 2 \]

Theorem:
\[b(BF_m) = \min b(BF_m) > 1.7396m \text{ for large enough } m. \]
Idea of Proof: Check the number of nodes in distance \(k \).

Theorem:
\[b(DB_m) > 1.3042m \text{ for large enough } m. \]
Idea of Proof: Check the number of nodes in distance \(k \).
Overview

| Graph | |V| | Diameter | Lower Bound | Upper Bound |
|--------|---|-----|----------|-------------|-------------|
| K_n | n | 1 | $\lceil \log_2 n \rceil$ | $\lceil \log_2 n \rceil$ |
| HQ_k | 2^k | k | k | k |
| CCC_k | $k \cdot 2^k$ | $\lceil 5k/2 \rceil - 2$ | $\lceil 5k/2 \rceil - 2$ | $\lceil 5k/2 \rceil - 2$ |
| SE_k | 2^k | $2k - 1$ | $2k - 1$ | $2k - 1$ |
| DB_k | 2^k | k | $1.4404k$ | $\frac{3}{2}(k + 1)$ |
| BF_k | $k \cdot 2^k$ | $\lceil 3k/2 \rceil$ | $1.7609k$ | $2k - \frac{1}{2} \log \log k + c$ |
Literature

J. Hromkovič, et al.:
Dissemination of Information in Communication Networks:
Broadcasting, Gossiping, Leader Election, and Fault-Tolerance.
Questions

- Give the idea for the NP-completeness proof for the broadcast problem?
- Give the idea for the broadcast on the following networks
 - CCC
 - BF
 - SE
 - DB
- What are the ideas for the lower bounds for the broadcast problem?
Legend

\n \n n : Not of relevance
g : implicitly used basics
i : idea of proof or algorithm
s : structure of proof or algorithm
w : Full knowledge