Motivation

1. There are limits to the computing power of a single computer.
2. Computers become cheaper.
3. Specialized computers are expensive.
4. There are tasks with large data.
5. Many problems are very complex.
 - Weather and other simulations.
 - Crash tests.
 - Military applications.
 - Large data: (SETI, ...).
 - More similar problems.

6. Thus there is the need for computers with more than one CPU.
7. Or a quantum computer?
Pipeline: (systolic array)

- There is a sequence of processors \((P_i)\) \(1 \leq i \leq n\).
- Processor \(P_1\) receives the input.
- Output of \(P_1\) will be passed as the input of \(P_2\).
- Output of \(P_i\) will be passed as the input of \(P_{i+1}\) \(1 \leq i < n\).
- Processor \(P_n\) delivers the final output.
- Processors may be different.
- Processors may run different programs.
- Intermediate outputs may be buffered.
- Pipelining is one important type of parallel system (in practice).
Systolic Arrays

- Idea: use more than one data stream.
- Data streams may interact each other.
- Each processor is the same.
- There is a global synchronization.
- Processors may run simple programs.
- Advantage: really fast (for special applications).
Systolic Array with three data streams
Vector of processes.
Each processor has different data.
But each processor executes the same program.

Addition of two vectors:

1. Read vector A
2. Read vector B
3. Add (each processor)
4. Output the summation

Single Instruction Multiple Data SIMD-Computer.
Aim: Multiple Instruction Multiple Data MIMD-Computer.
I.e. Fast processors with fast connections.
Example: Transputer

- Advantage: very flexible, any fixed network of degree 4 possible.
- Disadvantage: long wires may be necessary, only a fixed network possible.
Beispiel: Transputer II

- CPU
- Bus
- Memory
- Link
- Switch
Parallele Computer I

- Advantage: “normal” CPUs.
- Advantage: fast links possible.
- Advantage: no special hardware.
- Advantage: variable network, may change during execution.
- Advantage: very large networks may be possible.
- Disadvantage: still a limited degree for the network.
- Disadvantage: large network are complicated.
- Problem: cooling large systems.
- Problem: fault tolerance.
- Problem: construct such a system.
- Problem: generate good data throughput with constant degree network.
- Problem: do the program structures fit the structure of the network.
Look for good networks.

- Trees, Grids, Pyramids, ...

- $HQ(n)$, $CCC(n)$, $BF(n)$, $SE(n)$, $DB(n)$, ...

- Pancake Network and Burned Pancake Network.

- Problem: Physical placement of the processors.

- Problem: Length of wires.

- Problem: Has the network a nice structure.

- If the network becomes too large, we may use efficiency.

- Solution: choose a mixed network structure.
Parallel Computer IV (Network)
CPU and memory are one logical unit:

1. CPU and memory are one logical unit:
 - CPU
 - RAM
 - CPU
 - RAM
 - CPU
 - RAM
 - CPU
 - RAM

 Network

CPUs and memory are connected by a network:

2. CPUs and memory are connected by a network:
 - CPU
 - CPU
 - CPU
 - CPU
 - CPU

 Network

 RAM
 - RAM
 - RAM
 - RAM
 - RAM

The difference is more on the practical side.
Ignore/unify the costs for each computation step.

Ignore/unify the costs for each communication step.
Definition RAM

- RAM: Random Access Machine
- CPU may access any memory cell
- Memory is unlimited
- Complexity measurements
 - uniform: each operation cost one unit
 - logarithmic: cost are measured according to the size of the numbers
Idea of PRAM

- Many processes
- Common program
- Program may select single processors
- Common memory
Definition PRAM

- Consists of processors P_i with $1 \leq i \leq p$ (prozessor has id i).
- Consists of registers R_j with $1 \leq j \leq m$.
- Each processor has some local registers.
- Each processor P_i may access each register R_j.
- Each processor executes the same programm.
- The programm is synchronized, thus each processor executes the same instructions.
- A selection is possible by using the processor id.
- The input of length n is written to registers R_j with $1 \leq j \leq n$.
- The output is placed in some known registers.
- The registers contain words (numbers) in the uniform cost measurement.
- The registers contain bits in the logarithmic cost measurement.
Definition PRAM

- The following instructions are possible:
 1. Processor \(P_i \) reads register \(R_j \): \(R_j \rightarrow P_i(x) \).
 2. Processor \(P_i \) writes value of \(x \) into register \(R_j \): \(P_i(x) \rightarrow R_j \).
 3. Processor may do some local computation using local registers:
 \(x := y \times 5 \).

- For the access to the register we have the following variations:
 - EREW _Exclusive Read_ Exclusive _Write_
 - CREW _Concurrent Read_ Exclusive _Write_
 - CRCW _Concurrent Read_ Concurrent _Write_
 - ERCW _Exclusive Read_ Concurrent _Write_

- Write conflicts may be solved using the following rules:
 - Arbitrary: any processor gets access to the register.
 - Common: all processors writing to the same register have to write the same value.
 - Priority: the processor with the smallest id gets access to the register.
Computation of an “Or” (Idea)

\[x = 0 \quad x = 1 \quad x = 0 \quad x = 0 \quad x = 1 \quad x = 0 \quad x = 0 \quad x = 1 \]

\[0 \lor 1 \lor 0 \lor 0 \lor 1 \lor 0 \lor 0 \lor 1 \rightarrow 1 \]
Computing an “Or”

- Task: Compute \(x = \bigvee_{i=1}^{n} x_i \).
- Input: \(x_i \) is in register \(R_i \) (\(1 \leq i \leq n \)).
- Output computed in \(R_{n+1} \).
- Program: Or

 for all \(P_i \) where \(1 \leq i \leq n \) do in parallel

 \(R_i \rightarrow P_i(x) \)

 if \(x = \text{true} \) then \(P_i(x) \rightarrow R_{n+1} \)

- Running time: \(O(1) \) (exact 2 steps).
- Number of processors: \(n \).
- Memory: \(n + 1 \).
- Possible models: ERCW (Arbitrary, Common oder Priority).
Computing an “Or” (EREW)

- Problem:
 no writing of two processors
to the same register
at the same time.

- Idea: combine pairwise the results

- With this idea, computing the sum is also possible.

- Thus computing the “Or” is just a special case of computing a sum.
Computing the Sum (Idea)
Computing the Sum (Idea)

103 45 30 15

\[P_1 \quad P_2 \quad P_3 \quad P_4 \]

12 6 34 5 7 23 4 11
Computing the sum (EREW)

- Task: compute \(x = \sum_{i=1}^{n} x_i \) with \(n = 2^k \).
- Input: \(x_i \) is in register \(R_i \) for \(1 \leq i \leq n \).
- Output: should be in \(R_1 \) (input may be overwritten).
- Model: EREW.
- Program: Summe

 for all \(P_i \) where \(1 \leq i \leq n/2 \) do in parallel

 \[
 R_{2 \cdot i - 1} \rightarrow P_i(x)
 \]

 for \(j = 1 \) to \(k \) do

 if \((i - 1) \equiv 0 \pmod{2^{j-1}} \) then

 \[
 R_{2 \cdot i - 1 + 2^{j-1}} \rightarrow P_i(y)
 \]

 \[
 x := x + y
 \]

 \[
 P_i(x) \rightarrow R_{2 \cdot i - 1}
 \]

- Running time: \(O(k) = O(\log n) \) (precise \(3 \cdot k + 1 \) steps).
- Number of processors: \(n/2 \).
- Size of memory: \(n \).

Assume w.l.o.g \(n = 2^k \) for \(k \in \mathbb{N} \).
Addition of Matrices

Assume w.l.o.g. \(n = 2^k \) for \(k \in \mathbb{N} \).

- Let \(A, B \) two \((n \times n)\)-Matrices.
- Sum \(A + B \) is computable with \(n^2 \) processors in Zeit \(O(1) \) on a EREW PRAM.
- \(R_1 \) till \(R_{n^2} \) contain \(A \) (one row after the other).
- \(R_{1+n^2} \) bis \(R_{2.n^2} \) contains \(B \) (one row after the other).
- Result in \(R_{1+2.n^2} \) bis \(R_{3.n^2} \).
- Programm: MatSumme

\[
\text{for all } P_i \text{ where } 1 \leq i \leq n^2 \text{ do in parallel}
\]

\[
\begin{align*}
R_i & \rightarrow P_i(x) \\
R_{i+n^2} & \rightarrow P_i(y) \\
x & := x + y \\
P_i(x) & \rightarrow R_{i+2.n^2}
\end{align*}
\]

- Running time: \(O(1) \).
- Number of processors: \(O(n^2) \).
- Size of memory: \(O(n^2) \).
Multiplication of Matrices

Assume w.l.o.g $n = 2^k$ for $k \in \mathbb{N}$.

Let A, B be two $(n \times n)$-Matrices.

- R_1 till R_{n^2} contain A (one row after the other).
- R_{1+n^2} bis $R_{2 \cdot n^2}$ contains B (one row after the other).
- Result in $R_{1+2 \cdot n^2}$ bis $R_{3 \cdot n^2}$

Register $A_{i,j} = R_{(i-1) \cdot n + j}$ ($1 \leq i, j \leq n$).

Register $B_{i,j} = R_{(i-1) \cdot n + j + n^2}$ ($1 \leq i, j \leq n$).

Register $C_{i,j} = R_{(i-1) \cdot n + j + 2 \cdot n^2}$ ($1 \leq i, j \leq n$).

Processor $P_{i,j} = P_{(i-1) \cdot n + j}$ ($1 \leq i, j \leq n$).

Use the above notation to simplify the algorithm.

Each processor has to do some hidden local computation to implement the above expressions.
Multiplikation of Matrices

- Let A, B be two $(n \times n)$-Matrices
- Product $A \cdot B$ is computable with n^2 processors in time $O(n)$ on a CREW PRAM.

Programm: MatrProd 1

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

1. $h = 0$
2. for $l = 1$ to n do
3. $A_{i,l} \rightarrow P_{i,j}(a)$
4. $B_{l,j} \rightarrow P_{i,j}(b)$
5. $h = h + a \cdot b$
6. $P_{i,j}(h) \rightarrow C_{i,j}$

- Running time: $O(n)$.
- Number of processors: $O(n^2)$.
- Size of memory: $O(n^2)$.

$$
A_{i,j} = R(i-1) \cdot n + j \\
B_{i,j} = R(i-1) \cdot n + j + n^2 \\
C_{i,j} = R(i-1) \cdot n + j + 2 \cdot n^2 \\
P_{i,j} = P(i-1) \cdot n + j
$$
Motivation and History
PRAM Introduction
Efficiency
Selection
Merging

Multiplikation of Matrices

- Let A, B be two $(n \times n)$-Matrices
- Product $A \cdot B$ is computable with n^2 processors in time $O(n)$ on a EREW PRAM.
- Programm: MatrProd 2
 for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
 $h = 0$
 for $l = 1$ to n do
 $A_{i,l} \rightarrow P_{i,j}(a)$
 $B_{l,j} \rightarrow P_{i,j}(b)$
 $h = h + a \cdot b$
 $P_{i,j}(h) \rightarrow C_{i,j}$
- Running time: $O(n)$.
- Number of processors: $O(n^2)$.
- Size of memory: $O(n^2)$.

\[
\begin{align*}
A_{i,j} &= R(i-1) \cdot n + j \\
B_{i,j} &= R(i-1) \cdot n + j + n^2 \\
C_{i,j} &= R(i-1) \cdot n + j + 2 \cdot n^2 \\
P_{i,j} &= P(i-1) \cdot n + j
\end{align*}
\]
Compute the Prefixsum

Problem:

- Task: Compute $s_i = \sum_{j=1}^{i} x_j$ for $1 \leq i \leq n$.
- Input: x_j is in register R_j ($1 \leq j \leq n$).
- Output: s_i should be in register R_i for $1 \leq i \leq n$.
Computing Prefixsum (Idea)
Computing the Prefixsum

- Task: Compute \(s_i = \sum_{j=1}^{i} x_j \) for \(1 \leq i \leq n \).
- Input: \(x_j \) is in register \(R_j \) (\(1 \leq j \leq n \)).
- Output: \(s_i \) should be in register \(R_i \) for \(1 \leq i \leq n \).
- Model: EREW
- Program: Summe

 \[
 \begin{align*}
 \text{for all } P_i \text{ where } 1 \leq i \leq n \text{ do in parallel} \\
 & R_i \rightarrow P_i(x) \\
 & \text{for } j = 1 \text{ to } k \text{ do} \\
 & \quad \text{if } i > 2^{j-1} \text{ then} \\
 & \quad \quad R_{i-2^{j-1}} \rightarrow P_i(y) \\
 & \quad \quad x := x + y \\
 & \quad \quad P_i(x) \rightarrow R_i
 \end{align*}
 \]
- Running time: \(O(k) = O(\log n) \) (precisely \(3 \cdot k + 1 \) steps).
- Number of processors: \(n \).
- Size of memory: \(n \).
Compute the Maximum

- Task: Compute $m = \max_{j=1}^{n} x_j$ with $n = 2^k$.
- Input: x_j is in register R_j ($1 \leq j \leq n$).
- Output: m should be in register R_{n+1}.
- Possible with n processors in time $O(\log n)$ using a EREW PRAM.
- Question: could it be done faster? (i.e. on a ERCW PRAM).
- A maximum is larger or equal than all other values.
- Idea: compare all pairs of numbers.
- The maximum will always win.
Compute the Maximum (Idea)

<table>
<thead>
<tr>
<th>22</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>14</td>
<td>56</td>
<td>23</td>
<td>67</td>
<td>49</td>
<td>27</td>
<td>61</td>
<td>52</td>
<td>57</td>
<td>59</td>
<td>26</td>
<td>41</td>
<td>33</td>
<td>22</td>
</tr>
</tbody>
</table>
Compute the Maximum (Idea)

22	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0			
33	0	1	1	0	1	0	0	1	0	0	0	0	1	0	0	1	1	0		
41	1	1	1	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0		
26	0	1	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1		
59	1	1	1	1	1	1	0	1	1	0	1	0	0	1	1	1	1	1	0	
67	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
52	1	1	1	0	1	0	1	1	0	0	1	0	0	1	1	1	1	0		
61	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1	0		
27	0	1	1	0	1	0	0	1	0	0	0	0	0	1	0	0	0	1		
49	1	1	1	0	1	0	1	1	0	0	0	0	0	1	1	1	1	0		
67	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
23	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1		
56	1	1	1	1	1	1	0	1	1	0	1	0	0	1	1	1	1	1	0	
14	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
12	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
34	1	1	1	0	1	0	0	1	0	0	0	0	1	0	1	1	0			
	34	12	14	56	23	67	49	27	61	52	67	59	26	41	33	22				
Computing the Maximum

- **Task:** Compute $m = \max_{j=1}^{i} x_j$ with $n = 2^k$.

- **Input:** x_j is in register R_j ($1 \leq x_j \leq n$).

- **Output:** m in register R_{n+1}.

- **Model:** CRCW.

- **Program:** Maximum

 for all $P_{i,1}$ where $1 \leq i \leq n$ do in parallel

 $P_{i,1}(1) \rightarrow W_i$

 for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

 $R_i \rightarrow P_{i,j}(a)$

 $R_j \rightarrow P_{i,j}(b)$

 if $a < b$ then $P_{i,j}(0) \rightarrow W_i$

 for all $P_{i,1}$ where $1 \leq i \leq n$ do in parallel

 $W_i \rightarrow P_{i,1}(h)$

 if $h = 1$ then

 $R_i \rightarrow P_{i,1}(h)$

 $P_{i,1}(h) \rightarrow R_{n+1}$
Computing the Maximum

- **Programm: Maximum**

 for all $P_{i,1}$ where $1 \leq i \leq n$ do in parallel

 $P_{i,1}(1) \rightarrow W_i$

 for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

 $R_i \rightarrow P_{i,j}(a)$
 $R_j \rightarrow P_{i,j}(b)$

 if $a < b$ then $P_{i,j}(0) \rightarrow W_i$

 for all $P_{i,1}$ where $1 \leq i \leq n$ do in parallel

 $W_i \rightarrow P_{i,1}(h)$

 if $h = 1$ then

 $R_i \rightarrow P_{i,1}(h)$
 $P_{i,1}(h) \rightarrow R_{n+1}$

- Running time: $O(1)$.
- Number of processors: $O(n^2)$.
- Memory: $O(n)$.
Identify the Roots of a Forest

- Nodes are identified by numbers from 1 till n
- Input: Father of node i is written in register R_i.
- For the roots i we have: in register R_i is written i.
- Program: Ranking
 \[
 \text{for all } P_i \text{ where } 1 \leq i \leq n \text{ do in parallel} \\
 \text{for } j = 1 \text{ to } \lceil \log n \rceil \text{ do} \\
 \quad R_i \rightarrow P_i(h) \\
 \quad R_h \rightarrow P_i(h) \\
 \quad P_i(h) \rightarrow R_i
 \]
 Running time: $O(\log n)$.
- Number of processors: $O(n)$.
- Memory: $O(n)$.
- Model: CREW.
Short Summary

<table>
<thead>
<tr>
<th>Problem</th>
<th>processors</th>
<th>memory</th>
<th>time</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>$O(n/t)$</td>
<td>$O(n)$</td>
<td>$O(t)$</td>
<td>ERCW</td>
</tr>
<tr>
<td>Or</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Maximum</td>
<td>$O(n^2/t)$</td>
<td>$O(n)$</td>
<td>$O(t)$</td>
<td>CRCW</td>
</tr>
<tr>
<td>Sum</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Ranking</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>CREW</td>
</tr>
<tr>
<td>Prefixsum</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.sum</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(n \cdot \log n)$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(\log n)$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
</tbody>
</table>

Question: May we save some processors?
May we do this saving in any situation?
How do we estimate the efficiency of a parallel algorithm?
Cost Measurement

Let A be any parallel algorithm, we denote:

- $T_A(n)$ the running time of A.
- $P_A(n)$ the number of processors used by A.
- $R_A(n)$ the number of registers used by A.
- $W_A(n)$ the number of accesses to registers done by A.
- $ST(n)$ the running time of the best [known] sequential algorithm.
- $Eff_A(n) := \frac{ST(n)}{P_A(n) \cdot T_A(n)}$ the efficiency of A.
- $AEff_A(n) := \frac{W_A(n)}{P_A(n) \cdot T_A(n)}$ the usage efficiency of A.
Efficiency

<table>
<thead>
<tr>
<th>Problem</th>
<th>processors</th>
<th>time</th>
<th>$W(n)$</th>
<th>$AEff$</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>$O(n/t)$</td>
<td>$O(t)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>ERCW</td>
</tr>
<tr>
<td>Or</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Maximum</td>
<td>$O(n^2/t)$</td>
<td>$O(t)$</td>
<td>$O(n^2)$</td>
<td>1</td>
<td>CRCW</td>
</tr>
<tr>
<td>Sum</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Ranking</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Prefixsum</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.sum</td>
<td>$O(n^2/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^2)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^3)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^3)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^3)$</td>
<td>1</td>
<td>EREW</td>
</tr>
</tbody>
</table>
Efficiency

<table>
<thead>
<tr>
<th>Problem</th>
<th>processors</th>
<th>timet</th>
<th>$ST(n)$</th>
<th>Eff</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>$O(n/t)$</td>
<td>$O(t)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>ERCW</td>
</tr>
<tr>
<td>Or</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Maximum Sum</td>
<td>$O(n^2/t)$</td>
<td>$O(t)$</td>
<td>$O(n)$</td>
<td>$O(1/n)$</td>
<td>CRCW</td>
</tr>
<tr>
<td>Ranking</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Prefixsum</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.sum</td>
<td>$O(n^2/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^2)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^{2.276})$</td>
<td>$O(n^{-0.734})$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^{2.276})$</td>
<td>$O(n^{-0.734})$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^{2.276})$</td>
<td>$O(n^{-0.734})$</td>
<td>EREW</td>
</tr>
</tbody>
</table>
Task: Compute the k-th (k-smallest) element in a unsorted sequence $S = \{s_1, \cdots, s_n\}$.

Lower bound: $n - 1$ comparisons

Start with a nice sequential algorithm

Program: Select(k, S)

if $|S| \leq 50$ then return k-th number in S

Split S in $\lceil n/5 \rceil$ sub-sequences H_i of size ≤ 5

Sort each H_i

Let M be the sequence of the middle elements in H_i

$m := Select(\lceil |M|/2 \rceil, M)$

$S_1 := \{s \in S \mid s < m\}$

$S_2 := \{s \in S \mid s = m\}$

$S_3 := \{s \in S \mid s > m\}$

if $|S_1| \geq k$ then return $Select(k, S_1)$

if $|S_1| + |S_2| \geq k$ then return m

return $Select(k - |S_1| - |S_2|, S_3)$
Example for the k-th Element (Slow Motion)

Input/Data:

| 80 | 33 | 53 | 67 | 22 | 72 | 0 | 39 | 14 | 79 | 24 | 27 | 64 | 87 | 67 | 74 | 33 | 47 | 59 | 76 | 21 |
|----|----|----|----|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 4 | 44 | 88 | 58 | 61 | 47 | 76 | 77 | 29 | 51 | 84 | 14 | 10 | 36 | 78 | 12 | 27 | 92 | 49 | 40 | 35 |
| 15 | 79 | 65 | 40 | 97 | 8 | 3 | 28 | 61 | 25 | 75 | 7 | 26 | 86 | 94 | 39 | 50 | 23 | 41 | 8 | 30 |
| 57 | 42 | 86 | 45 | 64 | 80 | 79 | 72 | 66 | 62 | 1 | 66 | 83 | 59 | 47 | 38 | 49 | 39 | 88 | 56 | 50 |
| 61 | 90 | 6 | 27 | 45 | 53 | 19 | 61 | 93 | 69 | 72 | 13 | 18 | 19 | 43 | 61 | 97 | 23 | 3 | 92 | 39 |

M:

| 57 | 44 | 65 | 45 | 61 | 53 | 19 | 61 | 61 | 62 | 72 | 14 | 26 | 59 | 67 | 39 | 49 | 39 | 49 | 56 | 35 |

sorted M:

| 14 | 19 | 26 | 35 | 39 | 39 | 44 | 45 | 49 | 49 | 53 | 56 | 57 | 59 | 61 | 61 | 61 | 62 | 65 | 67 | 72 |
Example for the k-th Element

Input/Data:

```
|  94 |  31 |  90 |  86 |  60 |  53 |  52 |  23 |  12 |  49 |  51 |  26 |  87 |  45 |   1 |  52 |  57 |  16 |  35 |  12 |  36 |
|  83 |  27 |  93 |  70 |  68 |  45 |  55 |  26 |  45 |  95 |  32 |  31 |  93 |  24 |  78 |  78 |  59 |  50 |  62 |  17 |  40 |
|  0  |  58 |  82 |  21 |  54 |  33 |  42 |  34 |  64 |  63 |  73 |  78 |  58 |  57 |  30 |  66 |  93 |  33 |  19 |  96 |  78 |
|  47 |  57 |  91 |  59 |  43 |  54 |  81 |  88 |  60 |  36 |  7 |  42 |  58 |  66 |  80 |  78 |  59 |  43 |  79 |  62 |  46 |
|  20 |  93 |   2 |  68 |  41 |  61 |  51 |  74 |  82 |  58 | 10 | 32 |  12 |  67 |  93 |  54 |  48 |  58 |  56 |  89 |  26 |
```

M:

```
|  47 |  57 |  90 |  68 |  54 |  53 |  52 |  34 |  60 |  58 |  32 |  32 |  58 |  57 |  78 |  66 |  59 |  43 |  56 |  62 |  40 |
```

sorted M:

```
|  32 |  32 |  34 |  40 |  43 |  47 |  52 |  53 |  54 |  56 |  57 |  57 |  58 |  58 |  59 |  60 |  62 |  66 |  68 |  78 |  90 |
```
Example for the k-th Element (Worst Case)

Input/Data:

<table>
<thead>
<tr>
<th>73</th>
<th>65</th>
<th>54</th>
<th>57</th>
<th>71</th>
<th>94</th>
<th>61</th>
<th>85</th>
<th>73</th>
<th>64</th>
<th>93</th>
<th>82</th>
<th>82</th>
<th>67</th>
<th>71</th>
<th>59</th>
<th>84</th>
<th>61</th>
<th>56</th>
<th>91</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>76</td>
<td>64</td>
<td>88</td>
<td>59</td>
<td>74</td>
<td>53</td>
<td>68</td>
<td>77</td>
<td>56</td>
<td>89</td>
<td>88</td>
<td>89</td>
<td>76</td>
<td>64</td>
<td>60</td>
<td>56</td>
<td>80</td>
<td>64</td>
<td>67</td>
<td>56</td>
</tr>
<tr>
<td>29</td>
<td>17</td>
<td>10</td>
<td>42</td>
<td>33</td>
<td>10</td>
<td>34</td>
<td>3</td>
<td>19</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>84</td>
<td>89</td>
<td>89</td>
<td>83</td>
<td>85</td>
<td>70</td>
<td>52</td>
<td>54</td>
<td>77</td>
</tr>
<tr>
<td>43</td>
<td>26</td>
<td>5</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>1</td>
<td>18</td>
<td>29</td>
<td>0</td>
<td>81</td>
<td>52</td>
<td>82</td>
<td>67</td>
<td>90</td>
<td>67</td>
<td>66</td>
<td>64</td>
<td>66</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>42</td>
<td>6</td>
<td>44</td>
<td>4</td>
<td>16</td>
<td>77</td>
<td>73</td>
<td>85</td>
<td>78</td>
<td>78</td>
<td>70</td>
<td>55</td>
<td>73</td>
<td>58</td>
<td>60</td>
</tr>
</tbody>
</table>

M:

| 43 | 40 | 13 | 42 | 33 | 18 | 42 | 6 | 44 | 42 | 16 | 81 | 82 | 82 | 71 | 78 | 70 | 66 | 64 | 66 | 60 |

sorted M:

| 6 | 13 | 16 | 18 | 33 | 40 | 42 | 42 | 43 | 44 | 60 | 64 | 66 | 66 | 70 | 71 | 78 | 81 | 82 | 82 |
Running Time

- For some constants c, d we get:
 - $T(n) \leq d \cdot n$ for $n \leq 50$
 - $T(n) \leq c \cdot n + T(n/5) + T(3n/4)$

if $|S| \leq 50$ then return k-th number in S
Split S in $\lceil n/5 \rceil$ sub-sequences H_i of size ≤ 5
Sort each H_i
Let M be the sequence of the middle elements in H_i
$m := \text{Select}(\lceil |M|/2 \rceil, M)$
$S_1 := \{ s \in S \mid s < m \}$
$S_2 := \{ s \in S \mid s = m \}$
$S_3 := \{ s \in S \mid s > m \}$
if $|S_1| \geq k$ then return $\text{Select}(k, S_1)$
if $|S_1| + |S_2| \geq k$ then return m
return $\text{Select}(k - |S_1| - |S_2|, S_3)$
Claim: \(T(n) \leq 20 \cdot r \cdot n \) with \(r = \max(d, c) \).

Proof:

\(n = 50: \)

\[
T(n) \leq c \cdot n + \frac{d \cdot n}{5} + \frac{3 \cdot d \cdot n}{4}
\]

\(n > 50: \)

\[
T(n) \leq c \cdot n + T\left(\frac{d \cdot n}{5}\right) + T\left(\frac{3 \cdot d \cdot n}{4}\right)
\]

\[
T(n) \leq c \cdot n + 4 \cdot r \cdot n + 15 \cdot r \cdot n
\]

Running time \(T(n) \) is in \(O(n) \).
Parallel k-Select

- Input $S = \{s_1, \cdots, s_n\}$.
- Processors $P_1, P_2, \cdots P_{\lceil n^{1-x} \rceil}$, thus $P(n) = \lceil n^{1-x} \rceil$.
- Each P_i knows $n, P(n)$.
- Each P_i works on $\lceil n^x \rceil$ elements.
- We will now create a parallel version of the program Select(k,S).
- We will get a parallel recursive program.

1. Easy solution for small S.
2. Split S into small sub-sequences for the processors.
3. Compute parallel the median of the sub-sequences.
4. Compute parallel and recursive the median of medians.
5. Compute the splitting into the three sub-sequences.
6. Do the final recursion.
Example for the k-th Element

Input/Data:

79 96	1 19 38 18 19	68 31 87 43	90 96 32 7 10 9 69 35 88 34 46 14 49 89 33 10 73 45 42 89 66 37 54																	
74 93	81 35 39 3	19 18 51 47 24	92 8 8 65 72 77 54 9 63 94 90 82 1 0 40 37 61 8 42 40 44 36 60 5																	
63 58	25 85 20 46	83 62 7 21 83 2 95 26	19 17 68 58 61 21 64 3 49 54 35 79 20 2 71 13 3 17 82 46 10																	
56 84	94 93 25 9 21 6 73 78 40 71 97 15 14 3 25 19 8	13 21 84 84 1 66 90 68 56 43 73 76 83 40 84 26																		
49 22	31 50 73 84 10	91 58 82 45 54 26 9	53 15 74 46 6	97 8 9 86 68 2 20 1 53 96 20 6 27 20 92 87																
57 6	2 18 66 11 7 53 80 6 82 53	44 19 74 16	12 30 65 79 74 47 80 74 16 9	94 14 66 46 55 4 14 51 81																
94 95	47 39 46 45	34 30 66 80 23 2	52 52 22 60 55 94 65 75 0 5	96 49 10 13 60 2 56 50 84 70 75 55 21																
76 97	90 53 52 92 88 58	10 92 14 85	33 4	30 22 63 87 23 2	22 31 38 25 32 77	94 66 34 2	73 9 82 65 42													
65 30	10 77 43 85 31 7	70 56 7 21 97 55 60 5	32 77 88 66 85 32	29 28 73 17	64 14 78 84 41 5	19 48 26														
73 21	25 90 0	8	13 61 42 79 19	84 70 74 66 97 18	58 16 21 43 13	46 87 90 44 87 41 9	1	60 86 57 5												
9	30 24	91 54 41 4	59 94 65 44 44	31 96 87 57	26 87 20	91 35 14 52	3	82 92 28 23	85 80 78 47	37	2	17 43 12								
56 31	27 90 5	6	64 75 64 46	96	14	7	10 35 81 16	13	50	35 14	52	82 92 28	23	85 80 78	47	37	2	17 43 12		
4	53 73	29 3	74 70 15	21 0	48 2	62 70 30	54 4	73 75	76 63	35 35 13	96 81 68	32 24 73	2	47 22 46	59 16					
93 28	90 38 93 23	70 69	15 45	18 56	49 82	64	47 15 43	54	67 3	80	29 28 48	8	49 29 46	44	3	18 84 47 54				
15	59	96 46 47	55 52	24 13	0	31	44	16 49	17	70 81	80 78	24 21	60	62	65	30 66	14 26 87	28	78 28 65	50 64

P: P₁ P₂ P₃ P₄ P₅ P₆ P₇ P₈ P₉ P₁₀ P₁₁ P₁₂ P₁₃ P₁₄ P₁₅ P₁₆ P₁₇ P₁₈ P₁₉ P₂₀ P₂₁ P₂₂ P₂₃ P₂₄ P₂₅ P₂₆ P₂₇ P₂₈ P₂₉ P₃₀ P₃₁ P₃₂ P₃₃ | P₃₄ P₃₅

M:

| 63 53 | 31 50 43 41 | 31 58 | 58 47 43 44 52 32 35 26 55 54 58 63 | 22 43 62 | 49 48 40 44 29 66 44 41 | 27 46 51 26 |

sorted M:

| 22 26 26 27 29 31 31 32 35 40 41 41 43 43 44 44 44 44 | 46 47 48 49 50 51 52 53 54 55 58 58 58 68 62 63 63 66 |
Parallel k-Select

Programm: ParSelect(k,S)
1:
 \textbf{if} \ |S| \leq k_1 \ \textbf{then} \ P_1 \ \textbf{returns} \ Select(k, S).
2:
 S \ is \ split \ into \ \lceil|S|^{1-x}\rceil \ sub-sequences \ S_i \ with \ |S_i| \leq \lceil n^x \rceil \\
 P_i \ stores \ the \ start-address \ of \ S_i.
3:
 \textbf{for all} \ P_i \ where \ 1 \leq i \leq \lceil n^{1-x} \rceil \ \textbf{do in parallel} \\
 \quad m_i := \ Select(\lceil|S_i|/2\rceil, S_i) \\
 \quad P_i(m_1) \rightarrow R_i. \\
 \quad \text{Assume \ in \ the \ following \ that} \ M \ \text{is \ the \ sequence \ of \ these \ values.}
4:
 m := \ ParSelect(\lceil|M|/2\rceil, M).
5:
 \textbf{More \ to \ come!}
Parallel k-Select

Programm: ParSelect(k,S) Steps 5

5.1:
Distribute m via broadcast to all P_i.

for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel

$L_i := \{ s \in S_i \mid s < m \}$
$E_i := \{ s \in S_i \mid s = m \}$
$G_i := \{ s \in S_i \mid s > m \}$

5.2:
Compute with Parallel Prefix:

$l_i := \sum_{j=1}^{i} |L_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.
$e_i := \sum_{j=1}^{i} |E_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.
$g_i := \sum_{j=1}^{i} |G_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

Let: $l_0 = e_0 = g_0 = 0$

5.3:

Even more to come!
Parallel k-Select

Programm: ParSelect(k,S) Steps 5+6

5.3:
Compute \(L = \{ s \in S \mid s < m \} \), \(E = \{ s \in S \mid s = m \} \)
and \(G = \{ s \in S \mid s > m \} \) as follows:

for all \(P_i \) where \(1 \leq i \leq \lceil n^{1-x} \rceil \) do in parallel

\[P_i \text{ writes } L_i \text{ in } R_{l_i-1+1}, \ldots, R_{l_i}. \]
\[P_i \text{ writes } E_i \text{ in } R_{e_i-1+1}, \ldots, R_{e_i}. \]
\[P_i \text{ writes } G_i \text{ in } R_{g_i-1+1}, \ldots, R_{g_i}. \]

6:

if \(|L| \geq k \) then return \(\text{ParSelect}(k, L) \)
if \(|L| + |E| \geq k \) then return \(m \)
return \(\text{Select}(k - |L| - |E|, G) \)
Parallel k-Select (Running Time)

Programm: ParSelect(k,S)

1: $O(1)$
 \[\text{if } |S| \leq k_1 \text{ then } P_1 \text{ returns } \text{Select}(k, S)\].

2: $O(\log_2(|S|^{1-x}))$ thus we have $O(\log n)$
 S is split into $\lceil |S|^{1-x} \rceil$ sub-sequences S_i with $|S_i| \leq \lceil n^x \rceil$
 P_i stores the start-address of S_i.

3: $O(n^x)$
 \[\text{for all } P_i \text{ where } 1 \leq i \leq \lceil n^{1-x} \rceil \text{ do in parallel} \]
 \[m_i := \text{Select}(\lceil |S_i|/2 \rceil, S_i)\]
 \[P_i(m_1) \rightarrow R_i.\]
 Assume in the following that M is the sequence of these values

4: $T_{\text{ParSelect}}(n^{1-x})$
 \[m := \text{ParSelect}(\lceil |M|/2 \rceil, M).\]
Programm: ParSelect(k,S) Steps 5

5.1a: $O(\log_2 (n^{1-x}))$
Distribute m via broadcast to all P_i.

5.1b: $O(|S_i|)$ thus we have $O(n^x)$
for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel

- $L_i := \{s \in S_i \mid s < m\}$
- $E_i := \{s \in S_i \mid s = m\}$
- $G_i := \{s \in S_i \mid s > m\}$

5.2: $O(\log_2 (n^{1-x}))$

Compute with Parallel Prefix:
- $l_i := \sum_{j=1}^{i} |L_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.
- $e_i := \sum_{j=1}^{i} |E_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.
- $g_i := \sum_{j=1}^{i} |G_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.
Let: $l_0 = e_0 = g_0 = 0$
Parallel k-Select (Running Time)

Programm: ParSelect(k,S) Steps 5+6

5.3: $O(n^x)$

Compute $L = \{s \in S \mid s < m\}$, $E = \{s \in S \mid s = m\}$ and $G = \{s \in S \mid s > m\}$ as follows:

for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel

- P_i writes L_i in $R_{l_{i-1}+1}, \ldots, R_{l_i}$.
- P_i writes E_i in $R_{e_{i-1}+1}, \ldots, R_{e_i}$.
- P_i writes G_i in $R_{g_{i-1}+1}, \ldots, R_{g_i}$.

6: $T_{ParSelect}(3 \cdot n/4)$

if $|L| \geq k$ then return $ParSelect(k, L)$

if $|L| + |E| \geq k$ then return m

return $Select(k - |L| - |E|, G)$
Parallel k-Select (Running Time)

Adding all up we get:

- $T_{ParSelect}(n) = c_1 \log n + c_2 \cdot n^x + T_{ParSelect}(n^{1-x}) + T_{ParSelect}(3/4 \cdot n)$.
- $T_{ParSelect}(n) = O(n^x)$ with $P_{ParSelect}(n) = O(n^{1-x})$.

$$Eff_{ParSelect}(n) = \frac{O(n)}{O(n^x) \cdot O(n^{1-x})} = O(1)$$
Sequential Merging

- **Input:**
 \[A = (a_1, a_2, \cdots, a_r) \text{ and } B = (b_1, b_2, \cdots, b_s) \] two sorted sequences

- **Output:**
 \[C = (c_1, c_2, \cdots, c_n) \] sorted sequence of \(A \) and \(B \) with \(n = r + s \).

- **Program:** Merge

 \[
 \begin{align*}
 i &:= 1; j := 1; n := r + s \\
 \text{for } k := 1 \text{ to } n \text{ do} \\
 &\quad \text{if } a_i < b_j \\
 &\quad \quad \text{then } c_k := a_i; i := i + 1; \\
 &\quad \quad \text{else } c_k := b_j; j := j + 1;
 \end{align*}
 \]

- Algorithm does not care about special cases.

- Running time: at most \(r + s \) comparisons, i.e. \(O(n) \).

- Lower bound on the number of comparisons is \(r + s \), i.e. \(\Omega(n) \).
The border lines may not intersect each other.

Thus we may separate the two sequences into disjoint blocks.

Let A_i the i block of size $\lceil r/p \rceil$.

Let \hat{B}_i block in B which should be merged with A_i.

Thus we may uses a PRAM easily (in this case).
Idea for Parallel Merging (CREW)

Let A_i [resp. B_i] the i block of size $\lceil r/p \rceil$ [resp. $\lceil s/p \rceil$].

Let \hat{B}_i [resp. A_i] block in B [resp. A] which should be merged with A_i [resp. B_i].

P_i cares about A_i and \hat{B}_i if $|\hat{B}_i| \leq \lceil r/p \rceil$.

Let C be those where one P_j takes already care of.

P_i cares about $A_i \setminus C$ and $\hat{B}_i \setminus C$.
Parallel Merging (CREW)

1. Use $P(n)$ processors.
2. Each processor P_i computes for $A [B]$ its part of size $r/P(n) [s/P(n)]$.
3. Each processor P_i computes the part from $B [A]$ which should be merged with its A-block [B-block].
4. Each processor computes its A or B block, where only he is responsible for.
5. This block has size $O(n/P(n))$.
6. Each processor merges its block into the resulting sequence.
7. Time: $O(\log n + n/P(n))$.
8. Efficiency

\[
\frac{n}{O(P(n)) \cdot O(\log n + n/P(n))}.
\]

9. Efficiency is 1 for $P(n) \leq n / \log n$.
Idea for Merging (EREW)

- Do some splitting into pairs of blocks of the same size.
- Rekursive splitting into pairs of blocks of the same size.
- Thus we may avoid read conflicts.
Merging (EREW)

1. Use $P(n)$ processors.
2. Compute the median m of the sequences A and B.
3. Split the sequences A and B in two sub-sequences each of the “same” size ($-1 \leq |A| - |B| \leq 1$).
4. Continue recursively, till all sub-sequences are smaller than $n/P(n)$.
5. Do the merging in the same way as before.

Remaining problem: Find the median of two sequences.
Example for the Median for two Sorted Sequences

- Sequences A and B are sorted.
- Compute median a of A and median b of B.
Median for two Sorted Sequences

1. Sequences A and B are sorted.
2. Compute median a of A and median b of B.
4. The median of A and B is in one block-pair of the four blocks.
5. Search recursively for the median.

Running time: $O(\log n)$
Running Time for Merging (EREW)

1. Use $P(n)$ processors.
2. Compute the median m of the sequences A and B. $O(\log n)$
3. Split the sequences A and B in two sub-sequences each.
4. Continue recursively, till all sub-sequences are smaller than $n/P(n)$. $O(\log n \cdot \log(P(n)))$
5. Merge in the same way as before. $O(n/P(n))$

Running time: $O(n/P(n) + \log(n)^2)$.

Efficiency

$$\frac{O(n)}{O(P(n)) \cdot O(n/P(n) + \log(n)^2)} = \frac{O(n)}{O(n + P(n) \cdot \log(n)^2)}.$$

Efficiency is 1 for $P(n) < \frac{n}{(\log n)^2}$.
Questions

- Explain the motivation behind parallel systems.
- Describe the different models of a PRAM.
- Describe idea of the k-select algorithm.
- For which problems do the running time of CWCR and EWCR algorithms differ?
Legend

- : Not of relevance
- : implicitly used basics
- : idea of proof or algorithm
- : structure of proof or algorithm
- : Full knowledge