Theory of Parallel and Distributed Systems (WS2016/17)

Chapter 2
Sorting with a PRAM

Walter Unger

Lehrstuhl für Informatik 1

8:55, November 28, 2016
Contents I

1 Sorting
 • Simple Sorting Algorithm
 • Improved Algorithm

2 Introduction to optimal Sorting

3 Algorithmn of Cole
 • Lower Bound
 • Batchers Sorting Algorithm
 • Sorting
 • Idea
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th>22</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>3</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>14</td>
<td>56</td>
<td>23</td>
<td>67</td>
<td>49</td>
<td>27</td>
<td>61</td>
<td>52</td>
<td>57</td>
<td>59</td>
<td>26</td>
<td>41</td>
<td>33</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use \(n^2 \) processors.

Programm: SimpleSort

Eingabe: \(s_1, \ldots, s_n \).

\[
\text{for all } P_{i,j} \text{ where } 1 \leq i, j \leq n \text{ do in parallel} \\
\quad \text{if } s_i > s_j \text{ then } P_{i,j}(1) \rightarrow R_{i,j} \text{ else } P_{i,j}(0) \rightarrow R_{i,j} \\
\text{for all } i \text{ where } 1 \leq i \leq n \text{ do in parallel} \\
\quad \text{for all } P_{i,j} \text{ where } 1 \leq j \leq n \text{ do in parallel} \\
\quad \quad \text{Processors } P_{i,j} \text{ bestimmen } q_i = \sum_{l=1}^{n} R_{i,l}. \\
\quad P_i(s_i) \rightarrow R_{q_i+1}.
\]

- Complexity: \(T(n) = O(\log n) \) and \(P(n) = n^2 \).
- Efficiency: \(\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O(\frac{1}{n}) \).
- Model: CREW.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel. $O(n/P(n) + \log n) \cdot O(\log P(n))$

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

- Is $O(1)$ for $P(n) \leq n/\log n$.
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}(\text{EREW})}(n) = \Theta(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n))) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

$$Eff(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}$$

- Is $O(1)$ if $P(n) < n/\log^2 n$.

Lower Bound

Theorem:
For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \cdots, s_n.
- Program: compare_exchange(i,j)

 \[
 \text{if } s_i > s_j \text{ then exchange } s_i \leftrightarrow s_j
 \]

- Symbolic view (Batcher):

 \[
 \begin{align*}
 \text{max}(x, y) & \quad \text{max}(x, y) \\
 \text{min}(x, y) & \quad \text{min}(x, y)
 \end{align*}
 \]

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Odd-even Merge (Definition)

- Input: Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. n even)
- Let $Odd(S)$ [$Even(S)$] be the elements of S with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $\text{interleave}(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

\[T_{\text{interleave}}(n) = O(1) \text{ mit } P_{\text{interleave}}(n) = O(n) \]
Odd-even Merge (Definition)

- Programm: `odd_even(S)`

 for all \(i \) where \(1 < i < n \) and \(i \) even do in parallel

 `compare_exchange(i, i + 1)`.

- \(T_{\text{compare_exchange}}(n) = O(1) \) mit \(P_{\text{compare_exchange}}(n) = O(n) \)
Odd-even Merge (Definition)

- **Programm:** \(\text{join1}(S, S') \)

 \[\text{odd_even}(\text{interleave}(S, S')) \]

- \(T_{\text{join1}}(n) = O(1) \) mit \(P_{\text{join1}}(n) = O(n) \)
Sorting with Merging

- **Programm:** odd_even_merge(S, S')
 - if $|S| = |S'| = 1$ then merge with `compare_exchange`
 - $S_{\text{odd}} = \text{odd_even_merge}(\text{odd}(S), \text{odd}(S'))$.
 - $S_{\text{even}} = \text{odd_even_merge}(\text{even}(S), \text{even}(S'))$.
 - return `join1$(S_{\text{odd}}, S_{\text{even}})$`.

- $T_{\text{odd_even_merge}}(n) = O(\log n)$ mit $P_{\text{odd_even_merge}}(n) = O(n)$

Theorem:
The algorithm `odd_even_merge` sorts two already sorted sequences into one.

Proof follows.
Sorting Networks

Theorem:
There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

Theorem:
There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to \texttt{compare_exchange} operation are independent form the input (oblivious algorithm).
The 0-1 Principle

Theorem:
If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \cdots, a_n) to (b_1, b_2, \cdots, b_n), then if X gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
Correctness of the Merging

Theorem:
The algorithm `odd_even_merge` sorts two sorted sequences into a single one.

Proof:

- S has the form: $S = 0^p1^{m-p}$ for some p with $0 \leq p \leq m$.
- S' has the form: $S' = 0^q1^{m'-q}$ for some q with $0 \leq q \leq m'$.
- Thus the sequence S_{odd} has the form $0^\left\lceil \frac{p}{2} \right\rceil + \left\lceil \frac{q}{2} \right\rceil 1^*$
- And S_{even} has the form $0^\left\lfloor \frac{p}{2} \right\rfloor + \left\lfloor \frac{q}{2} \right\rfloor 1^*$.
- Define: $d = \left\lceil \frac{p}{2} \right\rceil + \left\lfloor \frac{q}{2} \right\rfloor - \left(\left\lfloor \frac{p}{2} \right\rfloor + \left\lfloor \frac{q}{2} \right\rfloor \right)$
- Depending on d we consider three cases: $d = 0$, $d = 1$ and $d = 2$.
Correctness of the Merging

If \(d = 0 \): Then we have: \(p \) and \(q \) are even.
- The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 1^{m+m'-p-q}
 \]
- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If \(d = 1 \): Then we have: \(p \) is odd and \(q \) is even.
- The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 01^{m+m'-p-q}
 \]
- The resulting sequences is already sorted.

If \(d = 2 \): Then we have: \(p \) and \(q \) are odd.
- The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 101^{m+m'-p-q}
 \]
- The *compare_exchange* step will exchange the 1 on position \(2r \) with the 0 on position \(2r + 1 \).
Testing the Correctness of a Network

Corollary:
The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p1^{m-p}, 0^q1^{m'-q})$.

Theorem:
The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
The Merging-Tree, a View
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
The Merging-Tree, a View

Each Processor starts with 256 elements
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $rng(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $Rng_{A,B}$ is the function $Rng_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $Rng_{A,B}(e) = rng(e, B)$ for all $e \in A$.
- $Rng_{A,B}$ is called the rank between A and B.
- Depending on the context $Rng_{A,B}$ could also be an array with $|A|$ elements.
Good Sampler

Definition:
We call L a good sampler of J, iff:

- L and J are sorted.
- Between any $k + 1$ succeeding elements of $\{-\infty\} \cup L \cup \{+\infty\}$ are at most $2 \cdot k + 1$ many elements in J.

Example:
- Let S be a sorted sequence
- Let S_1 be the sequence consisting of each forth element of S.
- Then S_1 is a good sampler of S.
- Let S_2 be the sequence consisting of each second element of S.
- Then S_1 is a good sampler of S_2.
- Example ($k = 1$): $1, 2, 3, 4$.
- Example ($k = 3$): $1, 2, 3, 4, 5, 6, 7, 8, 9, 10$.

$$rng(e, S) = |\{x \in S \mid x < e\}|$$ and $Rng_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $Rng_{A,B}(e) = rng(e, B)$
Merging using a Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } R_{\text{rng}_{A,B}} : A \mapsto \mathbb{N}^{|A|} \text{ with } R_{\text{rng}_{A,B}}(e) = \text{rng}(e, B) \]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).

Programm: \(\text{merge_with_help}(J, K, L) \)

for all \(i \) where \(1 \leq i \leq s \) do in parallel

Assign \(J_i = \{x \in J \mid l_{i-1} < x \leq l_i\} \).
Assign \(K_i = \{x \in K \mid l_{i-1} < x \leq l_i\} \).
Assign \(res_i = \text{merge}(J_i, K_i) \).

return \((res_1, res_2, \cdots, res_s) \).

Situation:

<table>
<thead>
<tr>
<th></th>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
<th>(L_4)</th>
<th>(L_5)</th>
<th>(L_6)</th>
<th>(L_7)</th>
<th>(L_8)</th>
<th>(L_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(l_1)</td>
<td>(l_2)</td>
<td>(l_3)</td>
<td>(l_4)</td>
<td>(l_5)</td>
<td>(l_6)</td>
<td>(l_7)</td>
<td>(l_8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(K_1)</td>
<td>(K_2)</td>
<td>(K_3)</td>
<td>(K_4)</td>
<td>(K_5)</td>
<td>(K_6)</td>
<td>(K_7)</td>
<td>(K_8)</td>
<td>(K_9)</td>
</tr>
</tbody>
</table>
Merging using a Good Sampler (Example)

\[\text{rng}(e, S) = |\{ x \in S \mid x < e \}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>(\text{merge}(K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>(\emptyset)</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(L \) is a good sampler for \(K \) and \(J \).
If \(\text{Rng}_{L,J}, \text{Rng}_{L,K}, \text{Rng}_{K,L} \) and \(\text{Rng}_{J,L} \) is known, then we have:
\[
T_{\text{merge_with_help}(J,K,L)} = O(1) \text{ with } P_{\text{merge_with_help}(J,K,L)} = O(|J| + |K|).
\]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \(\text{Rng}_{L,J} \) resp. \(\text{Rng}_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(\text{Rng}_{J,L} \) and \(\text{Rng}_{K,L} \) to know the area to write its output sequence.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:
If \(X \) is a good sampler for \(X' \) and \(Y \) is a good sampler for \(Y' \), then \(\text{merge}(X, Y) \) is a good sampler for \(X' \) [resp. \(Y' \)].

Proof:
- Consider \(X \) as a good sampler for \(X' \).
- Any additional element makes the good sampler just "better".

Note:
\(\text{merge}(X, Y) \) is not necessarily a sampler for \(\text{merge}(X', Y') \).
- \(X = (2, 7) \) and \(X' = (2, 5, 6, 7) \).
- \(Y = (1, 8) \) and \(Y' = (1, 3, 4, 8) \).
- \(\text{merge}(X, Y) = (1, 2, 7, 8) \) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

Let X be a good sampler for X' and let Y be a good sampler for Y'. Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$.

Proof:

- W.l.o.g. contain X and Y elements $-\infty$ and $+\infty$.
- Let (e_1, e_2, \cdots, e_r) successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be

$$x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad y = |Y \cap \{e_1, e_2, \cdots, e_r\}|.$$
Properties of Good Samplers

Let X be a good sampler for X' and let Y be a good sampler for Y'. Then there are at most $2 \cdot r + 2$ elements of merge(X', Y') between r successive elements of merge(X, Y).

Proof: W.l.o.g. let $e_1 \in X$.
If: $e_r \in X$

- Between e_1 and e_r are at most $2(x - 1) + 1$ elements of X'.
- Between e_1 and e_r are at most $2(y + 1) + 1$ elements of Y', because they are between $y + 2$ elements of Y.
- Thus we get: $2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2$.

Example $x = 3$ and $y = 2$:

$$a \in Y \quad e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X \quad b \in Y$$
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of \(\text{merge}(X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\)

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of \(\text{merge}(X', Y')\) between \(r\) successive elements of \(\text{merge}(X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \cdots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \cdots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\[e_0 \in Y \quad e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X\]
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let reduce(X) be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then reduce$(\text{merge}(X, Y))$ is a good sampler for reduce$(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of reduce$(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of reduce$(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes \(v \) “cares” about as many elements as the number of leaves below \(v \).
- A node \(v \) receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node \(v \) receives sequences \(X_1, X_2, \cdots, X_r \) and \(Y_1, Y_2, \cdots, Y_r \).
- Node \(v \) sends to his father sequences \(Z_1, Z_2, \cdots, Z_r, Z_{r+1} \).
- Node \(v \) updates an interior help-sequence \(\text{val}_v \).
- It holds: \(|X_1| = |Y_1| = |Z_1| = 1 \).
- It holds: \(|X_i| = 2 \cdot |X_{i-1}|, \quad |Y_i| = 2 \cdot |Y_{i-1}| \quad \text{and} \quad |Z_i| = 2 \cdot |Z_{i-1}|. \)
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
Basic operation of a interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = merge_with_help(X, Y, val_v)$.
- Sends to its father: reduce(val_v) till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Thus we get the following pattern:

$$
\begin{align*}
 X_1 & & X_2 & & X_3 & & X_4 & & \cdots & & X_r \\
 Z_1 & & Z_2 & & \cdots & & Z_r & & Z_{r+1} & & Z_{r+2}
\end{align*}
$$

- If a node x is finished after t steps, then will the father of x be finished after $t + 3$ steps.
- Thus we get a running time of $3 \log n$.
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1$.
Situation

- Running time is $O(\log n)$.
- The inner nodes v need $|val_v|$ many processors.
- We still have to proof that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- Important: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Computing the Ranks

In each step will compute: merge_with_help(X_{i+1}, Y_{i+1}, merge(X_i, Y_i)).

Using the Lemma from above we have: merge(X_i, Y_i) is a good sampler of X_{i+1} and Y_{i+1}.

Let \(L = \text{merge}(X_i, Y_i), J = X_{i+1} \) and \(K = Y_{i+1} \).

We have to compute: \(\text{Rng}_{L,J}, \text{Rng}_{L,K}, \text{Rng}_{J,L} \) and \(\text{Rng}_{K,L} \).

Invariant:

Let \(S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \(v \).

Then node \(c \) also knows: \(\text{Rng}_{S_{i+1}, S_i} \) for \(1 \leq i < p \).

Furthermore for each sequence \(S \) is known: \(\text{Rng}_{S,S} \).
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \cdots, b_k)$ be a sorted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using k processors.

Proof:

- **Programm:** rng1(a,S)
 for all P_i where $1 \leq i \leq k$ do in parallel
 if $b_i < a \leq b_{i+1}$ then return i

 - Note, the program has no write-conflicts.
 - Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:

Let \(S_1, S_2, S \) be two sorted sequences with \(S = \text{merge}(S_1, S_2) \) and \(S_1 \cap S_2 = \emptyset \). Then we may compute \(\text{Rnk}_{S_1, S_2} \) and \(\text{Rnk}_{S_2, S_1} \) in time \(O(1) \) using \(O(|S|) \) processors.

Proof:

- We do know \(\text{Rnk}_S, \text{Rnk}_{S_1, S_1} \) and \(\text{Rnk}_{S_2, S_2} \).
- Furthermore we have: \(\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1) \).
- The claim follows directly.
Computing the Ranks

Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

we have $\text{rnk}(a, S)$ and Rnk_{S_1,S_2} and Rnk_{S_2,S_1}
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \ldots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \ldots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 Programm: \(\text{Rnk}_{X', U}\)

 for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel

 for all \(x \in X'_i\) do

 \(\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)\)

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.

we have \(\text{rnk}(a, S)\) and \(\text{Rnk}_{S_1,S_2}\) and \(\text{Rnk}_{S_2,S_1}\)
Computing the Ranks $(\text{Rnk}_{U,X'})$

- Note: $\text{Rnk}_{U,X'}$ consists of $\text{Rnk} X, X'$ and $\text{Rnk} Y, X'$.
- $\text{Rnk} X, X'$ is already known.
- Still to compute: $\text{Rnk} Y, X'$.
- $\text{Rnk} Y, X$ may be computed using the previous lemma.
- We compute $\text{rnk}(a, X')$ using $\text{rnk}(a, X)$ and $\text{Rnk}_{X,X'}$.
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$.

we have $\text{rnk}(a, S)$ and Rnk_{S_1,S_2} and Rnk_{S_2,S_1}
Computing the Ranks

Consider the step

\[\text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \]

- Using the invariant we know: \(Rnk_{J,X_i} \) and \(Rnk_{K,Y_i} \).

- Using the above considerations we may compute: \(Rnk_{L,J}, Rnk_{L,K}, Rnk_{J,L} \) and \(Rnk_{K,L} \).

- Still to be computed: \(Rnk_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

- Known: \(Rnk_{X_{i+1},\text{merge}(X_i, Y_i)} \) and \(Rnk_{Y_{i+1},\text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \(Rnk_{X_{i+1},\text{reduce}(\text{merge}(X_i, Y_i))} \) and \(Rnk_{Y_{i+1},\text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \(Rnk_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Algorithmn of Cole

Theorem:
We may sort \(n \) values on a CREW PRAM using \(O(n) \) processors in time \(O(\log n) \).

Proof: discussed before.

Theorem:
We may sort \(n \) values on a EREW PRAM using \(O(n) \) processors in time \(O(\log n) \).

Proof: see literature.

Theorem:
There exists a sorting network with \(O(n) \) processors and depth \(O(\log n) \).

Proof: see literature.
we have \(\text{rnk}(a, S) \) and \(\text{rnk}_{S_1, S_2} \) and \(\text{rnk}_{S_2, S_1} \)

Literatur:

Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Legend

- : Not of relevance
- : implicitly used basics
- : idea of proof or algorithm
- : structure of proof or algorithm
- : Full knowledge