Very simple Algorithm (Idea)

22	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3	12		
33	0	1	1	0	1	0	0	0	1	0	0	0	0	0	1	0	0	1	7	14
41	1	1	1	0	1	0	0	1	0	0	0	0	0	1	0	1	1	9	22	
26	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	5	23
59	1	1	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	1	14	26
57	1	1	1	1	1	0	1	1	0	1	0	0	0	1	1	1	1	1	13	27
52	1	1	1	0	1	0	1	1	0	0	0	0	1	1	1	1	1	11	33	
61	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	15	34	
27	0	1	1	0	1	0	0	0	0	0	0	0	0	1	0	0	1	6	41	
49	1	1	1	0	1	0	0	1	0	0	0	0	1	1	1	1	1	10	49	
67	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	16	52	
23	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	56	
56	1	1	1	0	1	0	1	1	0	1	0	0	1	1	1	1	1	12	57	
14	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	59	
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	61	
34	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	1	8	67		

| 34 | 12 | 14 | 56 | 23 | 67 | 49 | 27 | 61 | 52 | 57 | 59 | 26 | 41 | 33 | 22 |
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \ldots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

- if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel

- for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel

 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.

 $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.

- Efficiency: $\frac{O(n\log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.

Model: CREW.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel. $O(n/P(n) + \log n) \cdot O(\log P(n))$

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$.
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}}(\text{EREW})(n) = \ln O(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

\[
Eff(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}
\]

- Is $O(1)$ if $P(n) < n/\log^2 n$.

Lower Bound

Theorem:
For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \ldots, s_n.
- Program: `compare_exchange(i,j)`

  ```
  if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
  ```
- Symbolic view (Batcher):

  ```
  y \quad \text{max}(x, y)
  
  x \quad \text{min}(x, y)
  ```

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Odd-even Merge (Definition)

- Input: Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. n even)
- Let $Odd(S)$ [$Even(S)$] be the elements of S with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $interleave(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

$$T_{interleave}(n) = O(1) \text{ mit } P_{interleave}(n) = O(n)$$
Odd-even Merge (Definition)

- Programm: `odd_even(S)`
 - for all `i` where `1 < i < n` and `i` even do in parallel
 - `compare_exchange(i, i + 1)`.

- `T_{compare_exchange}(n) = O(1)` mit `P_{compare_exchange}(n) = O(n)`
Odd-even Merge (Definition)

Programm: $\text{join1}(S, S')$

odd_even(interleave(S, S'))

$T_{\text{join1}}(n) = O(1)$ mit $P_{\text{join1}}(n) = O(n)$
Sorting with Merging

- Programm: odd_even_merge(S, S')
 - if |S| = |S'| = 1 then merge with compare_exchange.
 - $S_{odd} = odd_even_merge(odd(S), odd(S'))$.
 - $S_{even} = odd_even_merge(even(S), even(S'))$.
 - return $join_1(S_{odd}, S_{even})$.

- $T_{odd_even_merge}(n) = O(\log n)$ mit $P_{odd_even_merge}(n) = O(n)$

Theorem:
The algorithm odd_even_merge sorts two already sorted sequences into one.

Proof follows.
Sorting Networks

Theorem:
There exists a sorting algorithm with \(T(n) = O(\log^2 n) \) and \(P(n) = n \).

Proof: use divide and conquer, and merging of depth \(O(\log n) \).

Theorem:
There exists a sorting network of size \(O(n \log^2 n) \).

Proof: All calls to \texttt{compare_exchange} operation are independent form the input (oblivious algorithm).
The 0-1 Principle

Theorem:
If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \Leftrightarrow s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \ldots, a_n) to (b_1, b_2, \ldots, b_n), then if X gets $(f(a_1), f(a_2), \ldots, f(a_n))$ then the output $(f(b_1), f(b_2), \ldots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \ldots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \ldots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
Correctness of the Merging

Theorem:

The algorithm `odd_even_merge` sorts two sorted sequences into a single one.

Proof:

- S has the form: $S = 0^p1^{m-p}$ for some p with $0 \leq p \leq m$.
- S' has the form: $S' = 0^q1^{m'-q}$ for some q with $0 \leq q \leq m'$.
- Thus the sequence S_{odd} has the form $0^{\lceil p/2 \rceil + \lceil q/2 \rceil}1^*$.
- And S_{even} has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor}1^*$.
- Define $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$.
- Depending on d we consider three cases: $d = 0$, $d = 1$ and $d = 2$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.
- The interleave step of join1 has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 1^{m+m'-p-q}
 \]
- The resulting sequences is already sorted.
- The compare_exchange step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.
- The interleave step of join1 has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor} 01^{m+m'-p-q}
 \]
- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.
- The interleave step of join1 has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor} 101^{m+m'-p-q}
 \]
- The compare_exchange step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Testing the Correctness of a Network

Corollary:

The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p 1^{m-p}, 0^q 1^{m-q})$.

Theorem:

The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
The Merging-Tree, a View
Before merging two sequences we will merge two sub-sequences.

Choose as sub-sequence each k-th element of the original sequence.

These sub-sequences will be used as crutch/support to do the final merging.

I.e. these sub-sequences are used as a kind of “preview”.

Using these crutch points we will be able to do the merging in $O(1)$ time.

Total running time will be $O(\log n)$.

The additional effort should be at most $O(1)$.
The Merging-Tree, a View

Each processor starts with 256 elements.
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $Rng_{A,B}$ is the function $Rng_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $Rng_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $Rng_{A,B}$ is called the rank between A and B.
- Depending on the context $Rng_{A,B}$ could also be an array with $|A|$ elements.
Good Sampler

Definition:

We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:
- Let \(S \) be a sorted sequence
- Let \(S_1 \) be the sequence consisting of each forth element of \(S \).
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- Example \((k = 1)\): \(1, 2, 3, 4 \).
- Example \((k = 3)\): \(1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \).
Merging using a Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).
- Programm: \texttt{merge_with_help}(J, K, L)

 \begin{align*}
 \text{for all } i \text{ where } 1 \leq i \leq s \text{ do in parallel} & \\
 & \text{Assign } J_i = \{x \in J \mid l_{i-1} < x \leq l_i\}. \\
 & \text{Assign } K_i = \{x \in K \mid l_{i-1} < x \leq l_i\}. \\
 & \text{Assign } res_i = \text{merge}(J_i, K_i). \\
 \text{return } (res_1, res_2, \cdots, res_s).
 \end{align*}

- Situation:

\[
\begin{array}{ccccccccc}
L_1 & L_2 & L_3 & L_4 & L_5 & L_6 & L_7 & L_8 & L_9 \\
\hline
l_1 & l_2 & l_3 & l_4 & l_5 & l_6 & l_7 & l_8 & \\
K_1 & K_2 & K_3 & K_4 & K_5 & K_6 & K_7 & K_8 & K_9 \\
\end{array}
\]
Merging using a Good Sampler (Example)

\[
\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B)
\]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>(\text{merge}(K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>(\emptyset)</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(L \) is a good sampler for \(K \) and \(J \).
If \(Rng_{L,J}, Rng_{L,K}, Rng_{K,L} \) and \(Rng_{J,L} \) is known, then we have:
\[
T_{\text{merge_with_help}(J,K,L)} = O(1) \text{ with } P_{\text{merge_with_help}(J,K,L)} = O(|J| + |K|).
\]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \(Rng_{L,J} \) resp. \(Rng_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(Rng_{J,L} \) and \(Rng_{K,L} \) to know the area to write its output sequence.
Properties of Good Samplers

Lemma:
If X is a good sampler for X' and Y is a good sampler for Y', then $\text{merge}(X, Y)$ is a good sampler for X' [resp. Y'].

Proof:
- Consider X as a good sampler for X'.
- Any additional element make the good sampler just "better".

Note:
$\text{merge}(X, Y)$ is not necessarily a sampler for $\text{merge}(X', Y')$.
- $X = (2, 7)$ and $X' = (2, 5, 6, 7)$.
- $Y = (1, 8)$ and $Y' = (1, 3, 4, 8)$.
- $\text{merge}(X, Y) = (1, 2, 7, 8)$ and $\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8)$.
- There are 5 elements between 2 and 7.
Properties of Good Samplers

Lemma:

Let X be a good sampler for X' and let Y be a good sampler for Y'.
Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$.

Proof:

- W.l.o.g. contain X and Y elements $-\infty$ and $+\infty$.
- Let (e_1, e_2, \cdots, e_r) successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be

 \[x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad \]
 \[y = |Y \cap \{e_1, e_2, \cdots, e_r\}|. \]
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of \(\text{merge}(X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of \(\text{merge}(X', Y')\) between \(r\) successive elements of \(\text{merge}(X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\).

If: \(e_r \in X\)

- Between \(e_1\) and \(e_r\) are at most \(2(x - 1) + 1\) elements of \(X'\).
- Between \(e_1\) and \(e_r\) are at most \(2(y + 1) + 1\) elements of \(Y'\), because they are between \(y + 2\) elements of \(Y\).

Thus we get: \(2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2\).

Example \(x = 3\) and \(y = 2\):

\[
\begin{align*}
a & \in Y \\
e_1 & \in X \\
e_2 & \in Y \\
e_3 & \in X \\
e_4 & \in Y \\
e_5 & \in X \\
b & \in Y
\end{align*}
\]
Properties of Good Samplers

(e₁, e₂, ⋅⋅⋅, e_r) successive elements of merge(X, Y) and x = |X ∩ {e₁, e₂, ⋅⋅⋅, e_r}| and y = |Y ∩ {e₁, e₂, ⋅⋅⋅, e_r}| and

Lemma:

Let X be a good sampler for X′ and let Y be a good sampler for Y′. Then there are at most 2 ⋅ r + 2 elements of merge(X′, Y′) between r successive elements of merge(X, Y).

Proof: W.l.o.g. let e₁ ∈ X. If: e_r ∈ Y

- Add e₀ ∈ Y with e₀ < e₁ to the good sampler.
- Add e_r+1 ∈ X with e_r < e_r+1 to the good sampler.
- The elements from X′ between (e₁, e₂, ⋅⋅⋅, e_r) are between x + 1 elements from X.
- The elements from Y′ between (e₁, e₂, ⋅⋅⋅, e_r) are between y + 1 elements from Y.
- Thus we get: 2x + 1 + 2y + 1 = 2r + 2.

Example x = 2 and y = 2:

e₀ ∈ Y e₁ ∈ X e₂ ∈ Y e₃ ∈ X e₄ ∈ Y e₅ ∈ X
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let $\text{reduce}(X)$ be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements ($e_1, e_2, \cdots, e_{k+1}$) of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes v “cares” about as many elements as the number of leaves below v.
- A node v receives sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node v receives sequences X_1, X_2, \ldots, X_r and Y_1, Y_2, \ldots, Y_r.
- Node v sends to his father sequences $Z_1, Z_2, \ldots, Z_r, Z_{r+1}$.
- Node v updates the interior help-sequence val_v.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|, |Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$.
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
Basic operation of a interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = merge_with_help(X, Y, val_v)$.
- Sends to its father: $reduce(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Thus we get the following pattern:

\[
X_1 \quad X_2 \quad X_3 \quad X_4 \quad \cdots \quad X_r \\
Z_1 \quad Z_2 \quad \cdots \quad Z_r \quad Z_{r+1} \quad Z_{r+2}
\]

- If a node x is finished after t steps, then will the father of x be finished after $t + 3$ steps.
- Thus we get a running time of $3\log n$.
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1.$
Running time is $O(\log n)$.

The inner nodes v need $|val_v|$ many processors.

We still have to proof that the number of processors is in $O(n)$.

PRAM Model has to be verified.

Important: The computation of the values $Rng_{X,Y}$ has to be shown.

These values will be in the following also transmitted and updated.
Computing the Ranks

- In each step will compute: \textit{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)).
- Using the Lemma from above we have: \text{merge}(X_i, Y_i) is a good sampler of X_{i+1} and Y_{i+1}.
- Let $L = \text{merge}(X_i, Y_i)$, $J = X_{i+1}$ and $K = Y_{i+1}$.
- We have to compute: Rng_L, J, Rng_L, K, Rng_J, L and Rng_K, L.

Invariant:

- Let S_1, S_2, \ldots, S_p be a sequence of sequences at node v.
- Then node c also knows: $\text{Rng}_{S_{i+1}, S_i}$ for $1 \leq i < p$.
- Furthermore for each sequence S is known: Rng_S, S.
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \cdots, b_k)$ be a sortierted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using k processors.

Proof:
- Programm: $\text{rng1}(a,S)$
 - for all P_i where $1 \leq i \leq k$ do in parallel
 - if $b_i < a \leq b_{i+1}$ then return i

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let S_1, S_2, S be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute Rnk_{S_1,S_2} and Rnk_{S_2,S_1} in time $O(1)$ using $O(|S|)$ processors.

Proof:
- We do know $\text{Rnk}_{S,S}$, Rnk_{S_1,S_1} and Rnk_{S_2,S_2}.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

Lemma:

- Let \(X \) be a good sampler of \(X' \).
- Let \(Y \) be a good sampler of \(Y' \).
- Let \(U = \text{merge}(X, Y) \).
- Assume \(\text{Rnk}_{X', X} \) and \(\text{Rnk}_{Y', Y} \) are known.

Then we may compute in time \(O(1) \) using \(O(|X| + |Y|) \) processors \(\text{Rnk}_{X', U} \), \(\text{Rnk}_{Y', U} \), \(\text{Rnk}_{U, X'} \) and \(\text{Rnk}_{U, Y'} \).

Proof:

- First we compute \(\text{Rnk}_{X', U} \) and \(\text{Rnk}_{Y', U} \).
- Then we compute \(\text{Rnk}_{X, X'} \) and \(\text{Rnk}_{Y, Y'} \).
- Finally we compute \(\text{Rnk}_{U, X'} \) and \(\text{Rnk}_{U, Y'} \).
Computing the Ranks \((\text{Rnk}_{X'},U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X',X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 \[
 \text{Programm: } \text{Rnk}_{X',U} \\
 \text{for all } i \text{ where } 1 \leq i \leq k + 1 \text{ do in parallel} \\
 \quad \text{for all } x \in X'_i \text{ do} \\
 \quad \quad \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)
 \]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.
Computing the Ranks ($\text{Rnk}_{U,X'}$)

- Note: $\text{Rnk}_{U,X'}$ consists of $\text{Rnk } X, X'$ and $\text{Rnk } Y, X'$.
- $\text{Rnk } X, X'$ is already known.
- Still to compute: $\text{Rnk } Y, X'$.
- $\text{Rnk } Y, X$ may be computed using the previous lemma.
- We compute $\text{rnk}(a, X')$ using $\text{rnk}(a, X)$ and $\text{Rnk}_{X,X'}$.
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$.

we have $\text{rnk}(a, S)$ and Rnk_{S_1,S_2} and Rnk_{S_2,S_1}
Computing the Ranks

- Consider the step
 \[\text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \]:

- Using the invariant we know: \(\text{Rnk}_{J, X_i} \) and \(\text{Rnk}_{K, Y_i} \).

- Using the above considerations we may compute: \(\text{Rnk}_{L, J}, \text{Rnk}_{L, K}, \text{Rnk}_{J, L} \) and \(\text{Rnk}_{K, L} \).

- Still to be computed: \(\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

- Known: \(\text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \(\text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \(\text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \(\text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \(\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Algorithmn of Cole

Theorem:
We may sort n values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:
We may sort n values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
we have $\text{rnk}(a, S)$ and rnk_{S_1, S_2} and rnk_{S_2, S_1}

Literatur:

Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Legend

- : Not of relevance
- : implicitly used basics
- : idea of proof or algorithm
- : structure of proof or algorithm
- : Full knowledge