Contents I

1. Colorings I
 - Cycle
 - Trees

2. Eulerian cycle
 - Introduction
 - The algorithm

3. Matchings
 - Introduction
 - Algorithm
 - Running times

4. Colorings II

5. MIS
 - Introduction
 - MIS and Coloring
 - Small Domination Set
 - Randomized Distributed MIS

6. Coloring III
 - Outerplanar graphs

7. Simulations
 - Simple simulations
 - Advanced simulations

Bipartite graphs
Δ + 1 Coloring any Graph
Colorings

Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall\{a, b\} \in E : c(a) \neq c(b)$.
- Coloring number (chromatic index) of G:
 $$\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall\{a, b\} \in E : c(a) \neq c(b)\}.$$

- Coloring problem is NP-complete.
- Let $G = C_n$, i.e. $G = (\{v_0, \cdots, v_{n-1}\}, \{\{v_i, v_{(i+1) \bmod n}\} \mid 0 \leq i < n\})$.
- Then we have $\chi(C_n) \leq 3$ and $\chi(C_{2\cdot n}) \leq 2$ ($\chi(C_{2\cdot n+1}) = 3$).
- We do not have a nice order on the nodes:
 - let $\pi(i)$ be a permutation
- Let $G = C_n$, i.e.
 $$G = (\{v_0, \cdots, v_{n-1}\}, \{\{v_{\pi(i)}, v_{\pi((i+1) \bmod n)}\} \mid 0 \leq i < n\}).$$
Parallel Coloring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(i)$.
- In register C_i will be the color of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colors.
- We will use the colors $\{0, 1, \cdots, n\}$.
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

\[\text{for all } P_{i+1} \text{ where } 0 \leq i < n \text{ do in parallel}\]

\[\pi(i - 1) \rightarrow R_i\]
\[\pi(i) \rightarrow N_i\]
\[c = i\]
\[c \rightarrow C_i\]

\[\text{repeat [log}^*(n)] + 2 \text{ times}\]

\[C_{N_i} \rightarrow c'\]

minimal \(k\) with: \((c \gg k) \% 2 \neq (c' \gg k) \% 2\).
\[c = 2 \cdot k + ((c \gg k) \% 2)\]
\[c \rightarrow C_i\]
Parallel Coloring Algorithm of (on) a cycle (Idea)

- At the start we are using \(n \) colors.
- Within each color-reduction will the coloring stay correct.
- Within each color reduction will the coloring number be reduced from \(x \) to \(\log(x) + O(1) \).
- After \(\lceil \log^*(n) \rceil \) reductions steps will be the coloring numbers \(\leq 5 \).
- A second reduction of colors will follow now:
Last Steps

- The rows hold c and the columns hold c'.
- The entries in the table hold the new c.

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

- We only have the colors 000, 001, 010, 011, 100, 101 (≤ 5).
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$

$c = i$

$c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.

$c = 2 \cdot k + ((c \gg k) \% 2)$.

$c \rightarrow C_i$

for $r := 5$ downto 3 do:

if $c = r$ then

$C_{N_i} \rightarrow c'$

$c' \rightarrow C_i$

$C_{N_i} \rightarrow c''$

$c := \min(0, 1, 2 \setminus \{c', c''\})$

$c \rightarrow C_i$
Coloring a Cycle

Theorem:
A cycle with n nodes could be colored with n processors in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.

Theorem:
A cycle of n processors may color itself in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.

Theorem:
A cycle of n processors needs at least $\Omega(\log^* n)$ time to color itself with at most 3 colors.

Proof: see V4.
Coloring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(j - 1)$ where j is the father of i.
- The father of the root r is r.
- In register C_i will be the color of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colors.
- We will use the colors $\{0, 1, \cdots, n\}$.
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

\[\pi(i - 1) \rightarrow R_i \]
\[\pi(i) \rightarrow N_i \]
\[c = i \]
\[c \rightarrow C_i \]

repeat $\lceil \log^*(n) \rceil + 2$ times

\[C_{N_i} \rightarrow c' \]

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.

\[c = 2 \cdot k + ((c \gg k) \% 2) \]
\[c \rightarrow C_i \]
Parallel Coloring Algorithm of (on) a tree (Idea)

- At the start we are using n colors.
- Within each color-reduction will the coloring stay correct.
- Within each color reduction will the coloring number be reduced from x to $\log(x) + O(1)$.
- After $\lceil \log^*(n) \rceil$ reductions steps will be the coloring numbers ≤ 5.
- A second reduction of colors will follow now:
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-tree
for all P_{i+1} where $0 \leq i < n$ do in parallel
 $\pi(i - 1) \rightarrow R_i$
 $\pi(i) \rightarrow N_i$
 $c = i$ and $c \rightarrow C_i$
repeat $\lceil \log^*(n) \rceil + 2$ times, if $R_i \neq N_i$
 $C_{N_i} \rightarrow c'$
 minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.
 $c = 2 \cdot k + ((c \gg k) \% 2)$.
 $c \rightarrow C_i$
for $r := 5$ downto 3 do:
 if $c = r$ then
 $C_{N_i} \rightarrow c'$
 $c' \rightarrow C_i$
 $C_{N_i} \rightarrow c''$
 $c := \min(\{0, 1, 2\} \setminus \{c', c''\})$
 $c \rightarrow C_i$
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

for all \(P_{i+1} \) where \(0 \leq i < n \) do in parallel

\[\pi(i - 1) \rightarrow R_i \]
\[\pi(j - 1) \rightarrow N_i \text{ with } j \text{ is father of } i \]
\[c = i \text{ and } c \rightarrow C_i \]

repeat \(\lceil \log^*(n) \rceil + 2 \) times

\[C_{N_i} \rightarrow c' \]
minimal \(k \) with: \(((c \gg k)\%2) \neq ((c' \gg k)\%2) \).
\[c = 2 \cdot k + ((c \gg k)\%2) \]
\[c \rightarrow C_i \]
if \(R_i = N_i \) then \(c = \min(\{0, 1\} \setminus R_i) \) else \(c = C_{N_i} \)
\[c \rightarrow C_i \]

for \(r := 5 \) downto 3 do:

if \(c = r \) then

\[C_{N_i} \rightarrow c' \]
\[c' \rightarrow C_i \]
\[C_{N_i} \rightarrow c'' \]
\[c := \min(\{0, 1, 2\} \setminus \{c', c''\}) \]
\[c \rightarrow C_i \]
Coloring a Tree

Theorem:

A tree with \(n \) nodes could be colored with \(n \) processors in time \(O(\log^* n) \) with at most 3 colors.

Proof: see above.

Theorem:

A tree of \(n \) processors may color itself in time \(O(\log^* n) \) with at most 3 colors.

Proof: see above.
Eulerian cycle

Definition:
A graph $G = (V, E)$ is called Eulerian, iff there exists a cycle which visits each edge precisely once.

Theorem
A non-directed graph $G = (V, E)$ is Eulerian
- G is connected and
- each node of G has even degree.

Theorem
A directed graph $G = (V, E)$ is Eulerian
- G is strongly connected and
- each node has as many incoming edges as outgoing ones.

Problem: Compute Eulerian cycle on Eulerian graphs.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.

- If G is non-directed, then make a directed version of G.
- Compute a cover of cycles.
- Compute an additional cycle which meets each cycle precisely once.
- Uses these to compute a cycle for G.
- Delete some edges to get an Eulerian cycle for G.
Change a non-directed Graph into a directed one

- G contains m non-directed edges.
- Substitute each non-directed edge with two directed ones:
 $\{i, j\}$ becomes (i, j) and (j, i).
- Define a successor for each edge:
 - The neighbors of v are: $v_0, v_1, \cdots, v_{d-1}$.
 - Then define for all i:
 $\text{Succ}((v_i, v)) := (v, v_{(i+1) \mod d})$ und
 $\text{Succ}((v_{(i+1) \mod d}, v)) := (v, v_i)$.
- Each directed edge is in precisely one cycle (defined by Succ).
- For each cycle C exists one cycle C', which consists of the reverse edges.
- We will now delete one of the two cycles C or C'.
Generating a directed Graph

- Identify the generated cycles:
 - Let $\min(((i, j), (k, l))) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases}$.
 - For each edge e define $\text{Edge}'(e) = e$;
 - For all edges e repeat $\log m$ times:
 - $\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e)))$
 - $\text{Succ}(e) = \text{Succ}^{\prime}(\text{Succ}(e))$.
 - For each edge (i, j): if $\min(((i, j), (j, i))) \neq (i, j)$ then let $\text{Edge}'(e) = 0$.

 Thus we have selected for each non-directed edge a directed one (resp. a direction).

- Possible with m in time $O(\log m)$.

- We consider in the following on directed graphs.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$.
 using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
- We have already defined the cycles:
 Successor of edge $e = Edge(i)$ is the edge $Succ(i)$.
- We also store in $P(i)$ the position of $Succ(i)$ in $Edge$.
 I.e. $Edge(P(i)) = Succ(i)$.
- This information could be updated during the sorting of $Succ$.
- This could be done in time $O(\log m)$ using $O(m)$ processors.
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge e the cycles where e belongs to.
- **Solution:** compute for each cycle the minimal edge
 $((i, j) < (k, l) \iff i < k \lor (i = k \land j < l))$.
- **Algorithm:**

 Programm:

  ```plaintext
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
  CycleRep($i$) := Succ($i$)
  for $i := 1$ to $\lceil \log m \rceil$ do:
    CycleRep($i$) := min(CycleRep($i$), CycleRep($P(i)$))
  P($i$) := P($P(i)$)
  ```

 - We use again the doubling technique.
 - Possible in time $O(\log m)$ using $O(m)$ Processors.
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by \(\text{CycleRep} \).
- Problem: join the cycle into a single one.
- Solution: Identify the nodes of the cycle.
 \[C = \{ \text{CycleRep}(i) \mid 1 \leq i \leq m \} \text{. (Note } C \text{ is a edge set)} \]
- \[G' = V \cup C \]
- \[E' = \{(u, v) \mid u \in V, v \in C : v \text{ is identified in the cycle by } u \} \]
- Computing of \(E' \):

 Program:

 for all \(P_i \) where \(1 \leq i \leq m \) do in parallel

 \((u, v) = \text{Edge}(i) \)

 \(\text{Edge}'(2 \cdot i) = (u, \text{CycleRep}(i)) \)

 \(\text{Edge}'(2 \cdot i + 1) = (v, \text{CycleRep}(i)) \)
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.
- Programm:

 for all P_i where $1 \leq i \leq m$ do in parallel

 if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$

 Sort $Edge'$.
- Consider only the first $|E'|$ elements of $Edge'$.
- Problem: node u could appear several times in a cycle v.
- As before we may compute a single representative.
- Let these edge be $(i, u) = Cert(u, v)$.
- May be done in time $O(\log m)$ using $O(m)$ processors.
Step 3

- Situation: Covering of the cycles and graph G' computed.
- Problem: Compute cycle in G'.
- Solution: compute spanning tree T for the bipartite Graph G'.

 To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.

 Then we substitute each edge in T with two directed edges.

- The new graph T' is Eulerian.

- The Eulerian cycle is easy to find:

 To do so, compute for each node of the tree the order of edges.

 Could be don in time $O(\log m)$ using $O(m)$ processors.
Step 4

- Situation: We have a cover of cycles for G and T'.
- Problem: Find cycle L in G'.
- Solution: Combine the cycles using $Cert(u, v)$.
- L will also contain the Eulerian cycle in G.
- For each cycle v in G $Cert(u, v)$ gives us an edge, at which we may exchange between v and the cycle in T'.
- These points of change will be used to construct a single cycle L.
- Time $O(1)$ using $O(m)$ Processors.
Step 5

- **Situation:** we have a cycle for G and T'.
- **Problem:** find cycle in G.
- **Solution:** delete edges from T'.
- **Programm:**

  ```
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
  if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
  if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
  ```

- Uses time $O(1)$ with $O(m)$ processors.
- Total time is: $O(\log^2 m)$ using $O(m)$ processors.
- Also possible: $O(\log^2 m)$ time using $O(m/\log^2 m)$ processors.
Definition

Let $G = (V, E)$ be a non-directed graph.

- $M \subseteq E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\nexists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.

Sequential: $O(m \log m)$ for maximal matching.

Idea: Choose any free edge and delete all incident edges.

Sequential: $O(m^3)$ for maximum matching.

Idea: enlarging alternating pathes.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure $DegreeSplit$ $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
- We denote with $G(i,j)$ the graph considered in the j-th Step of the i-th phase.
- We will describe the procedure $DegreeSplit$.
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1}$.
- We will call all nodes v with $\delta(v) \geq 2^k$ active.
Step 1

- Compute all active nodes of $G(i, j)$
 - Determine the degree in time $O(\log \Delta(G(i, j)))$ with $O(m)$ processors.
 - Determine the maximum degree in time $O(\log n)$ with $O(n)$ processors.
 - Then the active nodes are known in time $O(1)$ using $O(n)$ processors.

- Total running time: $O(\log n)$ using $O(m)$ processors.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.

- Total running time: $O(\log n)$ using $O(m)$ processors.
- $G^*(i,j)$ might not be connected.
- Each component of $G^*(i,j)$ contains an Eulerian cycle.
- Note that each node v has even degree.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
- For the component with the additional node v start with v using label 0.
- For all other components start at an arbitrary node with label 1.
- Running time: $O(\log n)$ with $O(m + n)$ processors.
- Use Parallel Prefix to compute the labels.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i, j)$ is not a matching then
 $G(i, j + 1) = G^{**}(i, j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i, j)$ is a matching then $M_i = E(G^{**}(i, j))$.
- Running time: $O(1)$ with $O(m + n)$ processors.
- Running time of the procedure $DegreeSplit$: $O(\log^2 n)$ with $O(m + n)$ processors.
- It remains to show: After at most $1 + \log(\Delta(G(i, j)))$ steps $DegreeSplit$ computes a matching.
- It remains to show: After at most $O(\log_{3/2} n)$ phases the matching is optimal.
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
- Then v stays active in G_1.
- Hence the degree is halved in every step.
- There exists a $k' \leq k$ such that $G_{k'}$ has a degree of 3.
- After two more iterations the degree is at most one.
- So a matching is found.
Lemma:
A logarithmic number of phases is enough to compute a maximum matching.

Proof:
- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
- ($C \subset V$ is a vertex cover if $\forall e \in E : e \cap C \neq \emptyset$)
- We show the following;
 - Half of the nodes in a vertex cover A_i can be made incident to edges from M_i.
 - This means it holds: $|A_i/G_{i+1}| \leq |A_i|/2$.
 with A_i/G_{i+1} the nodes of A_i in G_{i+1}
 - There are vertex covers C_i: $|C_{i+1}| \leq 2 \cdot |C_i|/3$.

Outer loop (Proof)

- Let $G_k = (V, E_k)$ be the graph in the third to last loop of $DegreeSplit$.
- W.l.o.g. G_k is connected with degree ≤ 3.
- $DegreeSplit$ can w.l.o.g. remove the smallest set of edges.
- Hence it holds $|M_i| \geq |E_k|/4$.
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
 - at least half of them are incident to M_i.

- If $|E_k| < |A_i|$ then G_k is a tree.
 - We remove edges from G_k that have a leaf as one of its end points.
 - Furthermore the incident edges are removed.
Outer loop (Proof)

Because $\Delta(G_k) \leq 3$ at most 2 trees T_1 and T_2 remain (with $n_1 + n_2$ nodes).

Then $((n_1 - 1) + (n_2 - 1))/4$ edges are added to M_i.

Then M_i contains $|A_i|/2$ nodes.

Then it holds: $|A_i/G_i+1| \leq |A_i|/2$.
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i - 1|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.
 - C_i is a vertex cover of G_i.
 - Then every edge has at least one end point in C_i.
 - At least $1/4$ of the edges in A_i are contained in C_i.
 - C_i/G_{i+1} is a vertex cover of G_{i+1}.
 - $|C_i/G_{i+1}| \leq |C_i| - |A_i|/4 \leq |C_i| - (4|C_i|/3)/4 = 2|C_i|/3$.
Summary

Theorem:

A maximal vertex cover can be computed in time $O(\log^4 n)$ using $O(n + m)$ processors.

Proof:

- Outer loop: $O(\log n)$
- Inner loop: $O(\log n)$
- Running time of $DegreeSplit$: $O(\log^2 n)$.

\[|M_i| \geq |E_k|/4 \]
\[A_i/G_{i+1} \leq |A_i|/2 \]
Edge coloring of bipartite graphs

Bipartite graphs

A graph $G = (A, B, E)$ with $E \subseteq A \times B$ is called bipartite graph.

directed line graph

Let $G = (V, E)$ be a directed graph, then $G^2 = (E, F)$ with $F = \{((a, b), (b, c)) \mid (a, b), (b, c) \in E\}$ is the line graph of G.

undirected line graph

Let $G = (V, E)$ be an undirected graph, then $G^2 = (E, F)$ with $F = \{\{\{a, b\}, \{b, c\}\} \mid \{a, b\}, \{b, c\} \in E\}$ is the line graph of G.

Edge coloring

- Let $G = (V, E)$ be an undirected graph and $k \in \mathbb{N}$.
- Compute $[\text{Exists?}]$ a k-coloring of G^2.

Let $G = (V, E)$ be an undirected graph.

- It is NP-complete to find a $\Delta(G)$ edge coloring.
- There is always a $\Delta(G) + 1$ edge coloring.
- A bipartite graph G is $\Delta(G)$ edge colorable.
- Or: A bipartite graph G can be covered with $\Delta(G)$ matchings.
- Here: Parallel edge coloring of a bipartite graph.
- 1. Step: $\Delta(G) = 2^k$ for some $k \in \mathbb{N}$.

Method for $\Delta(G) = 2^k$

- Idea: Cover the edges of G with cycles and paths.
- Color edges alternating with 0 and 1.
- This computes a partition of G in G_0 and G_1 with $\Delta(G_0) = \Delta(G_1) = 2^{k-1}$.
- All steps can be done in time $O(\log n)$ with $O(m)$ processors.
- Continue recursively.
- Total running time: $O(\log^2 n)$ with $O(m)$ processors.
Example
Example
Example
Method for $\Delta(G) < 2^k$ (Idea)

- Color as many edges as possible in the sub graph G' with $\Delta(G') = 2^{k'}$.
- Allow double coloring of edges, i.e. (i, j) is colored α at i and β at j.
- Within each step it holds:
 - There are correctly colored edges and double colored edges.
 - The set of colors S is chosen such that the number of double colored edges is as big as possible,
 - These edges become colored correctly.
 - This happens in the extended sub graph with $\Delta(G') = 2^{k'}$.
Method for $\Delta(G) < 2^k$ (Idea)

- Let $k’: 2^{k’} < \Delta(G) < 2^{k’+1}$, $C = \emptyset$ and $U = E$.
- Partition $F = \{0, 1, 2, \cdots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.
- Repeat until all edges are colored correctly:
 - Choose double coloring of the edges from U.
 - Chose i, j with: As many edges as possible from U are colored with only $S_i \cup S_j$.
 - Let $U’$ be those edges.
 - It holds: $|U’| \geq |U|/6$ and $U’ \leq 2^{k’}$.
 - Let H be those edges that only use colors from $S_i \cup S_j$.
 - Let $G’ = (V, H)$, extend $G’$ such that $\Delta(G’) = 2^{k’}$.
 - Color $G’$ using the method from above.
 - Set $C = C \cup H$, these are the correctly colored edges.
- Total running time: $O(\log^3 n)$ with $O(m)$ processors.
Example (1. round)
Example (2. round)
Example (2. round)
Example (3. round)
Example (3. round)
Example (result)
Results

Theorem:

A bipartite graph G with $\Delta(G) = 2^k$ can be edge colored with $\Delta(G)$ colors in time $O(\log^2 n)$ with $O(m)$ processors.

Proof: See above.

Theorem:

A bipartite graph G can be edge colored with $\Delta(G)$ colors in time $O(\log^3 n)$ with $O(m)$ processors.

Proof: See above.
Results without proof

Lemma

Any graph $G = (V, E)$ with maximal degree Δ is $\Delta + 1$ colorable.

Lemma

Any graph $G = (V, E)$, which is not a clique nor a odd cycle is Δ colorable.

- Idea of distributed/parallel algorithm:
 - Reduce recursively the colors.
 - Double the size of correctly colored sub-graphs.
 - Or use the idea for trees to bounded degree graphs.
Recall and Idea 1

Theorem:

A tree with \(n \) nodes could be colored with \(n \) processors in time \(O(\log^* n) \) with at most 3 colors.

- Recall: choose minimal \(k \) with: \((c \gg k)\%2 \neq (c' \gg k)\%2\) and
- set \(c = 2 \cdot k + ((c \gg k)\%2)\).
- This did produce a 6-coloring on trees.
- On a bounded degree graph use this idea on a vector of length \(\Delta \).
Algorithm 1

choose minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$ and set $c = 2 \cdot k + ((c \gg k)\%2)$

1. Let $v_1, v_2, ..., v_d$ the $d \leq \Delta$ neighbors of v
2. Let $c_1, c_2, ..., c_d$ the colors v_i and c the color of v.
3. For each i ($1 \leq i \leq d$) do
 1. choose minimal k_i with: $((c \gg k_i)\%2) \neq ((c_i \gg k_i)\%2)$ and
 2. set $b_i = 2 \cdot k_i + ((c \gg k_i)\%2)$.
4. Choose new color for v: $(b_1, b_2, ..., b_d)$.

- As before, the coloring stays valid.
- Like before, a x-bit coloring becomes a $\Delta(\log x + 1)$-bit coloring.
- Like before, we may reduce the colors to $\Delta + 1$ colors.
- For unbounded degree the running time becomes: $O(\log^* n + 2^\Delta)$.
Theorems 1

choose minimal \(k \) with: \((c \gg k)\%2 \neq (c' \gg k)\%2\) and set \(c = 2 \cdot k + ((c \gg k)\%2)\)

Theorem

A constant degree graph may be colored with \(\Delta + 1 \) colors in time \(O(\log^* n) \)
on a distributed system.

Theorem

A constant degree graph may be colored with \(\Delta + 1 \) colors in time \(O(\log^* n) \)
on a parallel system using \(n \) processors.
Notations and Idea 2

choose minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$ and set $c = 2 \cdot k + ((c \gg k)\%2)$

- x will be a binary string with up to k bits.
- Define $U_x = \{(a_1, a_2, ... a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$.
- The procedure RecurseColor will color U_x with $\Delta + 1$ colors.
- Idea:
 - Having colored U_x with $\Delta + 1$ colors,
 - Recolor U_{1x} such that U_{0x} and U_{1x} are colored correctly.
 - This doubles the size of correctly colored sub-graphs.
Recursive Algorithm

RecurseColor(x) (initial with $x = \varepsilon$):

1. Let $ID = (a_1, a_2, \ldots, a_k)$ be a vector of bits, which identify the node/prozessor v.
2. Set $l = |x|$.
3. If $l = k$ then set $c(v) = 1$ and return.
4. Set $b = a_k - l$.
5. Set $c(v) = \text{RecurseColor}(bx)$.
6. If $b = 0$ then return.
7. For round i from 1 to $\Delta + 1$ do

 1. if $c(v) = i$ then $c(v) = \min\{1, 2, \ldots, \Delta + 1\} \cup \{v\} \in E \{c(a)\}$

Theorem

A graph of degree Δ may be colored with $\Delta + 1$ colors in time $O(\Delta \log n)$ on a distributed/parallel system.
Independent Set

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- \(V' \subset V \) with \(\forall a, b \in V' : (a, b) \notin E \) is called independent set.
- \(\alpha(G) = \max\{ |V'| \mid V' \subset V \land \forall a, b \in V' : (a, b) \notin E \} \).
- The problem of finding an independent set of size \(n/2 \) is NP-complete.
- A independent set \(I \) is call maximal iff there is no larger independent set containing \(I \).
- This is called MIS.
- Finding the lexicographical first MIS is P-complete.
- Coloring and independent set have some relationship.
- The nodes of one color form an independent set.
Independent Set and Coloring

- Idea: use a coloring to compute a MIS:
 1. For all nodes set $b(v) = 0$.
 2. For all i from 1 to $\chi(G)$ do
 1. if $b(v) = 0$ then set $b(v) = 1$.
 2. if some neighbor of v has $b(v) = 1$ then set $b(v) = -1$.

- This will produce in time is $O(\chi(G))$.
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

There is a deterministic \(O(\log^* n) \) time algorithm for MIS on cycles, trees and bounded degree graphs of \(n \) processors.

Theorem

There is a deterministic \(O(\Delta \log n) \) time algorithm for MIS on any graph of \(n \) processors.

Theorem

Any deterministic distributed algorithm needs at least \(\frac{1}{2}(\log^* n - 1) \) rounds to color a cycle of length \(n \) with 3 colors.

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(\frac{1}{2}(\log^* n - 3) \) rounds.
Independent Set and Coloring

\[U_x = \left\{ (a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\} \right\} \]

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(\frac{1}{2}(\log^* n - 3) \) rounds.

- We have a lower bound of \(\frac{1}{2}(\log^* n - 1) \) for 3-coloring a cycle of length \(n \).
- We have to show, given a MIS we may color the cycle in just one more round.
- We may assume we have some cyclic order on the nodes.
- Each node which is in the MIS colors itself with color 1.
- Each node which is in the MIS sends a 2 to the neighbor to the right.
- Each node receiving a 2 colors itself with color 2.
- Each node not receiving a 2 colors itself with color 3.
- There are no non-colored nodes (see definition of MIS).
Definition

- Let $G = (V, E)$ be a non-directed graph.
- $D \subseteq V$ is called a Domination Set, iff
 $D \cup \{v \mid \{v, w\} \in E \land w \in D\} = V$.
- or: for all nodes $v \in V$: $\text{dist}(v, D) \leq 1$.

We consider now trees.

We will find a Dominating Set with

$D \leq n/2$ ($n = |V|$)

It will use MIS on trees.
The Algorithm

1. Let L_0 be the leaves of tree T.
2. Let L_1 be the nodes at distance 1 from the nodes from L_0.
3. Let L_2 be the nodes at distance 2 from the nodes from L_0.
4. Let R be the remaining tree, i.e. $T \setminus (L_0 \cup L_1 \cup L_2)$.
5. Compute an MIS Q on R.
6. Output is: $Q \cup L_1$.

Lemma (Correctness)

The output $D = Q \cup L_1$ is a Domination Set on T.

Proof: clear.
Correctness of the Size

Lemma

We have $|D| \leq n/2$

Proof:

- Clearly we have $|L_1| \leq |L_0|$ and then: $|L_1| \leq |L_0 \cup L_1| / 2$.
- We will now show: $|Q| \leq |R \cup L_2| / 2$.
- This can be shown by defining a matching which hits all nodes from Q.
- For each node v from Q we choose one child for the matching M.
- This is a matching, because any node has a unique parent.
- $|D| = |Q \cup L_1| \leq |R \cup L_2| / 2 + |L_0 \cup L_1| / 2 = n/2$.

$D = Q \cup L_1$
Idea

- We work in phases.
- At each phase some nodes want to enter the MIS.
- At the end of each phase, some nodes
 - enter the MIS by setting local variable $\hat{b} = 1$ or
 - leave permanently the MIS by setting $\hat{b} = 0$.
- The probability to try to enter the MIS will be given by some maximal degree of the graph.
- We could try to enter MIS with probability $1/\Delta(G)$.
- We will compute the local maximal degree.
 $D_v(G) = \max_{w: \text{dist}(w,v) \leq 2} \delta_G(w)$.
- We will try to enter MIS with probability $1/(D_v(G) + 1)$.
- Initialize $\hat{b} = -1$ for all nodes.
- Let U be the undecided nodes and H this active sub-graph.
The Algorithm

1. If $\delta_H(v) = 0$ then set $\hat{b} = 1$.
2. Send $\delta_H(v)$ to all neighbors of distance 1 or 2.
3. Receive $\delta_H(w)$ from all neighbors of distance 1 or 2.
4. Compute $D_v(G) = \max_{w : \text{dist}(w,v) \leq 2} \delta_H(w)$ and set $p(v) = 1/(D_v(H) + 1)$.
5. Choose uniform at random $b(v) = 1$ with probability $p(v)$.
6. Exchange this information with the neighbors.
7. If $b(v) = 1$ then do
 1. If all neighbors have set $b(w) = 0$ then set $\hat{b} = 1$.
 2. Exchange \hat{b} with the neighbors.
8. If at least one neighbor w has set $\hat{b}(w) = 1$ then set $\hat{b}(v) = 0$.
9. Exchange \hat{b} with the neighbors.
The Analysis

- Let $\mathcal{E}(u, w)$ be the event the two neighbors u and w have drawn $b(w) = 1$ and $b(u) = 0$ and all other neighbors v of u and w have drawn $b(v) = 0$.

 In this case will w enter the MIS and u will never enter the MIS.

- Let $\mathcal{E}(u)$ be the event the u has drawn $b(u) = 0$ and one neighbor w has drawn $b(w) = 1$ and all other neighbors v have drawn $b(v) = 0$.

 In this case will u never enter the MIS and one neighbor will enter the MIS.

- We have:

$$\mathcal{E}(u) = \bigcup_{w \in \Gamma(u)} \mathcal{E}(u, w)$$
The Analysis

- We had:

\[E(u) = \bigcup_{w \in \Gamma(u)} E(u, w) \]

- We get (the events are disjoint)

\[P(E(u)) = \sum_{w \in \Gamma(u)} P(E(u, w)) \]

- We set now \(\varepsilon = (4e^4)^{-1} \).
Overview

Lemma

Let u be a vertex with $\delta_H(u) \geq \Delta(H)/2$, then we have: $\mathbb{P}(\mathcal{E}(u)) \geq \varepsilon$.

Lemma

$\mathbb{P}(\mathcal{E}_{i+1} | \mathcal{E}_i) \geq 1 - \frac{1}{n^2}$ for every $i \geq 0$.

Lemma

With probability at least $1 - 1/n$, all nodes decide by time $O(\log^2 n)$.

Theorem

There is a randomized distributed MIS algorithm that stops in time $O(\log^2 n)$ with probability at least $1 - 1/n$.

$\varepsilon = (4e^4)^{-1}$
The Analysis I

Lemma

Let u be vertex with $\delta_H(u) \geq \Delta(H)/2$, then we have: $\mathbb{P}(\mathcal{E}(u)) \geq \varepsilon$.

- Let $w \in \Gamma(u)$, we set $Z_w = \Gamma(u) \cup \Gamma(w) \setminus \{w\}$.
- Then we get
 \[
 \mathbb{P}(\mathcal{E}(u, w)) = p(w) \prod_{z \in Z_w} (1 - p(z)) = \frac{1}{D_H(w) + 1} \prod_{z \in Z_w} \left(1 - \frac{1}{D_H(z) + 1}\right)
 \]
- Note $D_H(w) \leq \Delta(H)$ and $D_H(z) \geq \delta_H(u) \geq \Delta(H)/2$ for every $z \in Z_w$.
 \[
 \mathbb{P}(\mathcal{E}(u, w)) \geq \frac{1}{\Delta(H)+1} \left(1 - \frac{1}{\Delta(H)/2+1}\right)^{|Z_w|} \geq \frac{1}{\Delta(H)+1} \left(1 - \frac{1}{\Delta(H)/2+1}\right)^{2\Delta(H)-1}
 \]
- For integer $\Delta(H) \geq 1$ we get: $\mathbb{P}(\mathcal{E}(u, w)) \geq \frac{1}{\Delta(H)+1} \frac{1}{e^4}
 \]
- Using $\mathbb{P}(\mathcal{E}(u)) = \sum_{w \in \Gamma(u)} \mathbb{P}(\mathcal{E}(u, w))$ we get:
 \[
 \mathbb{P}(\mathcal{E}(u)) \geq \delta_H(u) \frac{1}{\Delta(H)+1} \frac{1}{e^4} \geq \frac{1}{4e^4} = \varepsilon
 \]
The Analysis II

Let \(u \) be vertex with \(\delta_H(u) \geq \Delta(H)/2 \), then we have: \(\Pr(\mathcal{E}(u)) \geq \varepsilon \). (\(\varepsilon = (4e^4)^{-1} \))

- For phase \(t \) let \(U_t \) be the undecided nodes and \(G_t \) the graph induced by \(U_t \).
- Let \(M_i(t) \subset U_t \) denote the nodes with degree not smaller than \(n/2^i \).
- Let \(K = \frac{3\log n}{\varepsilon} \).
- We will break the phases into super-phases, containing \(K \) phases.
- Consider phases \(t_i = iK \).
- Consider sequence of events \(\mathcal{E}_i \) (\(i \geq 0 \)), i.e. \(M_i(t_i) = \emptyset \).
- Note \(\mathcal{E}_0 \) holds in each phase.

Lemma

\[
\Pr(\mathcal{E}_{i+1}|\mathcal{E}_i) \geq 1 - \frac{1}{n^2} \text{ for every } i \geq 0.
\]
The Analysis II

Let u be vertex with $\delta_H(u) \geq \Delta(H)/2$, the we have: $P(\mathcal{E}(u)) \geq \varepsilon$. ($\varepsilon = (4e^4)^{-1}$)

Lemma

\[P(\mathcal{E}_{i+1}|\mathcal{E}_i) \geq 1 - \frac{1}{n^2} \text{ for every } i \geq 0. \]

- Assume \mathcal{E}_i hold, i.e. $M_i(t_i) = \emptyset$.
- We show now $P(\bar{\mathcal{E}}_{i+1}) \leq \frac{1}{n^2}$.
- We have $\Delta(G_{t_i}) < n/2^i$ (because $M_i(t_i) = \emptyset$).
- We also have $\Delta(G_t) < n/2^i$ for $t \geq t_i$.
- Consider $v \in M_{i+1}(t_{i+1})$.
- We have $\delta_{G_{t+1}}(v) \geq n/2^{i+1}$.
- We have also $\delta_{G_t}(v) \geq n/2^{i+1}$ for $t \leq t_{i+1}$.
- For all times $t_i \leq t \leq t_{i+1}$ we have $v \in M_{i+1}$ and $\delta_{G_t}(v) \geq \Delta(G_t)/2$.
- We get (apply lemma): $P(\mathcal{E}(v)) \geq \varepsilon$ for each round.
- We also get for $j \geq 1$: $P(v \in M_{i+1}(t_i + j)) \leq (1 - \varepsilon)^j$.
- We get $P(v \in M_{i+1}(t_i + K)) \leq (1 - \varepsilon)^{3 \log n/\varepsilon}$
- And finally: $P(v \in M_{i+1}(t_{i+1}) = \emptyset) \leq 1/n^2$.
The Analysis III

Lemma

With probability at least $1 - 1/n$, all nodes decide by time $O(\log^2 n)$.

- Let $\ell = \lceil \log n \rceil$ and $\mathcal{E} = \bigcap_{1 \leq i \leq \ell} \mathcal{E}_i$
- Let P be the probability that all nodes have decided at time t_ℓ.
- $P \geq \mathbb{P}(M_i(t_\ell) = \emptyset \ \forall 1 \leq i \leq \ell) \geq \mathcal{E}$.
- We may split \mathcal{E} into disjoint events:

$$
\mathcal{E} = \mathcal{E}_1 \cup (\mathcal{E}_2 \cap \mathcal{E}_1) \cup (\mathcal{E}_3 \cap \mathcal{E}_2 \cap \mathcal{E}_1) \cup \ldots \cup (\mathcal{E}_\ell \cap \mathcal{E}_{\ell-1} \cap \ldots \cap \mathcal{E}_2 \cap \mathcal{E}_1)
$$

- So we get: $1 - P \leq \mathbb{P}(\mathcal{E})$

$$
\mathbb{P}(\mathcal{E}) = \mathbb{P}(\mathcal{E}_1) + \mathbb{P}(\mathcal{E}_2 \cap \mathcal{E}_1) + \mathbb{P}(\mathcal{E}_3 \cap \mathcal{E}_2 \cap \mathcal{E}_1) + \ldots \mathbb{P}(\mathcal{E}_\ell \cap \mathcal{E}_{\ell-1} \ldots \mathcal{E}_1)
\leq \mathbb{P}(\mathcal{E}_1) + \mathbb{P}(\mathcal{E}_2 \cap \mathcal{E}_1) + \mathbb{P}(\mathcal{E}_3 \cap \mathcal{E}_2) + \ldots + \mathbb{P}(\mathcal{E}_\ell \cap \mathcal{E}_{\ell-1})
\leq \mathbb{P}(\mathcal{E}_1|\mathcal{E}_0) + \mathbb{P}(\mathcal{E}_2|\mathcal{E}_1) + \mathbb{P}(\mathcal{E}_3|\mathcal{E}_2) + \ldots + \mathbb{P}(\mathcal{E}_\ell|\mathcal{E}_{\ell-1})
$$

- Finally we get: $1 - P \leq \ell/n^2 \leq 1/n$.

\[\mathbb{P}(\mathcal{E}_{i+1}|\mathcal{E}_i) \geq 1 - \frac{1}{n^2} \text{ for every } i \geq 0 \]
Planar graphs

Definition

A graph $G = (V, E)$ is called planar if there is an embedding into the plane without crossings.

- It holds for planar graphs that $|E| \leq 3 \cdot |V| - 6$.
- $K_{3,3}$ and K_5 are not planar.
- Planar graphs have nodes of degree ≤ 5.
- Planar graphs are 4 colorable.
- A window is a closed region which is limited by a path.
Outer planar graphs

Definition

A graph $G = (V, E)$ is outerplanar if there is an embedding into the plane without crossings such that all nodes lie on the outer window.

- It holds for outerplanar graphs that $|E| \leq 2 \cdot |V| - 3 \ (n \geq 3)$.
- $K_{2,3}$ and K_4 are outerplanar.
- Outer planar graphs have nodes with degree ≤ 2.
- Outer planar graphs are 3 colorable.
- The inner windows form a tree.
Overview of the Algorithm

- Let G be a connected outerplanar graph.
- Compute the outer edges.
- Direct the outer edges such that they form a cycle.
- Determine the location and orientation of the inner edges and double those to two directed edges.
- Compute a directed cycle for every window.
- Color every window independently.
- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
- Combine the cycles into pairs of layers of bigger correctly colored objects.
- Repeat the last step until the whole graph is colored correctly.
Details of the algorithm.

- Compute the outer edges.
 - Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
 - A test: \(O(\log^2 n) \) time using \(O(n^2 / \log^2 n) \) processors.
 - Total: \(O(\log^2 n) \) time with \(O(n^3 / \log^2 n) \) processors.

- Direct the outer edges such that they form a cycle.
 - Create for every outer edge two opposing directed edges.
 - Sort the edges lexicographical in \(K_1, K_2, \ldots, K_{2^m} \).
 - Successor of \(K_x = (i, j) \) is \(K_{2^j} = (r, s) \) if \(s \neq i \).
 - Successor of \(K_x = (i, j) \) is \(K_{2^j+1} = (r, s) \) if \(s \neq i \).
 - Choose a cycle.
 - Determine the position of every node on the cycle.
 - Total running time: \(O(\log n) \) time with \(O(n) \) processors.
Details of the algorithm.

- Determine the location and orientation of the inner node.
 - Sort the inner edges \{a, a_1\}, \{a, a_2\}, \{a, a_3\}, \cdots at the node a is given by the location of the nodes a_1, a_2, \cdots on the cycle.
 - Total running time: \(O(\log n)\) time with \(O(n)\) processors.

- Create for every outer edge two opposing directed edges.

- Determine the directed cycle in every window.
 - Compute new successors using the order of the edges at every node.
 - Compute new cycles and representatives.
 - Total running time: \(O(\log n)\) with \(O(n)\) processors.
Details of the algorithm.

- Color every window independently.
 - Total running time: $O(\log^* n)$ with $O(n)$ processors.

- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
 - Using the inner edges the neighborhood can be read directly.
 - The depth of the nodes can be computed using the ranking in the list.
 - Total running time: $O(\log n)$ using $O(n)$ processors.

- Combine the cycles into pairs of layers of bigger correctly colored objects.
 - The child cycle orients itself to the coloring of the parent cycle.
 - Total: $O(1)$ time with $O(n)$ processors.

- Repeat the last step until the whole graph is colored correctly.
 - Total: $O(\log n)$ time with $O(n)$ processors.
Facts

Theorem:
A two-connected outerplanar graph can be colored with three colors using time $O(\log^2 n)$ and $O(n^3/\log^2 n)$ processors.

Proof: See above.

Theorem:
An outerplanar graph can be colored with three colors using time $O(\log^2 n)$ and $O(n^3/\log^2 n)$ processors.

Proof: Use similarly the tree structure of the two connected components.

Theorem:
A planar graph can be colored with six colors in time $O(\log^2 n)$ with $n^3/\log^2 n$ processors.

Proof: See exercise.
Results without proof

Theorem:
The edges of an outerplanar graph G with $\Delta(G) \leq 3$ and known embedding in the plane can be colored using three colors in time $O(\log^2 n)$ with $O(n^2)$ processors.

Idea if the proof: Similar procedure then above.

Theorem:
The edges of an outerplanar graph G with known embedding in the plane can be colored optimally in time $O(\log^3 n)$ with $O(n^2)$ colors.

Proof: See literature.
Theorem:
A program A for a CREW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an EREW PRAM with $P_A(n)^2$ processors in time $O(T_A(n) \log n)$.

Theorem:
A program A for a CRCW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an CREW PRAM with $P_A(n)^2$ processors in time $O(T_A(n) \log n)$.

Theorem:
A program A for a CRCW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an EREW PRAM with $P_A(n)^2$ processors in time $O(T_A(n) \log n)$.
Theorem:

A program A for a CREW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an EREW PRAM with $P_A(n)$ processors in time $O(T_A(n) \log n)$.

Theorem:

A program A for a CRCW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an CREW PRAM with $P_A(n)$ processors in time $O(T_A(n) \log n)$.

Theorem:

A program A for a CRCW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an EREW PRAM with $P_A(n)$ processors in time $O(T_A(n) \log n)$.
Literature for this chapter

Literature 1:

Literature 2:

D. Peleg: Distributed Computing. SIAM. Chapter 7 and 8.
Legend

■ : Not of relevance
■ : implicitly used basics
■ : idea of proof or algorithm
■ : structure of proof or algorithm
■ : Full knowledge