Inhalt I

1 Motivation
2 Coloring Cycles
 - Preparations
 - Results
3 P-Completeness
 - NP-hard
 - Poly-Logarithmic Time versus Memory
4 First Reduction
5 More Reductions
 - Definition
 - Generability
 - Remarks
 - CVP, MCVP, TSMCVP
 - CFE
 - LFMIS
 - LFMC
 - DFS
 - MAXFLOW
Motivation

- Shows the quality of any algorithm.
Motivation

- Shows the quality of any algorithm.
- Interesting property of any problem.
Motivation

- Shows the quality of any algorithm.
- Interesting property of any problem.
- Interesting techniques to prove lower bounds.
Motivation

- Shows the quality of any algorithm.
- Interesting property of any problem.
- Interesting techniques to prove lower bounds.
 - No assumption about the used algorithms
Motivation

- Shows the quality of any algorithm.
- Interesting property of any problem.
- Interesting techniques to prove lower bounds.
 - No assumption about the used algorithms
 - Have to show a property for all algorithms and some inputs.
Motivation

- Shows the quality of any algorithm.
- Interesting property of any problem.
- Interesting techniques to prove lower bounds.
 - No assumption about the used algorithms
 - Have to show a property for all algorithms and some inputs.
 - For all algorithms there is an input, such that the running time is at least....
Motivation

- Shows the quality of any algorithm.
- Interesting property of any problem.
- Interesting techniques to prove lower bounds.
 - No assumption about the used algorithms
 - Have to show a property for all algorithms and some inputs.
 - For all algorithms there is an input, such that the running time is at least....
 - Typically more complicated than upper bounds.
Motivation

- Shows the quality of any algorithm.
- Interesting property of any problem.
- Interesting techniques to prove lower bounds.
 - No assumption about the used algorithms
 - Have to show a property for all algorithms and some inputs.
 - For all algorithms there is an input, such that the running time is at least....
 - Typically more complicated than upper bounds.
- Here we start with lower bounds for coloring cycles.
Ideas

- Model distributed computers, connected in a cycle.
Ideas

- Model distributed computers, connected in a cycle.
- No assumption about structure of the algorithm.
Ideas

- Model distributed computers, connected in a cycle.
- No assumption about structure of the algorithm.
- Assume the running time is \(t \) on a cycle of length \(n \).
Ideas

- Model distributed computers, connected in a cycle.
- No assumption about structure of the algorithm.
- Assume the running time is t on a cycle of length n.
- Step one: Normalize the behavior of the algorithm.
Ideas

- Model distributed computers, connected in a cycle.
- No assumption about structure of the algorithm.
- Assume the running time is t on a cycle of length n.
- Step one: Normalize the behavior of the algorithm.
- Step two: Extend the possible inputs for the algorithms, such that the algorithm works still correct.
Ideas

- Model distributed computers, connected in a cycle.
- No assumption about structure of the algorithm.
- Assume the running time is t on a cycle of length n.
- Step one: Normalize the behavior of the algorithm.
- Step two: Extend the possible inputs for the algorithms, such that the algorithm works still correct.
- Step three: find some contradiction.
Step one: Normalize the behavior of the algorithm

- After \(t \) steps a node may know the identifiers of \(2t + 1 \) nodes. Let

 \[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j \} \]

 be the set of possible surroundings.
Step one: Normalize the behavior of the algorithm

- After \(t \) steps a node may know the identifiers of \(2t + 1 \) nodes. Let

\[
W_{s,n} = \{(x_1, x_2, \ldots, x_s) | 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}
\]

be the set of possible surroundings.

- It is not necessary to color any node before step \(t \):
Step one: Normalize the behavior of the algorithm

- After t steps a node may know the identifiers of $2t + 1$ nodes. Let

$$W_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$$

be the set of possible surroundings.

- It is not necessary to color any node before step t:
 - Each node may simulate the behavior of the $2t + 1$ nodes in the surrounding.
Step one: Normalize the behavior of the algorithm

- After t steps a node may know the identifiers of $2t + 1$ nodes. Let

$$W_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$$

be the set of possible surroundings.

- It is not necessary to color any node before step t:
 - Each node may simulate the behavior of the $2t + 1$ nodes in the surrounding.
 - Or each node sends also the history of colors.
Step one: Normalize the behavior of the algorithm

- After \(t \) steps a node may know the identifiers of \(2t + 1 \) nodes. Let

\[
W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}
\]

be the set of possible surroundings.

- It is not necessary to color any node before step \(t \):
 - Each node may simulate the behavior of the \(2t + 1 \) nodes in the surrounding.
 - Or each node sends also the history of colors.

- Thus after \(t \) rounds node \(v \) has the topological information \(\zeta(v) \):

\[
\zeta(v) = (x_1, x_2, \ldots, x_s) \in W_{s,n} \text{ with } s = 2t + 1.
\]
Step one: Normalize the behavior of the algorithm

- After t steps a node may know the identifiers of $2t + 1$ nodes. Let
 \[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\} \]
 be the set of possible surroundings.
- It is not necessary to color any node before step t:
 - Each node may simulate the behavior of the $2t + 1$ nodes in the surrounding.
 - Or each nodes sends also the history of colors.
- Thus after t rounds node v has the topological information $\zeta(v)$:
 \[\zeta(v) = (x_1, x_2, \ldots, x_s) \in W_{s,n} \text{ with } s = 2t + 1. \]
- Any algorithm will use some deterministic strategy π to find a coloring:
 \[c(v) \leftarrow \Phi_\pi(\zeta(v)) \text{ with } \Phi_\pi : W_{s,n} \mapsto \{1, 2, \ldots, c_{\max}\}. \]
Step two: Extend the possible inputs

- The set of nodes is \(W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \).
Step two: Extend the possible inputs

- The set of nodes is $W_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_i \leq n\}$.
- The set of edges is $E_{s,n}$. They contain any possible edge is any cycle:
 \[
 E_{s,n} = \{((x_1, x_2, ..., x_s), (x_2, ..., x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}
 \]
Step two: Extend the possible inputs

- The set of nodes is $W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\}$.
- The set of edges is $E_{s,n}$. They contain any possible edge in any cycle:

 $$E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$$

- This graph $B_{s,n} = (W_{s,n}, E_{s,n})$ has $\binom{n}{s}$ nodes of degree $n - s$. Thus it has $(n - s)\binom{n}{s}$ edges.
Step two: Extend the possible inputs

- The set of nodes is $W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\}$.
- The set of edges is $E_{s,n}$. They contain any possible edge in any cycle:
 $$E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$$
- This graph $B_{s,n} = (W_{s,n}, E_{s,n})$ has $\binom{n}{s}$ nodes of degree $n - s$. Thus it has $(n - s)\binom{n}{s}$ edges.
Step two: Extend the possible inputs

- The set of nodes is $W_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_i \leq n\}$.

- The set of edges is $E_{s,n}$. They contain any possible edge is any cycle:

$$E_{s,n} = \{((x_1, x_2, ..., x_s), (x_2, ..., x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$$

- This graph $B_{s,n} = (W_{s,n}, E_{s,n})$ has $\binom{n}{s}$ nodes of degree $n - s$. Thus it has $(n - s)\binom{n}{s}$ edges.

Theorem (Coloring $B_{s,n}$)

*If an algorithm π_t colors any cycle of length n with c colors in t steps, then it will define a legal coloring of $B_{s,n}$.***
Step two: Extend the possible inputs

\[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \} \quad \text{and} \quad E_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1} \} \]

Theorem (Coloring \(B_{s,n} \))

If an algorithm \(\pi_t \) colors any cycle of length \(n \) with \(c \) colors in \(t \) steps, then it will define a legal coloring of \(B_{s,n} \).

- Assume algorithm \(\pi_t \) colors cycle of length \(n \) correct, but not the \(B_{s,n} \).
Step two: Extend the possible inputs

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Coloring } B_{s,n} \)

*If an algorithm } \pi_t \text{ colors any cycle of length } n \text{ with } c \text{ colors in } t \text{ steps, then it will define a legal coloring of } B_{s,n}. *

- Assume algorithm } \pi_t \text{ colors cycle of length } n \text{ correct, but not the } B_{s,n}.
- Thus there is an edge } e = ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1}) \in E_{s,n} \text{ which is not colored correctly.}
Step two: Extend the possible inputs

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Coloring \(B_{s,n} \))

If an algorithm \(\pi_t \) colors any cycle of length \(n \) with \(c \) colors in \(t \) steps, then it will define a legal coloring of \(B_{s,n} \).

- Assume algorithm \(\pi_t \) colors cycle of length \(n \) correct, but not the \(B_{s,n} \).
- Thus there is an edge \(e = ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \in E_{s,n} \) which is not colored correctly.
- Take this edge and extend it to a cycle of length \(n \) using the missing identifiers.
Step two: Extend the possible inputs

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Coloring \(B_{s,n} \))

If an algorithm \(\pi_t \) colors any cycle of length \(n \) with \(c \) colors in \(t \) steps, then it will define a legal coloring of \(B_{s,n} \).

- Assume algorithm \(\pi_t \) colors cycle of length \(n \) correct, but not the \(B_{s,n} \).
- Thus there is an edge \(e = ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \in E_{s,n} \) which is not colored correctly.
- Take this edge and extend it to a cycle of length \(n \) using the missing identifiers.
- This cycle with this order is not colored correctly.
Step two: Extend the possible inputs

\[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \} \quad \text{and} \quad E_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1} \} \]

Theorem (Coloring \(B_{s,n} \))

If an algorithm \(\pi_t \) colors any cycle of length \(n \) with \(c \) colors in \(t \) steps, then it will define a legal coloring of \(B_{s,n} \).

- Assume algorithm \(\pi_t \) colors cycle of length \(n \) correct, but not the \(B_{s,n} \).
- Thus there is an edge \(e = ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \in E_{s,n} \) which is not colored correctly.
- Take this edge and extend it to a cycle of length \(n \) using the missing identifiers.
- This cycle with this order is not colored correctly.
- **Contradiction.**
Lower Bound for even length cycle

$$W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$$

Theorem (Distributed Coloring C_{2n})

Any deterministic distributed algorithm uses $n - 1$ rounds to color a cycle of length $2n$ with 2 colors.

- Assume the algorithm runs in time $t \leq n - 2$.

Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1}) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
\ldots \longrightarrow \ldots
\]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1}) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[(1, 2, 3, \ldots, 2t + 1)\]

\[\ldots\]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:
 \[(1, 2, 3, \ldots, 2t + 1) \quad \rightarrow \quad \]

 ...
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
(1, 2, 3, \ldots, 2t + 1) \quad \rightarrow \quad (2, 3, 4, \ldots, 2t + 2)
\]

\[
\ldots \quad \rightarrow \quad \ldots
\]
Lower Bound for even length cycle

\[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) | 1 \leq x_i \leq n \} \text{ and } E_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) | x_1 \neq x_{s+1} \} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[(1, 2, 3, \ldots, 2t + 1) \rightarrow (2, 3, 4, \ldots, 2t + 2) \rightarrow \]

\[\ldots \rightarrow \ldots \]
Lower Bound for even length cycle

\[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \} \text{ and } E_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1} \} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
(1, 2, 3, \ldots, 2t + 1) \rightarrow (2, 3, 4, \ldots, 2t + 2) \rightarrow \ldots
\]
Lower Bound for even length cycle

$$W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$$

Theorem (Distributed Coloring C_{2n})

Any deterministic distributed algorithm uses $n - 1$ rounds to color a cycle of length $2n$ with 2 colors.

- Assume the algorithm runs in time $t \leq n - 2$.
- Then this algorithm will color the graph $B_{2t+1,2n}$ with 2 colors.
- $B_{2t+1,2n}$ is bipartite for $t \leq n - 2$.
- We will now construct the following cycle:

 $$(1, 2, 3, \ldots, 2t + 1) \quad \rightarrow \quad (2, 3, 4, \ldots, 2t + 2) \quad \rightarrow \quad (3, 4, 5, \ldots, 2t + 3) \quad \rightarrow \quad \ldots$$
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
(1, 2, 3, \ldots, 2t + 1) \quad \rightarrow \quad (2, 3, 4, \ldots, 2t + 2) \quad \rightarrow \\
(3, 4, 5, \ldots, 2t + 3) \quad \rightarrow \quad \\
\ldots \quad \ldots
\]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1} \} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
\begin{align*}
(1, 2, 3, \ldots, 2t + 1) & \rightarrow (2, 3, 4, \ldots, 2t + 2) & \rightarrow \\
\rightarrow (3, 4, 5, \ldots, 2t + 3) & \rightarrow (4, \ldots, 2t + 3, 1) & \rightarrow \\
\ldots & \ldots & \ldots
\end{align*}
\]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_s+1)) \mid x_1 \neq x_s+1\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n-1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n-2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n-2 \).
- We will now construct the following cycle:

 \[
 (1, 2, 3, \ldots, 2t+1) \quad \rightarrow \quad (2, 3, 4, \ldots, 2t+2) \quad \rightarrow \\
 \rightarrow (3, 4, 5, \ldots, 2t+3) \quad \rightarrow \quad (4, \ldots, 2t+3, 1) \quad \rightarrow \\
 \ldots \quad \ldots
 \]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
\begin{align*}
(1, 2, 3, \ldots, 2t + 1) & \rightarrow (2, 3, 4, \ldots, 2t + 2) \\
\rightarrow (3, 4, 5, \ldots, 2t + 3) & \rightarrow (4, \ldots, 2t + 3, 1) \\
\rightarrow \ldots & \rightarrow \ldots
\end{align*}
\]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \] and
\[E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
\begin{align*}
(1, 2, 3, \ldots, 2t + 1) \quad &\rightarrow \quad (2, 3, 4, \ldots, 2t + 2) \\
\rightarrow (3, 4, 5, \ldots, 2t + 3) \quad &\rightarrow \quad (4, \ldots, 2t + 3, 1) \\
\rightarrow \quad \ldots \quad &\rightarrow \quad \ldots (2t + 2, 2t + 3, 1, 2, \ldots, 2t - 1)
\end{align*}
\]
Lower Bound for even length cycle

\[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \} \text{ and } E_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1} \} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
(1, 2, 3, \ldots, 2t + 1) \rightarrow (2, 3, 4, \ldots, 2t + 2) \rightarrow \\
\rightarrow (3, 4, 5, \ldots, 2t + 3) \rightarrow (4, \ldots, 2t + 3, 1) \rightarrow \\
\rightarrow \ldots \rightarrow (2t + 2, 2t + 3, 1, 2, \ldots, 2t - 1) \rightarrow
\]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
\begin{align*}
(1, 2, 3, \ldots, 2t + 1) & \rightarrow (2, 3, 4, \ldots, 2t + 2) \\
\rightarrow (3, 4, 5, \ldots, 2t + 3) & \rightarrow (4, \ldots, 2t + 3, 1) \\
\rightarrow \ldots & \rightarrow (2t + 2, 2t + 3, 1, 2, \ldots, 2t - 1) \\
\rightarrow &
\end{align*}
\]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_s+1)) \mid x_1 \neq x_s+1\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1, 2n} \) with 2 colors.
- \(B_{2t+1, 2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
\begin{align*}
(1, 2, 3, \ldots, 2t + 1) & \rightarrow (2, 3, 4, \ldots, 2t + 2) & \rightarrow \\
\rightarrow (3, 4, 5, \ldots, 2t + 3) & \rightarrow (4, \ldots, 2t + 3, 1) & \rightarrow \\
\rightarrow \ldots & \rightarrow (2t + 2, 2t + 3, 1, 2, \ldots, 2t - 1) & \rightarrow \\
\rightarrow (2t + 3, 1, 2, \ldots, 2t) & &
\end{align*}
\]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
(1, 2, 3, \ldots, 2t + 1) \rightarrow (2, 3, 4, \ldots, 2t + 2) \rightarrow \\
(3, 4, 5, \ldots, 2t + 3) \rightarrow (4, \ldots, 2t + 3, 1) \rightarrow \\
\vdots \rightarrow (2t + 3, 1, 2, \ldots, 2t) \rightarrow
\]
Lower Bound for even length cycle

\[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \} \text{ and } E_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1} \} \]

Theorem (Distributed Coloring \(C_{2n} \))

Any deterministic distributed algorithm uses \(n - 1 \) rounds to color a cycle of length \(2n \) with \(2 \) colors.

- Assume the algorithm runs in time \(t \leq n - 2 \).
- Then this algorithm will color the graph \(B_{2t+1,2n} \) with 2 colors.
- \(B_{2t+1,2n} \) is bipartite for \(t \leq n - 2 \).
- We will now construct the following cycle:

\[
(1, 2, 3, \ldots, 2t + 1) \rightarrow (2, 3, 4, \ldots, 2t + 2) \rightarrow \\
\rightarrow (3, 4, 5, \ldots, 2t + 3) \rightarrow (4, \ldots, 2t + 3, 1) \rightarrow \\
\rightarrow \ldots \rightarrow (2t + 2, 2t + 3, 1, 2, \ldots, 2t - 1) \rightarrow \\
\rightarrow (2t + 3, 1, 2, \ldots, 2t) \rightarrow (1, 2, 3, \ldots, 2t + 1)
\]
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Parallel Coloring \(C_{2n} \))

Any deterministic parallel algorithm uses \(\log n \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq \log n \).
Lower Bound for even length cycle

\[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \} \text{ and } E_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_s+1)) \mid x_1 \neq x_s+1 \} \]

Theorem (Parallel Coloring \(C_{2n} \))

Any deterministic parallel algorithm uses \(\log n \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq \log n \).
- The best way to collect information is doubling (see lower bound for broadcast/accumulation).
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Parallel Coloring \(C_{2n} \))

Any deterministic parallel algorithm uses \(\log n \) rounds to color a cycle of length \(2n \) with 2 colors.

- Assume the algorithm runs in time \(t \leq \log n \).
- The best way to collect information is doubling (see lower bound for broadcast/accumulation).
- Then we may use its strategy to construct a distributed version running in \(t \) time.
Lower Bound for even length cycle

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

Theorem (Parallel Coloring C_{2n})

Any deterministic parallel algorithm uses $\log n$ rounds to color a cycle of length $2n$ with 2 colors.

- Assume the algorithm runs in time $t \leq \log n$.
- The best way to collect information is doubling (see lower bound for broadcast/accumulation).
- Then we may use its strategy to construct a distributed version running in t time.
- **Contradiction.**
Step four: find some contradiction

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

- We want a lower bound for the 3-coloring of cycles.
Step four: find some contradiction

\[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \} \text{ and } E_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1} \} \]

- We want a lower bound for the 3-coloring of cycles.
- Step a) Show \(\chi(B_{2t+1,n}) \geq \log^{2t} n \).
Step four: find some contradiction

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

- We want a lower bound for the 3-coloring of cycles.
- Step a) Show \(\chi(B_{2t+1,n}) \geq \log^2 t \ n. \)
- Step b) Show \(\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}). \)
Step four: find some contradiction

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

- We want a lower bound for the 3-coloring of cycles.
- Step a) Show \(\chi(B_{2t+1,n}) \geq \log^2 n \).
- Step b) Show \(\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \).
- Step c) Use the line-graph construction.
Step four: find some contradiction

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \quad \text{and} \quad E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

- We want a lower bound for the 3-coloring of cycles.
- Step a) Show \(\chi(B_{2t+1,n}) \geq \log^2 n \).
- Step b) Show \(\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \).
- Step c) Use the line-graph construction.
- Step d) Show property for coloring a line-graph.
Step four: find some contradiction

\[W_{s,n} = \{ (x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \} \text{ and } E_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1} \} \]

- We want a lower bound for the 3-coloring of cycles.
- Step a) Show \(\chi(B_{2t+1,n}) \geq \log^{2t} n \).
- Step b) Show \(\chi(\tilde{B}_s,n) \leq \chi(B_s,n) \).
- Step c) Use the line-graph construction.
- Step d) Show property for coloring a line-graph.
- Step e) Put everything together.
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, \ldots, x_s) | 1 \leq x_i \leq n\}$ and $E_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1}) | x_1 \neq x_{s+1}\}$

- Remember:
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\}$ and $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$

- Remember:
 - $W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \implies i = j\}$
Construction of $\tilde{B}_{s,n}$

\[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\} \text{ and } E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

- Remember:
 - \[W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\} \]
 - \[E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\}$ and $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$

- Remember:
 - $W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$
 - $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $B_{s,n} = (W_{s,n}, E_{s,n})$
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\}$ and $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$

- Remember:
 - $W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$
 - $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $B_{s,n} = (W_{s,n}, E_{s,n})$

- Construct now:
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_i \leq n\}$ and $E_{s,n} = \{((x_1, x_2, ..., x_s), (x_2, ..., x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$

- **Remember:**
 - $W_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$
 - $E_{s,n} = \{((x_1, x_2, ..., x_s), (x_2, ..., x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $B_{s,n} = (W_{s,n}, E_{s,n})$

- Construct now:
 - $\tilde{W}_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_1 < x_2 < ... < x_s \leq n\}$
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\}$ and $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$

- Remember:
 - $W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$
 - $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $B_{s,n} = (W_{s,n}, E_{s,n})$

- Construct now:
 - $\tilde{W}_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_1 < x_2 < \ldots < x_s \leq n\}$
 - $\tilde{E}_{s,n} = \{\{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})\} \mid x_1 \neq x_{s+1}\}$
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\}$ and $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$

- Remember:
 - $W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$
 - $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $B_{s,n} = (W_{s,n}, E_{s,n})$

- Construct now:
 - $\tilde{W}_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_1 < x_2 < \ldots < x_s \leq n\}$
 - $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $\tilde{B}_{s,n} = (\tilde{W}_{s,n}, \tilde{E}_{s,n})$
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\}$ and $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$

- Remember:
 - $W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$
 - $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $B_{s,n} = (W_{s,n}, E_{s,n})$

- Construct now:
 - $\tilde{W}_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_1 < x_2 < \ldots < x_s \leq n\}$
 - $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $\tilde{B}_{s,n} = (\tilde{W}_{s,n}, \tilde{E}_{s,n})$

- Thus $\tilde{B}_{s,n}$ is by definition a non-directed sub-graph of $B_{s,n}$.
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n\}$ and $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$

- Remember:
 - $W_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$
 - $E_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $B_{s,n} = (W_{s,n}, E_{s,n})$

- Construct now:
 - $\tilde{W}_{s,n} = \{(x_1, x_2, \ldots, x_s) \mid 1 \leq x_1 < x_2 < \ldots < x_s \leq n\}$
 - $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $\tilde{B}_{s,n} = (\tilde{W}_{s,n}, \tilde{E}_{s,n})$

- Thus $\tilde{B}_{s,n}$ is by definition a non-directed sub-graph of $B_{s,n}$.
Construction of $\tilde{B}_{s,n}$

$W_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_i \leq n\}$ and $E_{s,n} = \{((x_1, x_2, ..., x_s), (x_2, ..., x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$

- Remember:
 - $W_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_i \leq n \land x_i = x_j \Rightarrow i = j\}$
 - $E_{s,n} = \{((x_1, x_2, ..., x_s), (x_2, ..., x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $B_{s,n} = (W_{s,n}, E_{s,n})$

- Construct now:
 - $\tilde{W}_{s,n} = \{(x_1, x_2, ..., x_s) \mid 1 \leq x_1 < x_2 < ... < x_s \leq n\}$
 - $\tilde{E}_{s,n} = \{((x_1, x_2, ..., x_s), (x_2, ..., x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$
 - $\tilde{B}_{s,n} = (\tilde{W}_{s,n}, \tilde{E}_{s,n})$

- Thus $\tilde{B}_{s,n}$ is by definition a non-directed sub-graph of $B_{s,n}$.

Lemma

We have: $\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n})$.
Line-Graphs

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\}, \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Definition (Line-Graphs)

Let \(G = (V, E) \) be an directed graph. \(DL(G) = (E, E') \) is called line-graph of \(G \), iff

\[E' = \{(e, e') \mid e, e' \in E \land e \cap e' \neq \emptyset\}. \]

A graph \(H \) is called directed line-graph, iff a graph \(G \) exists, with \(DL(G) = H \).
Line-Graphs

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) | x_1 < \ldots < x_s\}, \tilde{E}_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) | x_1 \neq x_{s+1}\}, \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Definition (Line-Graphs)

Let \(G = (V, E) \) be a directed graph. \(DL(G) = (E, E') \) is called line-graph of \(G \), iff

\[E' = \{(e, e') | e, e' \in E \land e \cap e' \neq \emptyset\}. \]

A graph \(H \) is called directed line-graph, iff a graph \(G \) exists, with \(DL(G) = H \).
Line-Graphs

\[\tilde{W}_{s,n} = \{ (x_1, \ldots, x_s) \mid x_1 < \ldots < x_s \}, \tilde{E}_{s,n} = \{ (x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1} \}, \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Definition (Line-Graphs)

Let \(G = (V, E) \) be a directed graph. \(DL(G) = (E, E') \) is called line-graph of \(G \), iff

\[E' = \{ (e, e') \mid e, e' \in E \land e \cap e' \neq \emptyset \}. \]

A graph \(H \) is called directed line-graph, iff a graph \(G \) exists, with \(DL(G) = H \).
Line-Graphs

\[\tilde{W}_{s,n} = \{ (x_1, ..., x_s) \mid x_1 < ... < x_s \}, \quad \tilde{E}_{s,n} = \{ (x_1, x_2, ..., x_s), (x_2, ..., x_{s+1}) \mid x_1 \neq x_{s+1} \}, \chi(\tilde{B}_s,n) \leq \chi(B_s,n) \]

Definition (Line-Graphs)

Let \(G = (V, E) \) be an undirected graph. \(L(G) = (E, E') \) is called line-graph of \(G \), iff

\[E' = \{ \{ e, e' \} \mid e, e' \in E \land e \cap e' \neq \emptyset \}. \]

A graph \(H \) is called line-graph, iff a graph \(G \) exists, with \(L(G) = H \).

\[a \quad - \quad b \quad - \quad c \]
Line-Graphs

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\}, \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Definition (Line-Graphs)

Let \(G = (V, E) \) be an undirected graph. \(L(G) = (E, E') \) is called line-graph of \(G \), iff

\[E' = \{\{e, e'\} \mid e, e' \in E \land e \cap e' \neq \emptyset\}. \]

A graph \(H \) is called line-graph, iff a graph \(G \) exists, with \(L(G) = H \).

\[\text{Diagram:} \quad a \quad \quad \quad \quad b \quad \quad \quad \quad c \]

\[\bullet \quad x \quad \quad \quad \quad \quad \quad \bullet \quad y \]
Line-Graphs

\[\tilde{W}_{s,n} = \{ (x_1, \ldots, x_s) \mid x_1 < \ldots < x_s \}, \quad \tilde{E}_{s,n} = \{ ((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1} \}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(\tilde{B}_s, n) \]

Definition (Line-Graphs)

Let \(G = (V, E) \) be an undirected graph. \(L(G) = (E, E') \) is called line-graph of \(G \), iff

\[E' = \{ \{e, e'\} \mid e, e' \in E \land e \cap e' \neq \emptyset \}. \]

A graph \(H \) is called line-graph, iff a graph \(G \) exists, with \(L(G) = H \).
Beispiel 1

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s \}, \tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\}, \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]
Beispiel 1

\[\tilde{W}_s,n = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \quad \tilde{E}_s,n = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\}, \quad \chi(\tilde{B}_s,n) \leq \chi(B_s,n) \]
Beispiel 1

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) | x_1 < \ldots < x_s\}, \quad \tilde{E}_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) | x_1 \neq x_{s+1}\}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]
Beispiel 1

\[\tilde{W}_{s,n} = \{ (x_1, \ldots, x_s) | x_1 < \ldots < x_s \}, \quad \tilde{E}_{s,n} = \{ (x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) | x_1 \neq x_{s+1} \}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]
Beispiel 2

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s \}, \quad \tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]
Beispiel 2

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \quad \tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s+1)) \mid x_1 \neq x_{s+1}\} \]

\(\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \)
Beispiel 2

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \quad \tilde{E}_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1}\}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]
Beispiel 2

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \quad \tilde{E}_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1}\}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]
Beispiel 3

\[\tilde{W}_s,n = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \tilde{E}_s,n = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1}\}, \chi(\tilde{B}_s,n) \leq \chi(B_s,n) \]
Beispiel 3

\[\tilde{W}_s,n = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \quad \tilde{E}_s,n = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\} \]

\[\chi(\tilde{B}_s,n) \leq \chi(B_s,n) \]
Beispiel 3

\[\tilde{W}_{s,n} = \{ (x_1, \ldots, x_s) \mid x_1 < \ldots < x_s \}, \quad \tilde{E}_{s,n} = \{ (x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1} \} \]

\[\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]
Beispiel 3

\[\tilde{W}_{s,n} = \{ (x_1, \ldots, x_s) \mid x_1 < \ldots < x_s \}, \quad \tilde{E}_{s,n} = \{ (x_1, x_2, \ldots, x_s, x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1} \}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]
DeBruijn network of dimension d

\[\tilde{W}_{s,n} = \{ (x_1, \ldots, x_s) \mid x_1 < \ldots < x_s \}, \quad \tilde{E}_{s,n} = \{ \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})\} \mid x_1 \neq x_{s+1} \}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

- DeBruijn network:
 \[DB(d) = (V_{DB(d)}, E_{DB(d)}^s \cup E_{DB(d)}^{se}) \]
 \[V_{DB(d)} = \{0, 1\}^d \]
 \[E_{DB(d)}^s = \{(aw, wa) \mid a \in \{0, 1\}, aw, wa \in V_{DB(d)}\} \]
 \[E_{DB(d)}^{se} = \{(aw, wb) \mid a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\} \]
DeBruijn network of dimension d

\[\tilde{W}_s, n = \{(x_1, \ldots, x_s) | x_1 < \ldots < x_s \}, \tilde{E}_s, n = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) | x_1 \neq x_{s+1}\}, \chi(\tilde{B}_s, n) \leq \chi(B_s, n) \]

- DeBruijn network:
 \[
 \begin{align*}
 DB(d) &= (V_{DB(d)}, E_{DB(d)}^s \cup E_{DB(d)}^{se}) \\
 V_{DB(d)} &= \{0, 1\}^d \\
 E_{DB(d)}^s &= \{(aw, wa) | a \in \{0, 1\}, aw, wa \in V_{DB(d)}\} \\
 E_{DB(d)}^{se} &= \{(aw, wb) | a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\}
 \end{align*}
 \]

 Number of nodes: 2^d
 Degree: $2 + 2$

 Number of edges: 2^{d+1}
 Diameter: d
DeBruijn network of dimension \(d\)

\[
\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \quad \tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n})
\]

- **DeBruijn network:**

 \[
 DB(d) = (V_{DB(d)}, E_{DB(d)}^s \cup E_{DB(d)}^{se})
 \]

 \[
 V_{DB(d)} = \{0, 1\}^d
 \]

 \[
 E_{DB(d)}^s = \{(aw, wa) \mid a \in \{0, 1\}, aw, wa \in V_{DB(d)}\}
 \]

 \[
 E_{DB(d)}^{se} = \{(aw, wb) \mid a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\}
 \]

- **Number of nodes:** \(2^d\)
- **Degree:** \(2 + 2\)
- **Number of edges:** \(2^{d+1}\)
- **Diameter:** \(d\)

Lemma

We have: \(DB(d + 1) = DL(DB(d))\) for \(d \geq 1\).
Line-Graph Properties of $\tilde{B}_{s,n}$

$\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}$, $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\}$, $\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n})$

Lemma

1. $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
2. We have $\tilde{B}_{s+1,n} = LG(\tilde{B}_{s,n})$ for $s \geq 1$.

Proof:
Line-Graph Properties of $\tilde{B}_{s,n}$

$\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}$, $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\}$, $\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n})$

Lemma

1. $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
2. We have $\tilde{B}_{s+1,n} = LG(\tilde{B}_{s,n})$ for $s \geq 1$.

Proof:

1. By definition: $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$.
2. By construction:
 - In $\tilde{B}_{s,n}$: $(x_1, x_2, \ldots, x_s) \rightarrow (x_2, x_3, \ldots, x_{s+1})$ and $(x_2, x_3, \ldots, x_{s+1}) \rightarrow (x_3, x_4, \ldots, x_{s+2})$.
Line-Graph Properties of $\tilde{B}_{s,n}$

$\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) | x_1 < \ldots < x_s\}$, $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) | x_1 \neq x_{s+1}\}$, $\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n})$

Lemma

1. $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
2. We have $\tilde{B}_{s+1,n} = LG(\tilde{B}_{s,n})$ for $s \geq 1$.

Proof:

1. By definition: $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) | x_1 \neq x_{s+1}\}$.
2. By construction:
 - In $\tilde{B}_{s,n}$: $(x_1, x_2, \ldots x_s) \rightarrow (x_2, x_3, \ldots, x_{s+1})$ and $(x_2, x_3, \ldots, x_{s+1}) \rightarrow (x_3, x_4, \ldots, x_{s+2})$.
 - In $V(DL(\tilde{B}_{s+1,n}))$: $((x_1, x_2, \ldots x_s), (x_2, x_3, \ldots, x_{s+1}))$ and $((x_2, x_3, \ldots, x_{s+1}), (x_3, x_4, \ldots, x_{s+2}))$.
Line-Graph Properties of $\tilde{B}_{s,n}$

$\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}$, $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) \mid x_1 \neq x_{s+1}\}$, $\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n})$

Lemma

1. $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
2. We have $\tilde{B}_{s+1,n} = LG(\tilde{B}_{s,n})$ for $s \geq 1$.

Proof:

1. By definition: $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})) \mid x_1 \neq x_{s+1}\}$.

2. By construction:

 - In $\tilde{B}_{s,n}$: $(x_1, x_2, \ldots, x_s) \to (x_2, x_3, \ldots, x_{s+1})$ and $(x_2, x_3, \ldots, x_{s+1}) \to (x_3, x_4, \ldots, x_{s+2})$.
 - In $V(DL(\tilde{B}_{s+1,n}))$: $((x_1, x_2, \ldots, x_s), (x_2, x_3, \ldots, x_{s+1}))$ and $((x_2, x_3, \ldots, x_{s+1}), (x_3, x_4, \ldots, x_{s+2}))$.
 - In $V(DL(\tilde{B}_{s+1,n}))$: $(x_1, x_2, \ldots, x_s, x_{s+1})$ and $(x_2, x_3, \ldots, x_{s+1}, x_{s+2})$ (simplified).
Line-Graph Properties of $\tilde{B}_{s,n}$

$\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) | x_1 < \ldots < x_s\}$, $\tilde{E}_{s,n} = \{\{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})\} | x_1 \neq x_{s+1}\}$, $\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n})$

Lemma

1. $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
2. We have $\tilde{B}_{s+1,n} = LG(\tilde{B}_{s,n})$ for $s \geq 1$.

Proof:

1. By definition: $\tilde{E}_{s,n} = \{\{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_s, x_{s+1})\} | x_1 \neq x_{s+1}\}$.
2. By construction:
 - In $\tilde{B}_{s,n}$: $(x_1, x_2, \ldots, x_s) \rightarrow (x_2, x_3, \ldots, x_{s+1})$ and $(x_2, x_3, \ldots, x_{s+1}) \rightarrow (x_3, x_4, \ldots, x_{s+2})$.
 - In $V(DL(\tilde{B}_{s+1,n}))$: $((x_1, x_2, \ldots, x_s), (x_2, x_3, \ldots, x_{s+1}))$ and $((x_2, x_3, \ldots, x_{s+1}), (x_3, x_4, \ldots, x_{s+2}))$.
 - In $V(DL(\tilde{B}_{s+1,n}))$: $(x_1, x_2, \ldots, x_s, x_{s+1})$ and $(x_2, x_3, \ldots, x_{s+1}, x_{s+2})$ (simplified).
 - In $E(DL(\tilde{B}_{s+1,n}))$: $((x_1, x_2, \ldots, x_s, x_{s+1}), (x_2, x_3, \ldots, x_{s+1}, x_{s+2}))$.
Bounds for Coloring Line-Graphs

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \tilde{E}_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1}\}, \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Lemma

Let \(H \) be any directed graph, then we have \(\chi(DL(H)) \geq \log(\chi(H)) \).

Proof:
Bounds for Coloring Line-Graphs

$\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) | x_1 < \ldots < x_s\}$, $\tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1})) | x_1 \neq x_{s+1}\}$, $\chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n})$

Lemma

Let H be any directed graph, then we have $\chi(DL(H)) \geq \log(\chi(H))$.

Proof:

- Let $k = \chi(DL(H))$, thus we can color the nodes from $DL(H)$ with k colors.
Bounds for Coloring Line-Graphs

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \quad \tilde{E}_{s,n} = \{((x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1}\}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Lemma

Let H be any directed graph, then we have \(\chi(DL(H)) \geq \log(\chi(H)) \).*

Proof:

- Let \(k = \chi(DL(H)) \), thus we can color the nodes from \(DL(H) \) with \(k \) colors.
- Thus we may color the edges from \(H \) with \(k \) colors: \(\chi'(H) \leq k \).
Bounds for Coloring Line-Graphs

\[\tilde{W}_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \quad \tilde{E}_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1}\}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Lemma

Let \(H \) be any directed graph, then we have \(\chi(DL(H)) \geq \log(\chi(H)) \).

Proof:

- Let \(k = \chi(DL(H)) \), thus we can color the nodes from \(DL(H) \) with \(k \) colors.

- Thus we may color the edges from \(H \) with \(k \) colors: \(\chi'(H) \leq k \).

- For any edge \(e = (v, w) \) of \(H \) let \(c'(e) \) be the color of \(e \).
Bounds for Coloring Line-Graphs

\[\tilde{W}_{s,n} = \{ (x_1, \ldots, x_s) \mid x_1 < \ldots < x_s \}, \quad \tilde{E}_{s,n} = \{ \{ (x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \} \mid x_1 \neq x_{s+1} \}, \quad \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Lemma

Let \(H \) be any directed graph, then we have \(\chi(DL(H)) \geq \log(\chi(H)) \).

Proof:

- Let \(k = \chi(DL(H)) \), thus we can color the nodes from \(DL(H) \) with \(k \) colors.
- Thus we may color the edges from \(H \) with \(k \) colors: \(\chi'(H) \leq k \).
- For any edge \(e = (v, w) \) of \(H \) let \(c'(e) \) be the color of \(e \).
- Define now a coloring of the nodes \(v \) of \(H \):
 \[c(v) = \bigcup_{v \in e} c'(e). \]
Bounds for Coloring Line-Graphs

\[\tilde{W}_{s,n} = \{ (x_1, \ldots, x_s) \mid x_1 < \cdots < x_s \}, \quad \tilde{E}_{s,n} = \{ (x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1} \}, \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Lemma

Let \(H \) be any directed graph, then we have \(\chi(DL(H)) \geq \log(\chi(H)) \).

Proof:

- Let \(k = \chi(DL(H)) \), thus we can color the nodes from \(DL(H) \) with \(k \) colors.
- Thus we may color the edges from \(H \) with \(k \) colors: \(\chi'(H) \leq k \).
- For any edge \(e = (v, w) \) of \(H \) let \(c'(e) \) be the color of \(e \).
- Define now a coloring of the nodes \(v \) of \(H \):
 \[c(v) = \bigcup_{v \in e} c'(e). \]
- This is a correct \(2^k \) node-coloring of \(H \).
Bounds for Coloring Line-Graphs

\[W_{s,n} = \{(x_1, \ldots, x_s) \mid x_1 < \ldots < x_s\}, \quad \tilde{E}_{s,n} = \{(x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) \mid x_1 \neq x_{s+1}\}, \quad \chi(\tilde{B}_s, n) \leq \chi(B_s, n) \]

Lemma

Let \(H \) be any directed graph, then we have \(\chi(DL(H)) \geq \log(\chi(H)) \).

Proof:

- Let \(k = \chi(DL(H)) \), thus we can color the nodes from \(DL(H) \) with \(k \) colors.
- Thus we may color the edges from \(H \) with \(k \) colors: \(\chi'(H) \leq k \).
- For any edge \(e = (v, w) \) of \(H \) let \(c'(e) \) be the color of \(e \).
- Define now a coloring of the nodes \(v \) of \(H \):
 \[c(v) = \bigcup_{v \in e} c'(e). \]
- This is a correct \(2^k \) node-coloring of \(H \).
- Thus \(\chi(H) \leq 2^k = 2^{\chi(DL(H))} \).
Bounds for Coloring Line-Graphs

\[\tilde{W}_{s,n} = \{ (x_1, \ldots, x_s) | x_1 < \ldots < x_s \}, \; \tilde{E}_{s,n} = \{ (x_1, x_2, \ldots, x_s), (x_2, \ldots, x_{s+1}) | x_1 \neq x_{s+1} \}, \chi(\tilde{B}_{s,n}) \leq \chi(B_{s,n}) \]

Lemma

Let \(H \) be any directed graph, then we have \(\chi(DL(H)) \geq \log(\chi(H)) \).

Proof:

- Let \(k = \chi(DL(H)) \), thus we can color the nodes from \(DL(H) \) with \(k \) colors.
- Thus we may color the edges from \(H \) with \(k \) colors: \(\chi'(H) \leq k \).
- For any edge \(e = (v, w) \) of \(H \) let \(c'(e) \) be the color of \(e \).
- Define now a coloring of the nodes \(v \) of \(H \):
 \[c(v) = \bigcup_{v \in e} c'(e). \]
- This is a correct \(2^k \) node-coloring of \(H \).
- Thus \(\chi(H) \leq 2^k = 2^{\chi(DL(H))} \).
- Thus \(\log(\chi(H)) \leq \chi(DL(H)) \).
Lemma

We have $\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n$.

Proof:
Results

Lemma

We have \(\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n. \)

Proof:

- \(\tilde{B}_{1,n} \) is the complete directed graph of \(n \) nodes.
Results

Lemma

\[\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n. \]

Proof:

- \(\tilde{B}_{1,n} \) is the complete directed graph of \(n \) nodes.
- \(\chi(\tilde{B}_{1,n}) = n. \)
Lemma

We have $\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n$.

Proof:

- $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
- $\chi(\tilde{B}_{1,n}) = n$.
- We have $\tilde{B}_{s+1,n} = LG(\tilde{B}_s)$ for $s \geq 1$.
Lemma

We have $\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n$.

Proof:

- $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
- $\chi(\tilde{B}_{1,n}) = n$.
- We have $\tilde{B}_{s+1, n} = LG(\tilde{B}_s, n)$ for $s \geq 1$.
- We have already: $\chi(DL(H)) \geq \log(\chi(H))$.
Lemma

We have $\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n$.

Proof:

- $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
- $\chi(\tilde{B}_{1,n}) = n$.
- We have $\tilde{B}_{s+1,n} = LG(\tilde{B}_s,n)$ for $s \geq 1$.
- We have already: $\chi(DL(H)) \geq \log(\chi(H))$.
- Thus we get $\chi(\tilde{B}_{s+1,n}) \geq \log(\chi(\tilde{B}_s,n))$.
Lemma

We have $\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n$.

Proof:

- $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
- $\chi(\tilde{B}_{1,n}) = n$.
- We have $\tilde{B}_{s+1,n} = LG(\tilde{B}_s, n)$ for $s \geq 1$.
- We have already: $\chi(DL(H)) \geq \log(\chi(H))$.
- Thus we get $\chi(\tilde{B}_{s+1,n}) \geq \log(\chi(\tilde{B}_s,n))$.
- Thus we get $\chi(\tilde{B}_s,n) \geq \log^{(s-1)}(\chi(\tilde{B}_{1,n}))$.
Results

Lemma

We have $\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n$.

Proof:

- $\tilde{B}_{1,n}$ is the complete directed graph of n nodes.
- $\chi(\tilde{B}_{1,n}) = n$.
- We have $\tilde{B}_{s+1,n} = LG(\tilde{B}_s, n)$ for $s \geq 1$.
- We have already: $\chi(DL(H)) \geq \log(\chi(H))$.
- Thus we get $\chi(\tilde{B}_{s+1,n}) \geq \log(\chi(\tilde{B}_s,n))$.
- Thus we get $\chi(\tilde{B}_s,n) \geq \log^{(s-1)}(\chi(\tilde{B}_1,n))$.
- Thus we get $\chi(\tilde{B}_s,n) \geq \log^{(s-1)}(n)$.
Theorem

Any deterministic distributed algorithm needs at least $1/2(\log^* n - 1)$ rounds to color a cycle of length n with 3 colors.

Proof:
Results

Theorem

Any deterministic distributed algorithm needs at least \(1/2(\log^* n - 1)\) rounds to color a cycle of length \(n\) with 3 colors.

Proof:

- We have already: \(\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n\), resp.:
Results

Theorem

Any deterministic distributed algorithm needs at least $1/2(\log^* n - 1)$ rounds to color a cycle of length n with 3 colors.

Proof:

- We have already: $\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n$, resp.:
- We have already: $\chi(\tilde{B}_{2t+1}, n) \geq \log^{(2t)} n$.
Theorem

Any deterministic distributed algorithm needs at least $\frac{1}{2}(\log^* n - 1)$ rounds to color a cycle of length n with 3 colors.

Proof:

- We have already: $\chi(\bar{B}_{s,n}) \geq \log^{(s-1)} n$, resp.:
- We have already: $\chi(\bar{B}_{2t+1,n}) \geq \log^{(2t)} n$.
- We also have: $\chi(\bar{B}_{2t+1,n}) \leq 3$.
Any deterministic distributed algorithm needs at least $1/2(\log^* n - 1)$ rounds to color a cycle of length n with 3 colors.

Proof:

- We have already: $\chi(\tilde{B}_s, n) \geq \log^{(s-1)} n$, resp.:
- We have already: $\chi(\tilde{B}_{2t+1}, n) \geq \log^{(2t)} n$.
- We also have: $\chi(\tilde{B}_{2t+1}, n) \leq 3$.
- Thus we get: $\log^{(2t)} n \leq 3$ and finally
Theorem

Any deterministic distributed algorithm needs at least $\frac{1}{2}(\log^* n - 1)$ rounds to color a cycle of length n with 3 colors.

Proof:

- We have already: $\chi(\tilde{B}_s,n) \geq \log^{(s-1)} n$, resp.:
- We have already: $\chi(\tilde{B}_{2t+1},n) \geq \log^{(2t)} n$.
- We also have: $\chi(\tilde{B}_{2t+1},n) \leq 3$.
- Thus we get: $\log^{(2t)} n \leq 3$ and finally
- $2t \geq \log^* n - 1$.

NP-hard: the “most complicated” problems for the class \mathcal{NP}.
Comparison with NP-complete

- NP-hard: the “most complicated” problems for the class \mathcal{NP}.
- Theory of NP-complete problems was developed, to “explain” that for many problems no polynomial time deterministic algorithm is known.
Comparison with NP-complete

- NP-hard: the “most complicated” problems for the class \mathcal{NP}.

- Theory of NP-complete problems was developed, to “explain” that for many problems no polynomial time deterministic algorithm is known.

- A problem is NP-hard \iff:

Comparison with NP-complete

- NP-hard: the "most complicated" problems for the class \(\mathcal{NP} \).
- Theory of NP-complete problems was developed, to "explain" that for many problems no polynomial time deterministic algorithm is known.
- A problem is NP-hard \(\iff \):
 - It is possible in polynomial time to reduce any other problem from NP to a NP-hard problem.
NP-hard: the “most complicated” problems for the class \mathcal{NP}.

Theory of NP-complete problems was developed, to “explain” that for many problems no polynomial time deterministic algorithm is known.

A problem is NP-hard \iff:

- It is possible in polynomial time to reduce any other problem from NP to a NP-hard problem.
- First NP-hard problem: Does a non-deterministic TM stop in polynomial time?
Comparison with NP-complete

- NP-hard: the “most complicated” problems for the class \(\mathcal{NP} \).
- Theory of NP-complete problems was developed, to “explain” that for many problems no polynomial time deterministic algorithm is known.

A problem is NP-hard \(\iff \):

- It is possible in polynomial time to reduce any other problem from NP to a NP-hard problem.
- First NP-hard problem: Does a non-deterministic TM stop in polynomial time?
- All other NP-hard problems were reduced from this.
Comparisson with NP-complete

- NP-hard: the “most complicated” problems for the class \mathcal{NP}.
- Theory of NP-complete problems was developed, to “explain” that for many problems no polynomial time deterministic algorithm is known.
- A problem is NP-hard \iff
 - It is possible in polynomial time to reduce any other problem from NP to a NP-hard problem.
 - First NP-hard problem: Does a non-deterministic TM stop in polynomial time?
 - All other NP-hard problems were reduced from this.
- We assume (proof is still missing), that for these NP-hard problem no deterministic polynomial time algorithms exit.
Comparison with NP-complete

- NP-hard: the “most complicated” problems for the class \(\mathcal{NP} \).
- Theory of NP-complete problems was developed, to “explain” that for many problems problems no polynomial time deterministic algorithm is known.
- A problem is NP-hard \(\Leftrightarrow \):
 - It is possible in polynomial time to reduce any other problem from NP to a NP-hard problem.
 - First NP-hard problem: Does a non-deterministic TM stop in polynomial time?
 - All other NP-hard problems were reduced from this.
- We assume (proof is still missing), that for theses NP-hard problem no deterministic polynomial time algorithms exit.
- Thus we may assume, that for NP-complete problems no polynomial time deterministic parallel algorithm will be known using a polynomial number of processors.
Some Observations about Problems from \mathcal{P}

- Any problem from \mathcal{P} is a candidate for a parallel algorithm.
Some Observations about Problems from \mathcal{P}

- Any problem from \mathcal{P} is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm.
Some Observations about Problems from \(\mathcal{P} \)

- Any problem from \(\mathcal{P} \) is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm
 - which uses a polynomial number of processors
Some Observations about Problems from P

- Any problem from P is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm
 - which uses a polynomial number of processors
 - and runs in poly-logarithmic time.
Some Observations about Problems from \mathcal{P}

- Any problem from \mathcal{P} is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm
 - which uses a polynomial number of processors
 - and runs in poly-logarithmic time.
- These class is called \mathcal{NC}
Some Observations about Problems from \mathcal{P}

- Any problem from \mathcal{P} is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm
 - which uses a polynomial number of processors
 - and runs in poly-logarithmic time.
- These class is called \mathcal{NC} (Nick’s Class).
Some Observations about Problems from \(\mathcal{P} \)

- Any problem from \(\mathcal{P} \) is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm
 - which uses a polynomial number of processors
 - and runs in poly-logarithmic time.
- These class is called \(\mathcal{NC} \) (Nick’s Class).
- We have by definition: \(\mathcal{NC} \subseteq \mathcal{P} \).
Some Observations about Problems from \mathcal{P}

- Any problem from \mathcal{P} is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm
 - which uses a polynomial number of processors
 - and runs in poly-logarithmic time.
- These class is called \mathcal{NC} (Nick’s Class).
- We have by definition: $\mathcal{NC} \subset \mathcal{P}$.
- Important Question: $\mathcal{NC} \cong \mathcal{P}$?
Some Observations about Problems from \mathcal{P}

- Any problem from \mathcal{P} is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm
 - which uses a polynomial number of processors
 - and runs in poly-logarithmic time.
- These class is called \mathcal{NC} (Nick’s Class).
- We have by definition: $\mathcal{NC} \subset \mathcal{P}$.
- Important Question: $\mathcal{NC} \cong \mathcal{P}$?
- It is assumed, $\mathcal{NC} \neq \mathcal{P}$
Some Observations about Problems from \mathcal{P}

- Any problem from \mathcal{P} is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm
 - which uses a polynomial number of processors
 - and runs in poly-logarithmic time.
- These class is called \mathcal{NC} (Nick’s Class).
- We have by definition: $\mathcal{NC} \subset \mathcal{P}$.
- Important Question: $\mathcal{NC} \cong \mathcal{P}$?
- It is assumed, $\mathcal{NC} \neq \mathcal{P}$
- Thus the theory of \mathcal{P}-complete problems was developed.
Some Observations about Problems from \mathcal{P}

- Any problem from \mathcal{P} is a candidate for a parallel algorithm.
- A problem is well to parallelize, if there is a parallel deterministic algorithm
 - which uses a polynomial number of processors
 - and runs in poly-logarithmic time.
- These class is called \mathcal{NC} (Nick’s Class).
- We have by definition: $\mathcal{NC} \subseteq \mathcal{P}$.
- Important Question: $\mathcal{NC} \cong \mathcal{P}$?
- It is assumed, $\mathcal{NC} \neq \mathcal{P}$
- Thus the theory of \mathcal{P}-complete problems was developed.
- And it follows just the technique of \mathcal{NPC}.
Reductions for \mathcal{P}

- Recall the situation for \mathcal{NPC} (try to separate \mathcal{NP} from \mathcal{P}):
Recall the situation for \mathcal{NPC} (try to separate \mathcal{NP} from \mathcal{P}):

- Hard problem: stops a non-deterministic TM in polynomial time?
Recall the situation for NP_C (try to separate NP from P):

- Hard problem: stops a non-deterministic TM in polynomial time?
- Reduction: runs deterministic in polynomial time.
Recall the situation for \(\mathcal{NPC} \) (try to separate \(\mathcal{NP} \) from \(\mathcal{P} \)):
- Hard problem: stops a non-deterministic TM in polynomial time?
- Reduction: runs deterministic in polynomial time.

Or in other words:
Reductions for \mathcal{P}

- Recall the situation for \mathcal{NPC} (try to separate \mathcal{NP} from \mathcal{P}):
 - Hard problem: stops a non-deterministic TM in polynomial time?
 - Reduction: runs deterministic in polynomial time.

- Or in other words:
 - Hard problem: a nice candidate from the “hard class”.

Recall the situation for \mathcal{NPC} (try to separate \mathcal{NP} from \mathcal{P}):

- Hard problem: stops a non-deterministic TM in polynomial time?
- Reduction: runs deterministic in polynomial time.

Or in other words:

- Hard problem: a nice candidate from the “hard class”.
- Reduction by computation within the “easy class”.

Reductions for \mathcal{P}
Reductions for \mathcal{P}

- Recall the situation for \mathcal{NPC} (try to separate \mathcal{NP} from \mathcal{P}):
 - Hard problem: stops a non-deterministic TM in polynomial time?
 - Reduction: runs deterministic in polynomial time.

- Or in other words:
 - Hard problem: a nice candidate from the “hard class”.
 - Reduction by computation within the “easy class”.

- Uses the analogous technique for \mathcal{P} (try to separate \mathcal{P} from \mathcal{NC}):
Reductions for \mathcal{P}

- Recall the situation for \mathcal{NPC} (try to separate \mathcal{NP} from \mathcal{P}):
 - Hard problem: stops a non-deterministic TM in polynomial time?
 - Reduction: runs deterministic in polynomial time.

- Or in other words:
 - Hard problem: a nice candidate from the “hard class”.
 - Reduction by computation within the “easy class”.

- Uses the analogous technique for \mathcal{P} (try to separate \mathcal{P} from \mathcal{NC}):
 - Hard problem: stops a deterministic TM in polynomial time?
Recall the situation for \mathcal{NPC} (try to separate \mathcal{NP} from \mathcal{P}):

- Hard problem: stops a non-deterministic TM in polynomial time?
- Reduction: runs deterministic in polynomial time.

Or in other words:

- Hard problem: a nice candidate from the “hard class”.
- Reduction by computation within the “easy class”.

Uses the analogous technique for \mathcal{P} (try to separate \mathcal{P} from \mathcal{NC}):

- Hard problem: stops a deterministic TM in polynomial time?
- Reduction: runs deterministic in time poly-logarithmic time.
Recall the situation for NPC (try to separate NP from P):
- Hard problem: stops a non-deterministic TM in polynomial time?
- Reduction: runs deterministic in polynomial time.

Or in other words:
- Hard problem: a nice candidate from the “hard class”.
- Reduction by computation within the “easy class”.

Uses the analogous technique for P (try to separate P from NC):
- Hard problem: stops a deterministic TM in polynomial time?
- Reduction: runs deterministic in time poly-logarithmic time.
- Analog reduction: using poly-logarithmic memory.
Poly-Logarithmic Time versus Memory

- We had:
We had:

- Reduction: runs deterministic in time poly-logarithmic time.
Poly-Logarithmic Time versus Memory

- We had:
 - Reduction: runs deterministic in time poly-logarithmic time.
 - Analog reduction: using poly-logarithmic memory.
Poly-Logarithmic Time versus Memory

- We had:
 - Reduction: runs deterministic in time poly-logarithmic time.
 - Analog reduction: using poly-logarithmic memory.

- We will transform an algorithm running deterministic in time poly-logarithmic time into one using poly-logarithmic memory.
Poly-Logarithmic Time versus Memory

- We had:
 - Reduction: runs deterministic in time poly-logarithmic time.
 - Analog reduction: using poly-logarithmic memory.

- We will transform an algorithm running deterministic in time poly-logarithmic time into one using poly-logarithmic memory.
 - From the parallel algorithm running deterministic in time poly-logarithmic
We had:

- Reduction: runs deterministic in time poly-logarithmic time.
- Analog reduction: using poly-logarithmic memory.

We will transform an algorithm running deterministic in time poly-logarithmic time into one using poly-logarithmic memory.

- From the parallel algorithm running deterministic in time poly-logarithmic
- we build a circuit network.
We had:

- Reduction: runs deterministic in time poly-logarithmic time.
- Analog reduction: using poly-logarithmic memory.

We will transform an algorithm running deterministic in time poly-logarithmic time into one using poly-logarithmic memory.

- From the parallel algorithm running deterministic in time poly-logarithmic
- we build a circuit network.
- This has poly-logarithmic depth and polynomial width.
Poly-Logarithmic Time versus Memory

- We had:
 - Reduction: runs deterministic in time poly-logarithmic time.
 - Analog reduction: using poly-logarithmic memory.

- We will transform an algorithm running deterministic in time poly-logarithmic time into one using poly-logarithmic memory.
 - From the parallel algorithm running deterministic in time poly-logarithmic
 - we build a circuit network.
 - This has poly-logarithmic depth and polynomial width.
 - To compute any value within this circuit network we only need to store the values on a path towards the input.
We had:

- Reduction: runs deterministic in time poly-logarithmic time.
- Analog reduction: using poly-logarithmic memory.

We will transform an algorithm running deterministic in time poly-logarithmic time into one using poly-logarithmic memory.

- From the parallel algorithm running deterministic in time poly-logarithmic
- we build a circuit network.
- This has poly-logarithmic depth and polynomial width.
- To compute any value within this circuit network we only need to store the values on a path towards the input.
- Thus we have poly-logarithmic memory
Poly-Logarithmic Time versus Memory

- We had:
 - Reduction: runs deterministic in time poly-logarithmic time.
 - Analog reduction: using poly-logarithmic memory.

- We will transform an algorithm running deterministic in time poly-logarithmic time into one using poly-logarithmic memory.
 - From the parallel algorithm running deterministic in time poly-logarithmic
 - we build a circuit network.
 - This has poly-logarithmic depth and polynomial width.
 - To compute any value within this circuit network we only need to store the values on a path towards the input.
 - Thus we have poly-logarithmic memory (and do not care about the running time).
A problem X is called \mathcal{P}-complete, iff:

- X is in \mathcal{P}.

A problem X is called \mathcal{P}-complete, iff:

- X is in \mathcal{P}.
- Any problem Y from \mathcal{P} could be reduced to X with poly-logarithmic memory.
A problem \(X \) is called \(P \)-complete, iff:

- \(X \) is in \(P \).
- Any problem \(Y \) from \(P \) could be reduced to \(X \) with poly-logarithmic memory.
- I.e.
A problem X is called \mathcal{P}-complete, iff:

- X is in \mathcal{P}.
- Any problem Y from \mathcal{P} could be reduced to X with poly-logarithmic memory.

I.e.

- there is a function f computable with poly-logarithmic memory, such that
A problem X is called \mathcal{P}-complete, iff:

- X is in \mathcal{P}.
- Any problem Y from \mathcal{P} could be reduced to X with poly-logarithmic memory.
- I.e.
 - there is a function f computable with poly-logarithmic memory, such that
 - $\forall w \in \Sigma^* : w \in X \Leftrightarrow f(w) \in Y$
First Reduktion (Introduction)

Definition (Generability)

Input: Set X with binary operator \circ, $T \subset X$ and $s \in X$.
First Reduktion (Introduction)

Definition (Generability)

- Input: Set X with binary operator \circ, $T \subseteq X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \circ.

Algorithm for Generability (X, \circ, S, s) in P:

while $S \neq S \circ S$ do
 $S = S \circ S$
return $s \in S$.

We will first show P-completeness for a ternary operation, i.e. \circ will be substituted by $next(u, v, w)$.

Reduction from the halting problem of a deterministic TM.
First Reduktion (Introduction)

Definition (Generability)

- Input: Set X with binary operator \odot, $T \subset X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \odot.

Let $S \odot S := \{a \odot b \mid a, b \in S\}$.

- Reduction from the halting problem of a deterministic TM.
First Reduktion (Introduction)

Definition (Generability)

- Input: Set X with binary operator \odot, $T \subseteq X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \odot.

- Let $S \odot S := \{a \odot b \mid a, b \in S\}$.
- Algorithm for $\text{Generability}(X, \odot, S, s)$ in \mathcal{P}:
First Reduction (Introduction)

Definition (Generability)

- **Input:** Set X with binary operator \odot, $T \subseteq X$ and $s \in X$.
- **Output:** Is s in the closure of T in terms of \odot.

Let $S \odot S := \{a \odot b \mid a, b \in S\}$.

Algorithm for Generability(X, \odot, S, s) in \mathcal{P}:

- **while** $S \neq S \odot S$ **do** $S := S \odot S$
First Reduction (Introduction)

Definition (Generability)

- **Input:** Set X with binary operator \odot, $T \subseteq X$ and $s \in X$.
- **Output:** Is s in the closure of T in terms of \odot.

- Let $S \odot S := \{a \odot b \mid a, b \in S\}$.

- Algorithm for *Generability* (X, \odot, S, s) in \mathcal{P}:
 - while $S \neq S \odot S$ do $S = S \odot S$
 - return $s \in S$.

We will first show P-completeness for a ternary operation, i.e. \odot will be substituted by $\text{next} (u, v, w)$. Reduction from the halting problem of a deterministic TM.
First Reduction (Introduction)

Definition (Generability)

- **Input**: Set X with binary operator \odot, $T \subseteq X$ and $s \in X$.
- **Output**: Is s in the closure of T in terms of \odot.

- Let $S \odot S := \{a \odot b \mid a, b \in S\}$.
- Algorithm for *Generability*(X, \odot, S, s) in \mathcal{P}:
 - **while** $S \neq S \odot S$ **do** $S = S \odot S$
 - **return** $s \in S$.

- We will first show \mathcal{P}-completeness for a ternary operation.
First Reduktion (Introduction)

Definition (Generability)

- Input: Set X with binary operator \circ, $T \subseteq X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \circ.

- Let $S \circ S := \{a \circ b \mid a, b \in S\}$.
- Algorithm for $\text{Generability}(X, \circ, S, s)$ in P:
 - while $S \neq S \circ S$ do $S = S \circ S$
 - return $s \in S$.

We will first show P-completeness for a ternary operation.

- i.e. \circ will be substituted by $\text{next}(u, v, w)$.
First Reduktion (Introduction)

Definition (Generability)

- **Input:** Set X with binary operator \odot, $T \subset X$ and $s \in X$.
- **Output:** Is s in the closure of T in terms of \odot.

- Let $S \odot S := \{a \odot b \mid a, b \in S\}$.
- Algorithm for Generability (X, \odot, S, s) in \mathcal{P}:
 - while $S \neq S \odot S$ do $S = S \odot S$
 - return $s \in S$.

- We will first show \mathcal{P}-completeness for a ternary operation.
- i.e. \odot will be substituted by $\text{next}(u, v, w)$.
- Reduction from the halting problem of a deterministic TM.
First Reduction

Definition (Generability’)
- Input: Set X with ternary operator $\text{next}(u, v, w)$, $T \subseteq X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \circ.

Definition (TM)
- Input band with postitions $0, 1, 2, \cdot T(n) + 1$.
First Reduction

Definition (Generability’)

- Input: Set X with ternary operator $\text{next}(u, v, w)$, $T \subset X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \circ.

Definition (TM)

- Input band with postitions $0, 1, 2, \cdot T(n) + 1$.
- By $c(i, j) \in \Sigma$ we denote the contents at position i at time j.
First Reduction

Definition (Generability')
- Input: Set X with ternary operator $\text{next}(u, v, w)$, $T \subseteq X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \circ.

Definition (TM)
- Input band with positions $0, 1, 2, \cdot T(n) + 1$.
- By $c(i, j) \in \Sigma$ we denote the contents at position i at time j.
- Let $c(0, j) = c(T(n) + 1, j) = \$\text{ for all time points } j$.
First Reduction

Definition (Generability’)

- Input: Set X with ternary operator $\text{next}(u, v, w)$, $T \subset X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \odot.

Definition (TM)

- Input band with positions $0, 1, 2, \cdot T(n) + 1$.
- By $c(i, j) \in \Sigma$ we denote the contents at position i at time j.
- Let $c(0, j) = c(T(n) + 1, j) = \$ $ for all time points j.
- The function trans defines the transitions for the TM.
First Reduction

Definition (Generability’)
- Input: Set X with ternary operator $\text{next}(u, v, w)$, $T \subset X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \circ.

Definition (TM)
- Input band with positions $0, 1, 2, \cdots T(n) + 1$.
- By $c(i, j) \in \Sigma$ we denote the contents at position i at time j.
- Let $c(0, j) = c(T(n) + 1, j) = \$ \text{ for all time points } j$.
- The function trans defines the transitions for the TM.
- I.e. $c(p, t + 1) = \text{trans}(c(p - 1, t), c(p, t), c(p + 1, t))$.
First Reduction

Definition (Generability’)
- **Input:** Set X with ternary operator $\text{next}(u, v, w)$, $T \subseteq X$ and $s \in X$.
- **Output:** Is s in the closure of T in terms of \odot.

Definition (TM)
- **Input** band with postitions $0, 1, 2, \cdot T(n) + 1$.
- By $c(i, j) \in \Sigma$ we denote the contents at position i at time j.
- Let $c(0, j) = c(T(n) + 1, j) = $ for all time points j.
- The function trans defines the transitions for the TM.
- I.e. $c(p, t + 1) = \text{trans}(c(p - 1, t), c(p, t), c(p + 1, t))$.
- **Input given at positions** $c(p, 0)$ ($\forall p : 1 \leq p \leq T(n)$).
First Reduction

Definition (Generability’)
- Input: Set X with ternary operator $\text{next}(u, v, w)$, $T \subset X$ and $s \in X$.
- Output: Is s in the closure of T in terms of \circ.

Definition (TM)
- Input band with postitions $0, 1, 2, \cdots T(n) + 1$.
- By $c(i, j) \in \Sigma$ we denote the contents at position i at time j.
- Let $c(0, j) = c(T(n) + 1, j) = \$ for all time points j.
- The function trans defines the transitions for the TM.
- I.e. $c(p, t + 1) = \text{trans}(c(p - 1, t), c(p, t), c(p + 1, t))$.
- Input given at positions $c(p, 0)$ ($\forall p : 1 \leq p \leq T(n)$).
- Output placed at $c(1, T(n))$ where $\#$ encodes a “true”.
First Reduction (Generability’)

Theorem:
Generability’ is \(\mathcal{P} \)-complete.

Proof:

\[
X = \{0, 1, \ldots, T(n)\} \times \{0, 1, \ldots, T(n) + 1\} \times \Sigma
\]

\[
T\left(n + \frac{1}{2}
ight) = \{(0, i, c(0, i)) | \ 0 \leq i \leq T(n) + 1\}
\]

\[
s = (T(n), 1, \#) \quad \text{next} = \text{trans}
\]

This can be done in \(\mathcal{NC} \).

\(s \) is in the closure of \(\text{next} \) iff TM stops with “True.”
First Reduction (Generability')

Theorem:
Generability’ is \mathcal{P}-complete.

Proof:
- A TM may be transformed in \mathcal{NC} into the above form.
First Reduction (Generability’)

Theorem:

Generability’ is \mathcal{P}-complete.

Proof:

- A TM may be transformed in \mathcal{NC} into the above form.
- The triple (t, p, sym) encodes that the contents at position p and time t is sym.
First Reduction (Generability’)

Theorem:

Generability’ is \(\mathcal{P} \)-complete.

Proof:

- A TM may be transformed in \(\mathcal{NC} \) into the above form.
- The triple \((t, p, \text{sym})\) encodes that the contents at position \(p\) and time \(t\) is \(\text{sym}\).
- We will now compute the input for Generability’ from the above TM:
First Reduction (Generability’)

Theorem: Generability’ is \mathcal{P}-complete.

Proof:

1. A TM may be transformed in \mathcal{NC} into the above form.
2. The triple (t, p, sym) encodes that the contents at position p and time t is sym.
3. We will now compute the input for Generability’ from the above TM:
 - $X = \{0, 1, \cdots, T(n)\} \times \{0, 1, \cdots, T(n) + 1\} \times \Sigma$.
First Reduction (Generability’)

Theorem:

Generability’ is \(\mathcal{P} \)-complete.

Proof:

- A TM may be transformed in \(\mathcal{NC} \) into the above form.
- The triple \((t, p, \text{sym})\) encodes that the contents at position \(p\) and time \(t\) is \(\text{sym}\).
- We will now compute the input for Generability’ from the above TM:
 - \(X = \{0, 1, \cdots, T(n)\} \times \{0, 1, \cdots, T(n) + 1\} \times \Sigma\).
 - \(T = \{(0, i, c(0, i)) \mid 0 \leq i \leq T(n) + 1\}\).
First Reduction (Generability')

Theorem:
Generability’ is \(P \)-complete.

Proof:
- A TM may be transformed in \(NC \) into the above form.
- The triple \((t, p, sym)\) encodes that the contents at position \(p \) and time \(t \) is \(sym \).
- We will now compute the input for Generability’ from the above TM:
 - \(X = \{0, 1, \ldots, T(n)\} \times \{0, 1, \ldots, T(n) + 1\} \times \Sigma. \)
 - \(T = \{(0, i, c(0, i)) \mid 0 \leq i \leq T(n) + 1\} \)
 - \(s = (T(n), 1, \#) \)
First Reduction (Generability’)

Theorem:

Generability’ is \(\mathcal{P} \)-complete.

Proof:

- A TM may be transformed in \(\mathcal{NC} \) into the above form.
- The triple \((t, p, \text{sym})\) encodes that the contents at position \(p\) and time \(t\) is \(\text{sym}\).
- We will now compute the input for Generability’ from the above TM:
 - \(X = \{0, 1, \cdots, T(n)\} \times \{0, 1, \cdots, T(n) + 1\} \times \Sigma\).
 - \(T = \{(0, i, c(0, i)) \mid 0 \leq i \leq T(n) + 1\}\).
 - \(s = (T(n), 1, \#)\).
 - \(\text{next} = \text{trans}\).
First Reduction (Generability’)

Theorem:

Generability’ is \mathcal{P}-complete.

Proof:

- A TM may be transformed in \mathcal{NC} into the above form.
- The triple (t, p, sym) encodes that the contents at position p and time t is sym.
- We will now compute the input for Generability’ from the above TM:
 - $X = \{0, 1, \cdots, T(n)\} \times \{0, 1, \cdots, T(n) + 1\} \times \Sigma$.
 - $T = \{(0, i, c(0, i)) \mid 0 \leq i \leq T(n) + 1\}$
 - $s = (T(n), 1, \#)$
 - $\text{next} = \text{trans}$
- This can be done in \mathcal{NC}.
First Reduction (Generability’)

Theorem:

Generability’ is \mathcal{P}-complete.

Proof:

- A TM may be transformed in \mathcal{NC} into the above form.
- The triple (t, p, sym) encodes that the contents at position p and time t is sym.
- We will now compute the input for Generability’ from the above TM:
 - $X = \{0, 1, \cdots, T(n)\} \times \{0, 1, \cdots, T(n) + 1\} \times \Sigma$.
 - $T = \{(0, i, c(0, i)) \mid 0 \leq i \leq T(n) + 1\}$
 - $s = (T(n), 1, \#)$
 - $next = trans$
- This can be done in \mathcal{NC}.
- s is in the closure of $next$ iff TM stops with “True”.
First Reduction (Generability)

Theorem:

Generability ist \mathcal{P}-complete.

Proof:
First Reduction (Generability)

Theorem:

Generability ist \mathcal{P}-complete.

Proof:

- *Reduktion von Generability’*
Theorem:
Generability ist \(\mathcal{P} \)-complete.

Proof:

- Reduktion von Generability’
- \(X' := X \cup X^2 \) (\(X \) form above)
First Reduction (Generability)

Theorem:
Generability ist \(\mathcal{P} \)-complete.

Proof:
- Reduktion von Generability’
- \(X' := X \cup X^2 \) (\(X \) form above)
- \(T = \{(0, i, c(0, i)) \mid 0 \leq i \leq T(n) + 1\} \)
First Reduction (Generability)

Theorem:

Generability ist \mathcal{P}-complete.

Proof:

- Reduktion von Generability’
- $X' := X \cup X^2$ (X form above)
- $T = \{(0, i, c(0, i)) \mid 0 \leq i \leq T(n) + 1\}$
- $s = (T(n), 1, \#)$
First Reduction (Generability)

Theorem:

Generability ist P-complete.

Proof:

- Reduktion von Generability’
- $X' := X \cup X^2$ (X form above)
- $T = \{(0, i, c(0, i)) | 0 \leq i \leq T(n) + 1\}$
- $s = (T(n), 1, \#)$
- It remains to define $next$ as a binary Operator \odot.
First Reduction (Generability)

Theorem:
Generability ist \mathcal{P}-complete.

Proof:

- Reduktion von Generability’
- $X' := X \cup X^2$ (X form above)
- $T = \{(0, i, c(0, i)) | 0 \leq i \leq T(n) + 1\}$
- $s = (T(n), 1, #)$
- It remains to define next as a binary Operator \odot.
- $u \odot v := (u, v)$ and
Theorem:
Generability ist \(P \)-complete.

Proof:
- Reduktion von Generability’
- \(X' := X \cup X^2 \) (\(X \) form above)
- \(T = \{(0, i, c(0, i)) \mid 0 \leq i \leq T(n) + 1\} \)
- \(s = (T(n), 1, \#) \)
- It remains to define \(next \) as a binary Operator \(\circ \).
- \(u \circ v := (u, v) \) and
- \((u, v) \circ w := \text{next}(u, v, w) \)
Lemma:
If \circ is associative, the is the corresponding Generability-Problem in \mathcal{NC}.

Proof:

- We transform this problem into the reachability problem on a graph G.
Lemma:
If \odot is associative, the is the corresponding Generability-Problem in \mathcal{NC}.

Proof:
- We transform this problem into the reachability problem on a graph G.
- If $x \odot z = y$ then generate an edge (x, y) with label z.
Lemma:

If \odot is associative, there is the corresponding Generability-Problem in \mathcal{NC}.

Proof:

- We transform this problem into the reachability problem on a graph G.
- If $x \odot z = y$ then generate an edge (x, y) with label z.
- $G = (X, E)$ with $E = \{(x, y) \mid \exists z \in X : x \odot z = y\}$
Lemma:

If \circ is associative, the is the corresponding Generability-Problem in \mathcal{NC}.

Proof:

- We transform this problem into the reachability problem on a graph G.
- If $x \circ z = y$ then generate an edge (x, y) with label z.
- $G = (X, E)$ with $E = \{(x, y) \mid \exists z \in X : x \circ z = y\}$
- and $\forall(x, y) \in E : l(x, y) := \{z \in X \mid x \circ z = y\}$.
Lemma:

If \circ is associative, the is the corresponding Generability-Problem in \mathcal{NC}.

Proof:

- We transform this problem into the reachability problem on a graph G.
- If $x \circ z = y$ then generate an edge (x, y) with label z.
- $G = (X, E)$ with $E = \{(x, y) \mid \exists z \in X : x \circ z = y\}$
- and $\forall (x, y) \in E : l(x, y) := \{z \in X \mid x \circ z = y\}$.
- If there is a path from $a \in T$ to s using edges with labels b, c, d, \ldots, then we may generate s by $(\cdots (a \circ b) \circ c) \circ d) \cdots)$.
Remarks

Lemma:

If \circ is associative, then is the corresponding Generability-Problem in \mathcal{NC}.

Proof:

- We transform this problem into the reachability problem on a graph G.
- If $x \circ z = y$ then generate an edge (x, y) with label z.
- $G = (X, E)$ with $E = \{(x, y) \mid \exists z \in X : x \circ z = y\}$
- and $\forall (x, y) \in E : l(x, y) := \{z \in X \mid x \circ z = y\}$.
- If there is a path from $a \in T$ to s using edges with labels b, c, d, \cdots, then we may generate s by $((\cdots (a \circ b) \circ c) \circ d) \cdots$.
- If s may be generated by using elements from T with \circ, then we may have also the form $((\cdots (a \circ b) \circ c) \circ d) \cdots$.
Lemma:
If \(\circ \) is associative, then is the corresponding Generability-Problem in \(\mathcal{NC} \).

Proof:
- We transform this problem into the reachability problem on a graph \(G \).
- If \(x \circ z = y \) then generate an edge \((x, y)\) with label \(z \).
- \[G = (X, E) \text{ with } E = \{(x, y) \mid \exists z \in X : x \circ z = y\} \]
- and \(\forall (x, y) \in E : l(x, y) \coloneqq \{z \in X \mid x \circ z = y\} \).
- If there is a path from \(a \in T \) to \(s \) using edges with labels \(b, c, d, \cdots \), then we may generate \(s \) by \(((\cdots(a \circ b) \circ c) \circ d) \cdots \).
- If \(s \) may be generated by using elements from \(T \) with \(\circ \), then we may have also the form \(((\cdots(a \circ b) \circ c) \circ d) \cdots \).
- This will give us a path in the above constructed graph \(G \).
Reduktion (CVP)

Definition (CVP)
- Input: A boolean circuit with some input.
- Output: Is the output value true.

Theorem:
The problem CVP is \mathcal{P}-complete.
Reduktion (CVP)

Definition (CVP)
- Input: A boolean circuit with some input.
- Output: Is the output value \textit{true}.

Theorem:
The problem CVP is \mathcal{P}-complete.

Proof
- Reduction form the Generability Problem.
Reduktion (CVP)

Definition (CVP)
- Input: A boolean circuit with some input.
- Output: Is the output value true.

Theorem:
The problem CVP is \mathcal{P}-complete.

Proof
- Reduction form the Generability Problem.
- The elements from T are the inputs for the circuit with value true.
Reduktion (CVP)

Definition (CVP)
- Input: A boolean circuit with some input.
- Output: Is the output value true.

Theorem:
The problem CVP is \(P \)-complete.

Proof
- Reduction form the Generability Problem.
- The elements from \(T \) are the inputs for the circuit with value true.
- The output will be the element \(s \).
Details for the Reduction (CVP)

- For each element x from $X \setminus T$ do:
Details for the Reduction (CVP)

- For each element \(x \) from \(X \setminus T \) do:
- Compute pairs from \(X \times X \) which will give \(x \):
 \[(y_1, z_1), (y_2, z_2), (y_3, z_3), \ldots, (y_k, z_k)\]
Details for the Reduction (CVP)

- For each element x from $X \setminus T$ do:
- Compute pairs from $X \times X$ which will give x:
 \[(y_1, z_1), (y_2, z_2), (y_3, z_3), \ldots, (y_{k_x}, z_{k_x})\]
- I.e. $y_i \odot z_i = x$ for all $1 \leq i \leq k_x$.
Details for the Reduction (CVP)

- For each element x from $X \setminus T$ do:
- Compute pairs from $X \times X$ which will give x:

 $$(y_1, z_1), (y_2, z_2), (y_3, z_3), \ldots, (y_{k_x}, z_{k_x})$$

- I.e. $y_i \odot z_i = x$ for all $1 \leq i \leq k_x$.
- This is one part of the circuit:

$$x = \bigvee_{i=1}^{k_x} y_i \land z_i$$
Details for the Reduction (CVP)

- For each element x from $X \setminus T$ do:
- Compute pairs from $X \times X$ which will give x:
 \[(y_1, z_1), (y_2, z_2), (y_3, z_3), \ldots, (y_{k_x}, z_{k_x})\]
- I.e. $y_i \diamond z_i = x$ for all $1 \leq i \leq k_x$.
- This is one part of the circuit:
 \[x = \bigvee_{i=1}^{k_x} y_i \land z_i\]
- Thus x will have the value true iff x may be generated.
Details for the Reduction (CVP)

- For each element \(x \) from \(X \setminus T \) do:
- Compute pairs from \(X \times X \) which will give \(x \):
 \[
 (y_1, z_1), (y_2, z_2), (y_3, z_3), \ldots, (y_{k_x}, z_{k_x})
 \]
 I.e. \(y_i \circ z_i = x \) for all \(1 \leq i \leq k_x \).
- This is one part of the circuit:
 \[
 x = \bigvee_{i=1}^{k_x} y_i \land z_i
 \]
- Thus \(x \) will have the value \textit{true} iff \(x \) may be generated.
- Thus \(s \) will have the value \textit{true} iff \(s \) may be generated.
Details for the Reduction (CVP)

For each element \(x \) from \(X \setminus T \) do:

- Compute pairs from \(X \times X \) which will give \(x \):
 \[
 (y_1, z_1), (y_2, z_2), (y_3, z_3), \ldots, (y_{k_x}, z_{k_x})
 \]

- I.e. \(y_i \odot z_i = x \) for all \(1 \leq i \leq k_x \).

This is one part of the circuit:

\[
 x = \bigvee_{i=1}^{k_x} y_i \land z_i
\]

- Thus \(x \) will have the value \textit{true} iff \(x \) may be generated.
- Thus \(s \) will have the value \textit{true} iff \(s \) may be generated.
- This construction is in \(\mathcal{NC} \).
Reduktion (MCVP)

Definition (MCVP)

- Input: A boolean circuit with some input and only operators \lor und \land.
- Output: Is the output value $true$.

Theorem:

The MCVP is \mathcal{P}-complete.
Definition (MCVP)

- Input: A boolean circuit with some input and only operators \lor und \land.
- Output: Is the output value true.

Theorem:

The MCVP is \mathcal{P}-complete.

Proof:

- Similar proof to the CVP problem.
Reduktion (TSMCVP)

Definition (TSMCVP)

- **Input:** A boolean circuit with some input and only operators \lor, \land and a topological sorting of the values.
- **Output:** Is the output value *true*.

Theorem:

The TSMCVP is \(\mathcal{P} \)-complete.
Reduktion (TSMCVP)

Definition (TSMCVP)

- Input: A boolean circuit with some input and only operators \lor, \land and a topological sorting of the values.
- Output: Is the output value true.

Theorem:

The TSMCVP is \mathcal{P}-complete.

Proof:

- Similar proof to the CVP problem.
- Note: the proof for Generability’ did contain a topological sorting.
- This was the lexicographical order of the elements (t, p, sym).
- This order could easily be preserved during the following step of the reduction.
Reduktion (CFE)

Definition (CFE)
- Input: a context-free grammar G.
- Output: will G generate the empty word ε.

Theorem:
The CFE is \mathcal{P}-complete.
Reduktion (CFE)

Definition (CFE)
- **Input**: a context-free grammar \(G \).
- **Output**: will \(G \) generate the empty word \(\varepsilon \).

Theorem:
The CFE is \(\mathcal{P} \)-complete.

Proof (Reduktion from Generability Problem):
- Let \((X, T, \cdot, s)\) be the input for the Generability problem.
Reduktion (CFE)

Definition (CFE)

- **Input:** a context-free grammar G.
- **Output:** will G generate the empty word ε.

Theorem:

The CFE is \mathcal{P}-complete.

Proof (Reduktion from Generability Problem):

- Let (X, T, \odot, s) be the input for the Generability problem.
- Let X be the non-terminals of G.
Definition (CFE)

- Input: a context-free grammar G.
- Output: will G generate the empty word ε.

Theorem:
The CFE is \mathcal{P}-complete.

Proof (Reduktion from Generability Problem):

- Let $(X, T, \circlearrowleft, s)$ be the input for the Generability problem.
- Let X be the non-terminals of G.
- Let s be the start symbol.
Definition (CFE)
- Input: a context-free grammar G.
- Output: will G generate the empty word ε.

Theorem:
The CFE is \mathcal{P}-complete.

Proof (Reduktion from Generability Problem):
- Let (X, T, \circ, s) be the input for the Generability problem.
- Let X be the non-terminals of G.
- Let s be the start symbol.
- For each $x \in T$ generate the rule: $x \rightarrow \varepsilon$.
Reduktion (CFE)

Definition (CFE)
- Input: a context-free grammar \(G \).
- Output: \(G \) generate the empty word \(\varepsilon \).

Theorem:
The CFE is \(\mathcal{P} \)-complete.

Proof (Reduktion from Generability Problem):
- Let \((X, T, \circ, s)\) be the input for the Generability problem.
- Let \(X\) be the non-terminals of \(G \).
- Let \(s\) be the start symbol.
- For each \(x \in T \) generate the rule: \(x \rightarrow \varepsilon \).
- If \(y \circ z = x \) generate the rule: \(x \rightarrow yz \).
Definition (CFE)

- Input: a context-free grammar \(G \).
- Output: will \(G \) generate the empty word \(\varepsilon \).

Theorem:

The CFE is \(\mathcal{P} \)-complete.

Proof (Reduktion from Generability Problem):

- Let \((X, T, \odot, s)\) be the input for the Generability problem.
- Let \(X\) be the non-terminals of \(G \).
- Let \(s\) be the start symbol.
- For each \(x \in T \) generate the rule: \(x \rightarrow \varepsilon \).
- If \(y \odot z = x \) generate the rule: \(x \rightarrow yz \).
- Note: If \(G \) contains no \(\varepsilon \)-rules, then is CFE in \(\mathcal{NC} \).
Reduction (LFMIS)

Definition (LFMIS)

- Input: non-directed graph $G = (V, E)$.
- Output: lexicographical first maximum independent set (IS) of G.

Theorem:
The LFMIS is \mathcal{P}-complete.
Reduction (LFMIS)

Definition (LFMIS)
- Input: non-directed graph $G = (V, E)$.
- Output: lexicographical first maximum independent set (IS) of G.

Theorem:
The LFMIS is \mathcal{P}-complete.

Proof (Reduction from MCVP problem)
- Consider the greedy-strategy for the LFMIS problem.
Definition (LFMIS)

- Input: non-directed graph $G = (V, E)$.
- Output: lexicographical first maximum independent set (IS) of G.

Theorem:

The LFMIS is P-complete.

Proof (Reduction from MCVP problem)

- Consider the greedy-strategy for the LFMIS problem.
- Let $V = \{v_1, v_2, \ldots, v_n\}$ nodes for the MCVP Problems in their topological sorting.
Reduction (LFMIS)

Definition (LFMIS)
- Input: non-directed graph $G = (V, E)$.
- Output: lexicographical first maximum independent set (IS) of G.

Theorem:
The LFMIS is \mathcal{P}-complete.

Proof (Reduction from MCVP problem)
- Consider the greedy-strategy for the LFMIS problem.
- Let $V = \{v_1, v_2, \cdots, v_n\}$ nodes for the MCVP Problems in their topological sorting.
- Let $\{v_1, v_2, \cdots, v_e\}$ be the input nodes and v_n be the output node.
Reduction (LFMIS)

Definition (LFMIS)
- Input: non-directed graph $G = (V, E)$.
- Output: lexicographical first maximum independent set (IS) of G.

Theorem:
The LFMIS is P-complete.

Proof (Reduction from MCVP problem)
- Consider the greedy-strategy for the LFMIS problem.
- Let $V = \{v_1, v_2, \cdots, v_n\}$ nodes for the MCVP Problems in their topological sorting.
- Let $\{v_1, v_2, \cdots, v_e\}$ be the input nodes and v_n be the output node.
- We construct $G = (V', E')$ as input for LFMIS.
Continuation of the Reduction (LFMIS)

Let $V' = \{v'_1, v''_1, v'_2, v''_2, \ldots, v'_n, v''_n\}$ be numbered from 1 till $2n$.

$v' \in IS \iff v$
$v'' \in IS \iff \bar{v}$
Continuation of the Reduction (LFMIS)

- Let $V' = \{v'_1, v''_1, v'_2, v''_2, \ldots, v'_n, v''_n\}$ be numbered from 1 till $2n$.
- The numbers of v'_i, v''_i are exchanged, if

$$v' \in IS \iff v \quad v'' \in IS \iff \overline{v}$$
Continuation of the Reduction (LFMIS)

- Let $V' = \{v'_1, v''_1, v'_2, v''_2, \cdots, v'_n, v''_n\}$ be numbered from 1 till $2n$.
- The numbers of v'_i, v''_i are exchanged, if
 - v_i is an or-node or
Continuation of the Reduction (LFMIS)

- Let \(V' = \{v'_1, v''_1, v'_2, v''_2, \ldots, v'_n, v''_n\} \) be numbered from 1 till 2\(n \).

- The numbers of \(v'_i, v''_i \) are exchanged, if
 - \(v_i \) is an or-node or
 - \(v_i \) is an input node with the value \textit{false}.

\(v' \in IS \iff v \\
\overline{v'} \in IS \iff \overline{\overline{v}} \)
Continuation of the Reduction (LFMIS)

- Let $V' = \{v_1', v_1'', v_2', v_2'', \ldots, v_n', v_n''\}$ be numbered from 1 till $2n$.
- The numbers of v_i', v_i'' are exchanged, if
 - v_i is an or-node or
 - v_i is an input node with the value $false$.
- For all $1 \leq i \leq n$ generate an edge $\{v_i', v_i''\}$.
Continuation of the Reduction (LFMIS)

- Let \(V' = \{ v_1', v_1'', v_2', v_2'', \ldots, v_n', v_n'' \} \) be numbered from 1 till \(2n \).
- The numbers of \(v_i', v_i'' \) are exchanged, if
 - \(v_i \) is an or-node or
 - \(v_i \) is an input node with the value \textit{false}.
- For all \(1 \leq i \leq n \) generate an edge \(\{ v_i', v_i'' \} \).
- Thus only one of the nodes \(v_i', v_i'' \) is in the IS.
Continuation of the Reduction (LFMIS)

Let $V' = \{v'_1, v''_1, v'_2, v''_2, \ldots, v'_n, v''_n\}$ be numbered from 1 till $2n$.

- The numbers of v'_i, v''_i are exchanged, if
 - v_i is an or-node or
 - v_i is an input node with the value false.

- For all $1 \leq i \leq n$ generate an edge $\{v'_i, v''_i\}$.
- Thus only one of the nodes v'_i, v''_i is in the IS.

- If v is an and-node G with input u and w, then add the edges $\{v', u''\}$ and $\{v', w''\}$.

Let $v' \in IS \iff v$

$v'' \in IS \iff \overline{v}$
Continuation of the Reduction (LFMIS)

- Let $V' = \{v'_1, v''_1, v'_2, v''_2, \ldots, v'_n, v''_n\}$ be numbered from 1 till $2n$.
- The numbers of v'_i, v''_i are exchanged, if
 - v_i is an or-node or
 - v_i is an input node with the value false.
- For all $1 \leq i \leq n$ generate an edge $\{v'_i, v''_i\}$.
- Thus only one of the nodes v'_i, v''_i is in the IS.
- If v is an and-node G with input u and w, then add the edges $\{v', u''\}$ and $\{v', w''\}$.
- Thus v' will be in the IS iff non of the nodes u'', w'' are in the IS.
Continuation of the Reduction (LFMIS)

- Let $V' = \{v'_1, v''_1, v'_2, v''_2, \ldots, v'_n, v''_n\}$ be numbered from 1 till $2n$.
- The numbers of v'_i, v''_i are exchanged, if
 - v_i is an or-node or
 - v_i is an input node with the value false.
- For all $1 \leq i \leq n$ generate an edge $\{v'_i, v''_i\}$.
- Thus only one of the nodes v'_i, v''_i is in the IS.
- If v is an and-node G with input u and w, then add the edges $\{v', u''\}$ and $\{v', w''\}$.
- Thus v' will be in the IS iff non of the nodes u'', w'' are in the IS.
- If v is an or-node G with inputs u and w, then add the edges $\{v'', u'\}$ and $\{v'', w'\}$.
Continuation of the Reduction (LFMIS)

- Let $V' = \{v'_1, v''_1, v'_2, v''_2, \ldots, v'_n, v''_n\}$ be numbered from 1 till $2n$.

- The numbers of v'_i, v''_i are exchanged, if
 - v_i is an or-node or
 - v_i is an input node with the value *false*.

- For all $1 \leq i \leq n$ generate an edge $\{v'_i, v''_i\}$.

- Thus only one of the nodes v'_i, v''_i is in the IS.

- If v is an and-node G with input u and w, then add the edges $\{v', u''\}$ and $\{v', w''\}$.

- Thus v' will be in the IS iff none of the nodes u'', w'' are in the IS.

- If v is an or-node G with inputs u and w, then add the edges $\{v'', u'\}$ and $\{v'', w'\}$.

- Thus v'' will be in the IS iff if none of the nodes u', w' are in the IS.
Continuation of the Reduction (LFMIS)

Let $V' = \{v'_1, v''_1, v'_2, v''_2, \ldots, v'_n, v''_n\}$ be numbered from 1 till $2n$.

The numbers of v'_i, v''_i are exchanged, if

- v_i is an or-node or
- v_i is an input node with the value $false$.

For all $1 \leq i \leq n$ generate an edge $\{v'_i, v''_i\}$.

Thus only one of the nodes v'_i, v''_i is in the IS.

If v is an and-node G with input u and w, then add the edges $\{v', u''\}$ and $\{v', w''\}$.

Thus v' will be in the IS iff none of the nodes u'', w'' are in the IS.

If v is an or-node G with inputs u and w, then add the edges $\{v'', u'\}$ and $\{v'', w'\}$.

Thus v'' will be in the IS iff none of the nodes u', w' are in the IS.

Thus LFMIS is simulating correctly the boolean circuit.
Reduction (LFMC)

Definition (LFMC)

- Input: non-directed graph $G = (V, E)$.
- Output: lexicographical first maximum clique of G.

Theorem:

Das LFMC is \mathcal{P}-complete.
Reduction (LFMC)

Definition (LFMC)
- Input: non-directed graph $G = (V, E)$.
- Output: lexicographical first maximum clique of G.

Theorem:
Das LFMC is P-complete.

Proof
- Reduction from LFMIS problem.
Reduction (LFMC)

Definition (LFMC)

- Input: non-directed graph \(G = (V, E) \).
- Output: lexicographical first maximum clique of \(G \).

Theorem:

Das LFMC is \(P \)-complete.

Proof

- Reduction from LFMIS problem.
- Let \(G = (V, E) \) be the input for LFMIS problem.
Reduction (LFMC)

Definition (LFMC)
- Input: non-directed graph $G = (V, E)$.
- Output: lexicographical first maximum clique of G.

Theorem:
Das LFMC is P-complete.

Proof
- Reduction from LFMIS problem.
- Let $G = (V, E)$ be the input for LFMIS problem.
- Then $G = (V, \overline{E})$ will be input for the LFMC problem.
DFS Tree

- Given $G = (V, E)$
- Procedure DFS(v)

  ```
  if $DFI(v) = 0$ then
      counter := counter + 1
      $DFI(v)$ := counter
      forall $w \in V : (v, w) \in E$ do
        DFS($w$)
  ```
Reduction (DFS)

Definition (DFS)
- Input: directed graph $G = (V, E)$ and $v \in V$.
- Output: The values $DFI(w)$ of the call $DFS(v)$ for all $w \in V$.

Theorem:
The DFS is \mathcal{P}-complete.
Reduction (DFS)

Definition (DFS)
- Input: directed graph \(G = (V, E) \) and \(v \in V \).
- Output: The values \(DFI(w) \) of the call \(DFS(v) \) for all \(w \in V \).

Theorem:
The DFS is \(P \)-complete.

Proof
- Reduction from CVP problem with \(\odot := \overline{x} \lor \overline{y} = \overline{x} \land \overline{y} \)
Reduction (DFS)

Definition (DFS)
- Input: directed graph $G = (V, E)$ and $v \in V$.
- Output: The values $DFI(w)$ of the call $DFS(v)$ for all $w \in V$.

Theorem:
The DFS is \mathcal{P}-complete.

Proof
- Reduction from CVP problem with $\odot := x \lor y = x \land \overline{y}$
- It is easy to see, that this version of CVP Problem is also \mathcal{P}-complete.
Reduction (DFS)

Definition (DFS)
- Input: directed graph $G = (V, E)$ and $v \in V$.
- Output: The values $DFI(w)$ of the call $DFS(v)$ for all $w \in V$.

Theorem:
The DFS is \mathcal{P}-complete.

Proof
- Reduction from CVP problem with $\odot := \overline{x} \lor \overline{y} = \overline{x \land y}$
- It is easy to see, that this version of CVP Problem is also \mathcal{P}-complete.
- Idea: for each value of v in the input of CVP will be in $G = (V, E)$ two nodes s and t, with v is true iff $DFI(s) < DFI(t)$.
Let v_1, v_2, \ldots, v_n be the nodes of the circuit.
Continuation of the Reduction (DFS)

- Let v_1, v_2, \cdots, v_n be the nodes of the circuit.
- For each v_i we will build a sub-graph G_i.

\[\text{Mot. Coloring Cycles P-Completeness First Reduction More Recuktions} \]

Continuation of the Reduction (DFS)

- Let v_1, v_2, \cdots, v_n be the nodes of the circuit.
- For each v_i we will build a sub-graph G_i.
- These sub-graphs G_i will be edge-disjoint, but not node-disjoint.
Continuation of the Reduction (DFS)

- Let v_1, v_2, \ldots, v_n be the nodes of the circuit.
- For each v_i we will build a sub-graph G_i.
- These sub-graphs G_i will be edge-disjoint, but not node-disjoint.
- G_i and G_j ($i < j$) may have common nodes $i \neq j$.

Continuation of the Reduction (DFS)

- Let v_1, v_2, \ldots, v_n be the nodes of the circuit.
- For each v_i we will build a sub-graph G_i.
- These sub-graphs G_i will be edge-disjoint, but not node-disjoint.
- G_i and G_j ($i < j$) may have common nodes $i \neq j$.
- v_i has v_{i_1} and v_{i_2} as input nodes.
Continuation of the Reduction (DFS)

- Let \(v_1, v_2, \cdots, v_n \) be the nodes of the circuit.
- For each \(v_i \) we will build a sub-graph \(G_i \).
- These sub-graphs \(G_i \) will be edge-disjoint, but not node-disjoint.
- \(G_i \) and \(G_j \) (\(i < j \)) may have common nodes \(i \neq j \).
- \(v_i \) has \(v_{i1} \) and \(v_{i2} \) as input nodes
- and the nodes \(v_{o1}, v_{o2}, v_{o3}, \cdots, v_{ok} \) use \(v_i \) as input.
Continuation of the Reduction (DFS)

- Let v_1, v_2, \ldots, v_n be the nodes of the circuit.
- For each v_i we will build a sub-graph G_i.
- These sub-graphs G_i will be edge-disjoint, but not node-disjoint.
- G_i and G_j ($i < j$) may have common nodes $i \neq j$.
- v_i has v_{i_1} and v_{i_2} as input nodes.
- and the nodes $v_{o_1}, v_{o_2}, v_{o_3}, \ldots, v_{o_k}$ use v_i as input.
- Then has G_i for $k = 3$ the following structure.
Continuation of the Reduction (DFS)

- Let v_1, v_2, \cdots, v_n be the nodes of the circuit.
- For each v_i we will build a sub-graph G_i.
- These sub-graphs G_i will be edge-disjoint, but not node-disjoint.
- G_i and G_j ($i < j$) may have common nodes $i \neq j$.
- v_i has v_{i_1} and v_{i_2} as input nodes
- and the nodes $v_{o_1}, v_{o_2}, v_{o_3}, \cdots, v_{o_k}$ use v_i as input.
- Then has G_i for $k = 3$ the following structure.
- We indicate the order of the edges in the adjacency list by the number of arrow heads.
Continuation of the Reduction (DFS)

- Let v_1, v_2, \cdots, v_n be the nodes of the circuit.
- For each v_i we will build a sub-graph G_i.
- These sub-graphs G_i will be edge-disjoint, but not node-disjoint.
- G_i and G_j ($i < j$) may have common nodes $i \neq j$.
- v_i has v_{i_1} and v_{i_2} as input nodes
- and the nodes $v_{o_1}, v_{o_2}, v_{o_3}, \cdots, v_{o_k}$ use v_i as input.
- Then has G_i for $k = 3$ the following structure.
- We indicate the order of the edges in the adjacency list by the number of arrow heads.
- If v_i is an input node in the circuit and the nodes $v_{o_1}, v_{o_2}, v_{o_3}, \cdots, v_{o_k}$ use v_i as input, then we will have a simplified graph G_i. This is seen as the second one.
Continuation of the Reduction (DFS)

\[\text{last}(i - 1) \]

\[\text{first}(i) \]

\[v_i \text{ ist intern} \]

\[\text{last}(i) \]

\[\text{first}(i) \rightarrow \text{last}(i) \]

\[i_1 \neq i \rightarrow i_2 \neq i \]

\[s(i) \]

\[t(i) \]

\[i \neq o_1 \]

\[i \neq o_2 \]

\[i \neq o_3 \]
Continuation of the Reduction (DFS)

\[\text{last}(i - 1) \]
\[\text{first}(i) \]
\[\text{s}(i) \]
\[v_i \text{ ist Input} \]
\[\text{last}(i) \]
\[\text{t}(i) \]
\[i \# o_1 \]
\[i \# o_2 \]
\[i \# o_3 \]
Continuation of the Reduction (DFS)

- The DFS run starts at \textit{first}(1).
Continuation of the Reduction (DFS)

- The DFS run starts at $first(1)$.
- After $last(i)$ will be the next visited node $first(i + 1)$.
Continuation of the Reduction (DFS)

- The DFS run starts at $first(1)$.
- After $last(i)$ will be the next visited node $first(i + 1)$.
- The order how $s(i)$ and $t(i)$ in G_i are visited, will be given by the value of v_i.
Continuation of the Reduction (DFS)

- The DFS run starts at $first(1)$.
- After $last(i)$ will be the next visited node $first(i + 1)$.
- The order how $s(i)$ and $t(i)$ in G_i are visited, will be given by the value of v_i.
- After $last(n)$ is visited, is each graph G_i is also visited, excluding some minor parts.
Lemma

We consider a DFS-run in G stating in node $\text{first}(1)$:

- If v_i has the value true, then $s(i)$ will be visited before $t(i)$ and the nodes $i \neq o_1, i \neq o_2, \ldots, i \neq o_k$ are visited after $\text{first}(i)$ and before $\text{last}(i)$.
Lemma

We consider a DFS-run in G stating in node $\text{first}(1)$:

- If v_i has the value $true$, then $s(i)$ will be visited before $t(i)$ and the nodes $i \# o_1, i \# o_2, \cdots, i \# o_k$ are visited after $\text{first}(i)$ and before $\text{last}(i)$.

- If v_i has the value $false$, then the node $t(i)$ will be visited before $s(i)$ and none of the nodes $i \# o_1, i \# o_2, \cdots, i \# o_k$ will be visited in the interval between $\text{first}(i)$ and $\text{last}(i)$ visits.
Continuation of the Reduction (DFS)

Lemma

We consider a DFS-run in G stating in node $\text{first}(1)$:

- If v_i has the value true, then $s(i)$ will be visited before $t(i)$ and the nodes $i \# o_1, i \# o_2, \cdots, i \# o_k$ are visited after $\text{first}(i)$ and before $\text{last}(i)$.

- If v_i has the value false, then the node $t(i)$ will be visited before $s(i)$ and none of the nodes $i \# o_1, i \# o_2, \cdots, i \# o_k$ will be visited in the interval between $\text{first}(i)$ and $\text{last}(i)$ visits.
Lemma

We consider a DFS-run in G stating in node $first(1)$:

- If v_i has the value $true$, then $s(i)$ will be visited before $t(i)$ and the nodes $i\#o_1, i\#o_2, \cdots, i\#o_k$ are visited after $first(i)$ and before $last(i)$.

- If v_i has the value $false$, then the node $t(i)$ will be visited before $s(i)$ and none of the nodes $i\#o_1, i\#o_2, \cdots, i\#o_k$ will be visited in the interval between $first(i)$ and $last(i)$ visits.

Proof:

- By induction:
Continuation of the Reduction (DFS)

Lemma

We consider a DFS-run in G stating in node $first(1)$:

- If v_i has the value $true$, then $s(i)$ will be visited before $t(i)$ and the nodes $i\#o_1, i\#o_2, \cdots, i\#o_k$ are visited after $first(i)$ and before $last(i)$.

- If v_i has the value $false$, then the node $t(i)$ will be visited before $s(i)$ and none of the nodes $i\#o_1, i\#o_2, \cdots, i\#o_k$ will be visited in the interval between $first(i)$ and $last(i)$ visits.

Proof:

- By induction:

 - Start of induction, consider all input-nodes.
Continuation of the Reduction (DFS)

Lemma

We consider a DFS-run in G stating in node $\text{first}(1)$:

- If v_i has the value $true$, then $s(i)$ will be visited before $t(i)$ and the nodes $i\#o_1, i\#o_2, \ldots, i\#o_k$ are visited after $\text{first}(i)$ and before $\text{last}(i)$.

- If v_i has the value $false$, then the node $t(i)$ will be visited before $s(i)$ and none of the nodes $i\#o_1, i\#o_2, \ldots, i\#o_k$ will be visited in the interval between $\text{first}(i)$ and $\text{last}(i)$ visits.

Proof:

- By induction:
- Start of induction, consider all input-nodes.
- Induction-step, Assume above statement holds for all graphs G_j ($1 \leq j < i$).
Continuation of the Reduction (Start of Induction)

- If v_i has the value $true$, then we visit $s(i)$ before $t(i)$ and the nodes $i\#o_1, i\#o_2, \ldots, i\#o_k$ are visited after $first(i)$ and before $last(i)$.
Continuation of the Reduction (Start of Induction)

- If v_i has the value $true$, then we visit $s(i)$ before $t(i)$ and the nodes $i\#o_1, i\#o_2, \cdots, i\#o_k$ are visited after $first(i)$ and before $last(i)$.
Continuation of the Reduction (Start of Induction)

- If v_i has the value *true*, then we visit $s(i)$ before $t(i)$ and the nodes $i\neq o_1, i\neq o_2, \cdots, i\neq o_k$ are visited after first(i) and before last(i).

![Diagram](https://example.com/diagram.png)
Continuation of the Reduction (Induction-Step)

- If v_i has the value $true$, then $s(i)$ will be visited before $t(i)$ and the nodes $i\#o_1, i\#o_2, \cdots, i\#o_k$ are visited after $first(i)$ and before $last(i)$.
Continuation of the Reduction (Induction-Step)

- If v_i has the value $true$, then $s(i)$ will be visited before $t(i)$ and the nodes $i \# o_1, i \# o_2, \ldots, i \# o_k$ are visited after $first(i)$ and before $last(i)$.
- Then the nodes v_{i_1} and v_{i_2} have the value $false$.
Continuation of the Reduction (Induction-Step)

- If \(v_i \) has the value \(true \), then \(s(i) \) will be visited before \(t(i) \) and the nodes \(i\#o_1, i\#o_2, \ldots, i\#o_k \) are visited after \(first(i) \) and before \(last(i) \).
- Then the nodes \(v_{i_1} \) and \(v_{i_2} \) have the value \(false \).
Continuation of the Reduction (Induction-Step)

- If \(v_i \) has the value \(true \), then \(s(i) \) will be visited before \(t(i) \) and the nodes \(i\#o_1, i\#o_2, \ldots, i\#o_k \) are visited after \(first(i) \) and before \(last(i) \).
- Then the nodes \(v_{i_1} \) and \(v_{i_2} \) have the value \(false \).
Continuation of the Reduction (Induction-Step)

- If v_i has the value *true*, then $s(i)$ will be visited before $t(i)$ and the nodes $i \# o_1, i \# o_2, \ldots, i \# o_k$ are visited after $first(i)$ and before $last(i)$.
- Then the nodes v_{i_1} and v_{i_2} have the value *false*.
Continuation of the Reduction (Induction-Step)

- If \(v_i \) has the value \(\text{false} \), then the node \(t(i) \) will be visited before \(s(i) \) and none of the nodes \(i \# o_1, i \# o_2, \cdots, i \# o_k \) will be visited in the interval between \(\text{first}(i) \) and \(\text{last}(i) \) visits.
Continuation of the Reduction (Induction-Step)

- If v_i has the value $false$, then the node $t(i)$ will be visited before $s(i)$ and none of the nodes $i\#o_1, i\#o_2, \ldots, i\#o_k$ will be visited in the interval between $first(i)$ and $last(i)$ visits.

- Then one of the nodes v_{i_1} or v_{i_2} has the value $true$.
Continuation of the Reduction (Induction-Step)

- If \(v_i \) has the value \textit{false}, then the node \(t(i) \) will be visited before \(s(i) \) and none of the nodes \(i\#o_1, i\#o_2, \cdots, i\#o_k \) will be visited in the interval between \textit{first}(i) and \textit{last}(i) visits.

- Then one of the nodes \(v_{i_1} \) or \(v_{i_2} \) has the value \textit{true}.

Continuation of the Reduction (Induction-Step)

- If \(v_i \) has the value \(\text{false} \), then the node \(t(i) \) will be visited before \(s(i) \) and none of the nodes \(i \neq o_1, i \neq o_2, \cdots, i \neq o_k \) will be visited in the interval between \(\text{first}(i) \) and \(\text{last}(i) \) visits.
- Then one of the nodes \(v_{i_1} \) or \(v_{i_2} \) has the value \(\text{true} \).
Continuation of the Reduction (Induction-Step)

- If \(v_i \) has the value \(\text{false} \), then the node \(t(i) \) will be visited before \(s(i) \) and none of the nodes \(i \# o_1, i \# o_2, \ldots, i \# o_k \) will be visited in the interval between \(\text{first}(i) \) and \(\text{last}(i) \) visits.
- Then one of the nodes \(v_{i_1} \) or \(v_{i_2} \) has the value \(\text{true} \).
Continuation of the Reduction (Induction-Step)

- If v_i has the value \textit{false}, then the node $t(i)$ will be visited before $s(i)$
 and none of the nodes $i_{\neq o_1}, i_{\neq o_2}, \ldots, i_{\neq o_k}$ will be
 visited in the interval between $\text{first}(i)$ and $\text{last}(i)$ visits.
- Then one of the nodes v_{i_1} or v_{i_2} has the value \textit{true}.
The construction is a NC-Reduction.
Continuation of the Reduction (DFS)

- The construction is a NC-Reduction.
- The construction is the direct simulation of the operations of the circuit.
Continuation of the Reduction (DFS)

- The construction is a NC-Reduction.
- The construction is the direct simulation of the operations of the circuit.
- The construction may be also given for non-directed graphs.
Reduction (MAXFLOW)

Definition (MAXFLOW)

- Input: directed graph $G = (V, E)$, $s, t \in V$ and capacity function $c : E \mapsto \mathbb{N}$.
- Output: Maximal flow from s to t, i.e. function $f : E \mapsto \mathbb{N}$.
 - with: $\forall e \in E : f(e) \leq c(e)$
 - and: $\forall v \in V \setminus \{s, t\} : \sum_{e = (a, v) \in E} f(e) = \sum_{e = (v, a) \in E} f(e)$

Theorem:
The MAXFLOW problem is \mathcal{P}-complete.
Reduction (MAXFLOW)

Definition (MAXFLOW)

- Input: directed graph $G = (V, E)$, $s, t \in V$ and capacity function $c : E \mapsto \mathbb{N}$.
- Output: Maximal flow from s to t, i.e. function $f : E \mapsto \mathbb{N}$.
 - with: $\forall e \in E : f(e) \leq c(e)$
 - and: $\forall v \in V \setminus \{s, t\} : \sum_{e=(a,v) \in E} f(e) = \sum_{e=(v,a) \in E} f(e)$

Theorem:

The MAXFLOW problem is \mathcal{P}-complete.

Proof:

- Reduction from the problem CVP.
Definition (MAXFLOW)

- **Input:** directed graph $G = (V, E)$, $s, t \in V$ and capacity function $c : E \mapsto \mathbb{N}$.
- **Output:** Maximal flow from s to t, i.e. function $f : E \mapsto \mathbb{N}$.

 with: $\forall e \in E : f(e) \leq c(e)$

 and: $\forall v \in V \setminus \{s, t\} : \sum_{e=(a,v) \in E} f(e) = \sum_{e=(v,a) \in E} f(e)$

Theorem:

The MAXFLOW problem is \mathcal{P}-complete.

Proof:

- Reduction from the problem CVP.
- Show, even to compute the parity of a flow (PMAXFLOW), is \mathcal{P}-complete.
Continuation of the Reduction (MAXFLOW)

- W.l.o.g. out-degree of a input node 1.
Continuation of the Reduction (MAXFLOW)

- W.l.o.g. out-degree of a input node 1.
- W.l.o.g. out-degree of a node is at most 2.
Continuation of the Reduction (MAXFLOW)

- W.l.o.g. out-degree of a input node 1.
- W.l.o.g. out-degree of a node is at most 2.
- W.l.o.g. circuit is revers topological sorted, i.e. v_0 is the output node.
Continuation of the Reduction (MAXFLOW)

- W.l.o.g. out-degree of a input node 1.
- W.l.o.g. out-degree of a node is at most 2.
- W.l.o.g. circuit is revers topological sorted, i.e. v_0 is the output node.
- W.l.o.g. v_0 is an or.
Continuation of the Reduction (MAXFLOW)

- W.l.o.g. out-degree of a input node 1.
- W.l.o.g. out-degree of a node is at most 2.
- W.l.o.g. circuit is reves topological sorted, i.e. v_0 is the output node.
- W.l.o.g. v_0 is an or.
- Given is the circuit graph $G = (V, E)$.

$\text{Input for PMAXFLOW:}$ $G' = (V \cup \{s, t\}, E' \subset E)$.
$E \subset E' \subset E \cup \{(s, v), (v, t) \mid v \in V\}$
Continuation of the Reduction (MAXFLOW)

- W.l.o.g. out-degree of a input node 1.
- W.l.o.g. out-degree of a node is at most 2.
- W.l.o.g. circuit is revers topological sorted, i.e. v_0 is the output node.
- W.l.o.g. v_0 is an or.
- Given is the circuit graph $G = (V, E)$.
- Input for PMAXFLOW: $G' = (V \cup \{s, t\}, E')$.
Continuation of the Reduction (MAXFLOW)

- W.l.o.g. out-degree of a input node 1.
- W.l.o.g. out-degree of a node is at most 2.
- W.l.o.g. circuit is revers topological sorted, i.e. v_0 is the output node.
- W.l.o.g. v_0 is an or.
- Given is the circuit graph $G = (V, E)$.
- Input for PMAXFLOW: $G' = (V \cup \{s, t\}, E')$.
- $E \subset E'$.
Continuation of the Reduction (MAXFLOW)

- W.l.o.g. out-degree of a input node 1.
- W.l.o.g. out-degree of a node is at most 2.
- W.l.o.g. circuit is revers topological sorted, i.e. v_0 is the output node.
- W.l.o.g. v_0 is an or.
- Given is the circuit graph $G = (V, E)$.
- Input for PMAXFLOW: $G' = (V \cup \{s, t\}, E')$.
- $E \subset E'$.
- $E' \subset E \cup \{(s, v), (v, t) \mid v \in V\}$
Continuation of the Reduction (MAXFLOW)

- \(\forall(i, j) \in E : c((i, j)) = 2^i \).
Continuation of the Reduction (MAXFLOW)

- \(\forall (i, j) \in E : c((i, j)) = 2^i. \)

- If the value of \(v_i \) is true then let: \(f((i, j)) = 2^i \) (\(\forall (i, j) \in E \)).
Continuation of the Reduction (MAXFLOW)

- $\forall (i, j) \in E : c((i, j)) = 2^i$.
- If the value of v_i is true then let: $f((i, j)) = 2^i \ (\forall (i, j) \in E)$.
- If the value of v_i is false then let: $f((i, j)) = 0 \ (\forall (i, j) \in E)$.
Continuation of the Reduction (MAXFLOW)

- \(\forall (i, j) \in E : c((i, j)) = 2^i \).
- If the value of \(v_i \) is true then let: \(f((i, j)) = 2^i \) (\(\forall (i, j) \in E \)).
- If the value of \(v_i \) is false then let: \(f((i, j)) = 0 \) (\(\forall (i, j) \in E \)).
- Let \(d(0) = 1 \) and otherwise let \(d(i) \) be the out-degree of \(v_i \).
Continuation of the Reduction (MAXFLOW)

- \(\forall (i, j) \in E : c((i, j)) = 2^i. \)
- If the value of \(v_i \) is \textit{true} then let: \(f((i, j)) = 2^i \) (\(\forall (i, j) \in E \)).
- If the value of \(v_i \) is \textit{false} then let: \(f((i, j)) = 0 \) (\(\forall (i, j) \in E \)).
- Let \(d(0) = 1 \) and otherwise let \(d(i) \) be the out-degree of \(v_i \).
- Let \((k, i), (j, i) \in E\), and let \(\text{surplus}(i) := 2^k + 2^j - d(i)2^i \).
Continuation of the Reduction (MAXFLOW)

- \(\forall (i, j) \in E : c((i, j)) = 2^i. \)
- If the value of \(v_i \) is true then let: \(f((i, j)) = 2^i \) \((\forall (i, j) \in E). \)
- If the value of \(v_i \) is false then let: \(f((i, j)) = 0 \) \((\forall (i, j) \in E). \)
- Let \(d(0) = 1 \) and otherwise let \(d(i) \) be the out-degree of \(v_i. \)
- Let \((k, i), (j, i) \in E, \) and let \(\text{surplus}(i) := 2^k + 2^j - d(i)2^i. \)
- \(\forall i \in V : c(s, i) = 2^i \) if the value of \(v_i \) is true.
Continuation of the Reduction (MAXFLOW)

- $\forall (i, j) \in E : c((i, j)) = 2^i$.
- If the value of v_i is true then let: $f((i, j)) = 2^i$ ($\forall (i, j) \in E$).
- If the value of v_i is false then let: $f((i, j)) = 0$ ($\forall (i, j) \in E$).
- Let $d(0) = 1$ and otherwise let $d(i)$ be the out-degree of v_i.
- Let $(k, i), (j, i) \in E$, and let $\text{surplus}(i) := 2^k + 2^j - d(i)2^i$.
- $\forall i \in V : c(s, i) = 2^i$ if the value of v_i is true.
- $\forall i \in V : c(s, i) = 0$ if the value of v_i is false.
Continuation of the Reduction (MAXFLOW)

- \(\forall (i, j) \in E : c((i, j)) = 2^i. \)
- If the value of \(v_i \) is true then let: \(f((i, j)) = 2^i \) (\(\forall (i, j) \in E \)).
- If the value of \(v_i \) is false then let: \(f((i, j)) = 0 \) (\(\forall (i, j) \in E \)).
- Let \(d(0) = 1 \) and otherwise let \(d(i) \) be the out-degree of \(v_i \).
- Let \((k, i), (j, i) \in E \), and let \(\text{surplus}(i) := 2^k + 2^j - d(i)2^i. \)
- \(\forall i \in V : c(s, i) = 2^i \) if the value of \(v_i \) is true.
- \(\forall i \in V : c(s, i) = 0 \) if the value of \(v_i \) is false.
- \(\forall i \in V : c(i, t) = \text{surplus}(i) \) if \(v_i \) is an and-node.
Continuation of the Reduction (MAXFLOW)

- $\forall (i, j) \in E : c((i, j)) = 2^i$.
- If the value of v_i is true then let: $f((i, j)) = 2^i \ (\forall (i, j) \in E)$.
- If the value of v_i is false then let: $f((i, j)) = 0 \ (\forall (i, j) \in E)$.
- Let $d(0) = 1$ and otherwise let $d(i)$ be the out-degree of v_i.
- Let $(k, i), (j, i) \in E$, and let $surplus(i) := 2^k + 2^j - d(i)2^i$.
- $\forall i \in V : c(s, i) = 2^i$ if the value of v_i is true.
- $\forall i \in V : c(s, i) = 0$ if the value of v_i is false.
- $\forall i \in V : c(i, t) = surplus(i)$ if v_i is an and-node.
- $\forall i \in V : c(i, s) = surplus(i)$ if v_i is an or-node.
Continuation of the Reduction (MAXFLOW)

- \(\forall (i, j) \in E : c((i, j)) = 2^i. \)
- If the value of \(v_i \) is \textit{true} then let: \(f((i, j)) = 2^i \) (\(\forall (i, j) \in E \)).
- If the value of \(v_i \) is \textit{false} then let: \(f((i, j)) = 0 \) (\(\forall (i, j) \in E \)).
- Let \(d(0) = 1 \) and otherwise let \(d(i) \) be the out-degree of \(v_i \).
- Let \((k, i), (j, i) \in E \), and let \(\text{surplus}(i) := 2^k + 2^j - d(i)2^i. \)
- \(\forall i \in V : c(s, i) = 2^i \) if the value of \(v_i \) is \textit{true}.
- \(\forall i \in V : c(s, i) = 0 \) if the value of \(v_i \) is \textit{false}.
- \(\forall i \in V : c(i, t) = \text{surplus}(i) \) if \(v_i \) is an and-node.
- \(\forall i \in V : c(i, s) = \text{surplus}(i) \) if \(v_i \) is an or-node.
- \(c(0, t) = 1. \)
Continuation of the Reduction (MAXFLOW)

\[\forall i \in V : f(s, i) = c(s, i). \]
Continuation of the Reduction (MAXFLOW)

- $\forall i \in V : f(s, i) = c(s, i)$.
- $\forall i \in V : f(i, j) = c(i, j)$ if v_i is an input-node.
Continuation of the Reduction (MAXFLOW)

- $\forall i \in V : f(s, i) = c(s, i)$.
- $\forall i \in V : f(i, j) = c(i, j)$ if v_i is an input-node.
- $\forall (i, j) \in E : f(i, j) = c(i, j) = 2^i$ if the value of v_i is true.
Continuation of the Reduction (MAXFLOW)

- $\forall i \in V : f(s, i) = c(s, i)$.
- $\forall i \in V : f(i, j) = c(i, j)$ if v_i is an input-node.
- $\forall (i, j) \in E : f(i, j) = c(i, j) = 2^i$ if the value of v_i is $true$.
- $\forall (i, j) \in E : f(i, j) = 0$ if the value of v_i is $false$.
Continuation of the Reduction (MAXFLOW)

- $\forall i \in V : f(s, i) = c(s, i)$.
- $\forall i \in V : f(i, j) = c(i, j)$ if v_i is an input-node.
- $\forall (i, j) \in E : f(i, j) = c(i, j) = 2^i$ if the value of v_i is true.
- $\forall (i, j) \in E : f(i, j) = 0$ if the value of v_i is false.
- $f(0, t) = 1$ if v_0 has the value true.
Continuation of the Reduction (MAXFLOW)

- $\forall i \in V : f(s, i) = c(s, i)$.
- $\forall i \in V : f(i, j) = c(i, j)$ if v_i is an input-node.
- $\forall (i, j) \in E : f(i, j) = c(i, j) = 2^i$ if the value of v_i is true.
- $\forall (i, j) \in E : f(i, j) = 0$ if the value of v_i is false.
- $f(0, t) = 1$ if v_0 has the value true.
- Let overflow(i) be the difference between the current input-flow and the output-flow.
Continuation of the Reduction (MAXFLOW)

- $\forall i \in V : f(s, i) = c(s, i)$.
- $\forall i \in V : f(i, j) = c(i, j)$ if v_i is an input-node.
- $\forall (i, j) \in E : f(i, j) = c(i, j) = 2^i$ if the value of v_i is true.
- $\forall (i, j) \in E : f(i, j) = 0$ if the value of v_i is false.
- $f(0, t) = 1$ if v_0 has the value true.
- Let $overflow(i)$ be the difference between the current input-flow and the output-flow.
- $f((i, t)) = overflow(i)$ if v_i is an and-node.
Continuation of the Reduction (MAXFLOW)

- $\forall i \in V : f(s, i) = c(s, i)$.
- $\forall i \in V : f(i, j) = c(i, j)$ if v_i is an input-node.
- $\forall (i, j) \in E : f(i, j) = c(i, j) = 2^i$ if the value of v_i is true.
- $\forall (i, j) \in E : f(i, j) = 0$ if the value of v_i is false.
- $f(0, t) = 1$ if v_0 has the value true.
- Let overflow(i) be the difference between the current input-flow and the output-flow.
- $f((i, t)) = \text{overflow}(i)$ if v_i is an and-node.
- $f((i, s)) = \text{overflow}(i)$ if v_i is an or-node.
Continuation of the Reduction (MAXFLOW)

- $\forall i \in V : f(s, i) = c(s, i)$.
- $\forall i \in V : f(i, j) = c(i, j)$ if v_i is an input-node.
- $\forall (i, j) \in E : f(i, j) = c(i, j) = 2^i$ if the value of v_i is true.
- $\forall (i, j) \in E : f(i, j) = 0$ if the value of v_i is false.
- $f(0, t) = 1$ if v_0 has the value true.
- Let overflow(i) be the difference between the current input-flow and the output-flow.
 - $f((i, t)) = overflow(i)$ if v_i is an and-node.
 - $f((i, s)) = overflow(i)$ if v_i is an or-node.
- Note: the defined function f is a flow.
Continuation of the Reduction (MAXFLOW)

Lemma

The defined flow is optimal.

- Use enlarging paths from s to t:
Continuation of the Reduction (MAXFLOW)

Lemma

The defined flow is optimal.

- Use enlarging paths from s to t:
 - An edge $e = (i, j)$ in the path is called forward-edge if $f(e) < c(e)$.
Continuation of the Reduction (MAXFLOW)

Lemma

The defined flow is optimal.

- Use enlarging paths from \(s \) to \(t \):
 - An edge \(e = (i, j) \) in the path is called forward-edge if \(f(e) < c(e) \).
 - An edge \(e = (j, i) \) in the path is called backward-edge if \(f(e) > 0 \).
Continuation of the Reduction (MAXFLOW)

Lemma

The defined flow is optimal.

- Use enlarging pathes from s to t:
 - An edge $e = (i, j)$ in the path is called forward-edge if $f(e) < c(e)$.
 - An edge $e = (j, i)$ in the path is called backward-edge if $f(e) > 0$.

- Known: Flow is maximal \iff there is no enlarging path.
Continuation of the Reduction (MAXFLOW)

Lemma

The defined flow is optimal.

- Use enlarging paths from s to t:
 - An edge $e = (i, j)$ in the path is called forward-edge if $f(e) < c(e)$.
 - An edge $e = (j, i)$ in the path is called backward-edge if $f(e) > 0$.

- Known: Flow is maximal \iff there is no enlarging path.

- Assume: there is an enlarging path.
Continuation of the Reduction (MAXFLOW)

Lemma

The defined flow is optimal.

- Use enlarging paths from s to t:
 - An edge $e = (i, j)$ in the path is called forward-edge if $f(e) < c(e)$.
 - An edge $e = (j, i)$ in the path is called backward-edge if $f(e) > 0$.
- Known: Flow is maximal \iff there is no enlarging path.
- Assume: there is an enlarging path.
 - A path starts at s with a backward-edge.
Continuation of the Reduction (MAXFLOW)

Lemma

The defined flow is optimal.

- Use enlarging pathes from s to t:
 - An edge $e = (i, j)$ in the path is called forward-edge if $f(e) < c(e)$.
 - An edge $e = (j, i)$ in the path is called backward-edge if $f(e) > 0$.

- Known: Flow is maximal \Leftrightarrow there is no enlarging path.

- Assume: there is an enlarging path.
 - A path starts at s with a backward-edge.
 - A path ends at t with a forward-edge.
Continuation of the Reduction (MAXFLOW)

- Thus we have three consecutive nodes \(j, i, k \) with:

\(\text{Continuation of the Reduction (MAXFLOW)} \)
Continuation of the Reduction (MAXFLOW)

Thus we have three consecutive nodes j, i, k with:

- $j \neq t$.
Continuation of the Reduction (MAXFLOW)

- Thus we have three consecutive nodes j, i, k with:
 - $j \neq t$.
 - $k \neq s$.
Continuation of the Reduction (MAXFLOW)

- Thus we have three consecutive nodes j, i, k with:
 - $j \neq t$.
 - $k \neq s$.
 - (j, i) is a backward-edge.
Continuation of the Reduction (MAXFLOW)

Thus we have three consecutive nodes j, i, k with:

- $j \neq t$.
- $k \neq s$.
- (j, i) is a backward-edge.
- (i, k) is a forward-edge.
Continuation of the Reduction (MAXFLOW)

Thus we have three consecutive nodes j, i, k with:

- $j \neq t$.
- $k \neq s$.
- (j, i) is a backward-edge.
- (i, k) is a forward-edge.
- $(i, j), (i, k)$ are edges in E'.
Continuation of the Reduction (MAXFLOW)

- Thus we have three consecutive nodes j, i, k with:
 - $j \neq t$.
 - $k \neq s$.
 - (j, i) is a backward-edge.
 - (i, k) is a forward-edge.
 - $(i, j), (i, k)$ are edges in E'.
 - $f((i, j)) > 0$ and $f((i, k)) < c((i, k))$.
Continuation of the Reduction (MAXFLOW)

Thus we have three consecutive nodes j, i, k with:

- $j \neq t$.
- $k \neq s$.
- (j, i) is a backward-edge.
- (i, k) is a forward-edge.
- $(i, j), (i, k)$ are edges in E'.
- $f((i, j)) > 0$ and $f((i, k)) < c((i, k))$.

v_i may not be a input-node.
Continuation of the Reduction (MAXFLOW)

Thus we have three consecutive nodes j, i, k with:

- $j \neq t$.
- $k \neq s$.
- (j, i) is a backward-edge.
- (i, k) is a forward-edge.
- $(i, j), (i, k)$ are edges in E'.
- $f((i, j)) > 0$ and $f((i, k)) < c((i, k))$.

v_i may not be an input-node.

v_i may not be an and-node, because from $j \neq t$ and $f((i, j)) > 0$ we get that all outgoing edges are full.
Continuation of the Reduction (MAXFLOW)

- Thus we have three consecutive nodes j, i, k with:
 - $j \neq t$.
 - $k \neq s$.
 - (j, i) is a backward-edge.
 - (i, k) is a forward-edge.
 - $(i, j), (i, k)$ are edges in E'.
 - $f((i, j)) > 0$ and $f((i, k)) < c((i, k))$.

- v_i may not be a input-node.

- v_i may not be an and-node, because from $j \neq t$ and $f((i, j)) > 0$ we get that all outgoing edges are full.

- v_i may not be an or-node, because from $k \neq s$ and $f((i, k)) < c((i, k))$ be get that all outgoing edges are without flow.
Continuation of the Reduction (MAXFLOW)

Thus we have three consecutive nodes j, i, k with:

- $j \neq t$.
- $k \neq s$.
- (j, i) is a backward-edge.
- (i, k) is a forward-edge.
- $(i, j), (i, k)$ are edges in E'.
- $f((i, j)) > 0$ and $f((i, k)) < c((i, k))$.

- v_i may not be a input-node.
- v_i may not be an and-node, because from $j \neq t$ and $f((i, j)) > 0$ we get that all outgoing edges are full.
- v_i may not be an or-node, because from $k \neq s$ and $f((i, k)) < c((i, k))$ be get that all outgoing edges are without flow.
Thus we have three consecutive nodes j, i, k with:

- $j \neq t$.
- $k \neq s$.
- (j, i) is a backward-edge.
- (i, k) is a forward-edge.
- $(i, j), (i, k)$ are edges in E'.
- $f((i, j)) > 0$ and $f((i, k)) < c((i, k))$.

- v_i may not be a input-node.

- v_i may not be an and-node, because from $j \neq t$ and $f((i, j)) > 0$ we get that all outgoing edges are full.

- v_i may not be an or-node, because from $k \neq s$ and $f((i, k)) < c((i, k))$ be get that all outgoing edges are without flow.