Kapitel 1
First Algorithms for PRAM

Walter Unger

Lehrstuhl für Informatik 1

14:33 Uhr, den 6. Dezember 2016
Motivation and History
- Systolic Arrays and Vector Computer
- Transputer
- Parallele Rechner
- PRAM

PRAM Introduction
- Definition
- Or
- Sum
- Matrices
- Prefixsum
- Maximum
- Identify Root

Efficiency
- Situation

Selection
- Idea for the k-th Element
- Examples
- Algorithm and Running Time

Merging
- Sequential Merging
- Parallel Merging
Motivation

1. There are limits to the computing power of a single computer
2. Computers become cheaper
3. Specialized computers are expensive
4. There are tasks with large data
5. Many problems are very complex
 1. Weather and other simulations
 2. Crash tests
 3. Military applications
 4. Large data: (SETI, ...)
 5. More similar problems
6. Thus there is the need for computers with more than one CPU
7. Or a quantum computer?
There is a sequence of processors \((P_i)\) \(1 \leq i \leq n\).

- Processor \(P_1\) receives the input.
- Output of \(P_1\) will be passed as the input of \(P_2\).
- Output of \(P_i\) will be passed as the input of \(P_{i+1}\) \(1 \leq i < n\).
- Processor \(P_n\) delivers the final output.

- Processors may be different.
- Processors may run different programs.
- Intermediate outputs may be buffered.
- Pipelining is one important type of parallel system (in practice).
Systolic Arrays

- Idea: use more than one data stream.
- Data streams may intersect each other.
- Each processor is the same.
- There is a global synchronisation.
- Processors may run simple programs.
- Advantage: really fast (for special applications).
Systolic Array with three data streams
Vector Computer

- Vector of processors.
- Each processor has different data.
- But each processor executes the same program.

Addition of two vectors:

1. Read vector A
2. Read vector B
3. Add (each processor)
4. Output the summ

- Single Instruction Multiple Data SIMD-Computer.
- Aim: Multiple Instruction Multiple Data MIMD-Computer.
- I.e. Fast processors with fast connections.
Example: Transputer

- Advantage: very flexible, any fixed network of degree 4 possible.
- Disadvantage: long wires may be necessary, only a fixed network possible.
Beispiel: Transputer II
Parallele Computer I

- Advantage: “normal” CPUs.
- Advantage: fast links possible.
- Advantage: no special hardware.
- Advantage: variable network, may change during execution.
- Advantage: very large networks may be possible.
- Disadvantage: still a limited degree for the network.
- Disadvantage: large network are complicated.
- Problem: cooling large systems.
- Problem: fault tolerance.
- Problem: construct such a system.
- Problem: generate good data throughput with constant degree network.
- Problem: do the program structures fit the structure of the network.
Parallel Computer II (Goodput)

- Look for good networks.
- Trees, Grids, Pyramids, ...
- $HQ(n)$, $CCC(n)$, $BF(n)$, $SE(n)$, $DB(n)$, ...
- Pancake Network and Burned Pancake Network.
- Problem: Physical placement of the processors.
- Problem: Length of wires.
- Problem: Has the network a nice structure.
- If the network becomes too large, we may use efficiency.
- Solution: choose a mixed network structure.
Parallel Computer III (Network)
Parallel Computer IV (Network)
Parallel Computer V (Network)

1. CPU and memory are one logical unit:

```
CPU RAM CPU RAM CPU RAM CPU RAM CPU RAM
```

Network

2. CPUs and memory are connected by a network:

```
CPU CPU CPU CPU CPU
```

```
RAM RAM RAM RAM RAM
```

Network

The difference is more on the practical side.
Ignore/unify the costs for each computation step.

Ignore/unify the costs for each communication step.
Definition RAM

- RAM: Random Access Machine
- CPU may access any memory cell
- Memory is unlimited
- Complexity measurements
 - uniform: each operation cost one unit
 - logarithmic: cost are measured according to the size of the numbers
Idea of PRAM

- Many processes
- Common program
- Program may select single processors
- Common memory
Definition PRAM

- Consists of processors P_i with $1 \leq i \leq p$ (prozessor has id i).
- Consists of registers R_j with $1 \leq j \leq m$.
- Each processor has some local registers.
- Each processor P_i may access each register R_j.
- Each processor executes the same programm.
- The programm is synchronized, thus each processor executes the same instructions.
- A selection is possible by using the processor id.
- The input of length n is written to registers R_j with $1 \leq j \leq n$.
- The output is placed in some known registers.
- The registers contain words (numbers) in the uniform cost measurement.
- The registers contain bits in the logarithmic cost measurement.
Definition PRAM

The following instructions are possible:

1. processor P_i reads register R_j: $R_j \rightarrow P_i(x)$.
2. processor P_i writes value of x into register R_j: $P_i(x) \rightarrow R_j$.
3. processor may do some local computation using local registers: $x := y \times 5$.

For the access to the register we have the following variations:

- EREW Exclusive Read Exclusive Write
- CREW Concurrent Read Exclusive Write
- CRCW Concurrent Read Concurrent Write
- ERCW Exclusive Read Concurrent Write

Write conflicts may be solved using the following rules:

- Arbitrary: any processor gets access to the register.
- Common: all processors writing to the same register have to write the same value.
- Priority: the processor with the smallest id gets access to the register.
Computation of an “Or” (Idea)

\[
x = 0 \quad x = 1 \quad x = 0 \quad x = 0 \quad x = 1 \quad x = 0 \quad x = 0 \quad x = 1
\]

\[
0 \vee 1 \vee 0 \vee 0 \vee 1 \vee 0 \vee 0 \vee 1 \rightarrow 1
\]
Computing an “Or”

- **Task**: Compute $x = \bigvee_{i=1}^{n} x_i$.
- **Input**: x_i is in register R_i ($1 \leq i \leq n$).
- **Output**: computed in R_{n+1}.
- **Model**: CRCW Arbitrary, Common oder Priority.
- **Program**: Or

  ```plaintext
  for all $P_i$ where $1 \leq i \leq n$ do in parallel
  $R_i \rightarrow P_i(x)$
  if $x = true$ then $P_i(x) \rightarrow R_{n+1}$
  
  Running time: $O(1)$ (exact 2 steps).
  ```
- **Number of processors**: n.
- **Memory**: $n + 1$.
- **Possible models**: ERCW (Arbitrary, Common oder Priority).
Computing an “Or” (EREW)

- Problem:
 no writing of two processors
to the same register
at the same time.

- Idea: combine pairwise the results

- With this idea, computing the sum is also possible.

- Thus computing the “Or” is just a special case of computing a sum.
Computing the Sum (Idea)
Computing the Sum (Idea)

103 45 30 15

P₁ P₂ P₃ P₄

12 6 34 5 7 23 4 11
Computing the sum (EREW)

Assume w.l.o.g. $n = 2^k$ for $k \in \mathbb{N}$.

- Task: compute $x = \sum_{i=1}^{n} x_i$ with $n = 2^k$.
- Input: x_i is in register R_i ($1 \leq i \leq n$).
- Output: should be in R_1 (input may be overwritten).
- Model: EREW.
- Program: Summe

 for all P_i where $1 \leq i \leq n/2$ do in parallel

 $R_{2 \cdot i - 1} \rightarrow P_i(x)$

 for $j = 1$ to k do

 if $(i - 1) \equiv 0 \pmod{2^{j-1}}$ then

 $R_{2 \cdot i - 1 + 2^{j-1}} \rightarrow P_i(y)$

 $x := x + y$

 $P_i(x) \rightarrow R_{2 \cdot i - 1}$

 Running time: $O(k) = O(\log n)$ (precise $3 \cdot k + 1$ steps).
- Number of processors: $n/2$.
- Size of memory: n.
Addition of Matrices

Assume w.l.o.g $n = 2^k$ for $k \in \mathbb{N}$.

- Let A, B two $(n \times n)$-Matrices.
- Sum $A + B$ is computable with n^2 processors in Zeit $O(1)$ on a EREW PRAM.
- R_1 till R_{n^2} contain A (one row after the other).
- R_{1+n^2} bis $R_{2\cdot n^2}$ contains B (one row after the other).
- Result in $R_{1+2\cdot n^2}$ bis $R_{3\cdot n^2}$.
- Program: MatSumme

 for all P_i where $1 \leq i \leq n^2$ do in parallel

 $R_i \rightarrow P_i(x)$
 $R_{i+n^2} \rightarrow P_i(y)$
 $x := x + y$
 $P_i(x) \rightarrow R_{i+2\cdot n^2}$

- Running time: $O(1)$.
- Number of processors: $O(n^2)$.
- Size of memory: $O(n^2)$.
Multiplication of Matrices

- Let A, B be two $(n \times n)$-Matrices.
- R_1 till R_{n^2} contain A (one row after the other).
- R_{1+n^2} bis $R_{2\cdot n^2}$ contains B (one row after the other).
- Result in $R_{1+2\cdot n^2}$ bis $R_{3\cdot n^2}$
- Register $A_{i,j} = R_{(i-1)\cdot n+j} \ (1 \leq i, j \leq n)$.
- Register $B_{i,j} = R_{(i-1)\cdot n+j+n^2} \ (1 \leq i, j \leq n)$.
- Register $C_{i,j} = R_{(i-1)\cdot n+j+2\cdot n^2} \ (1 \leq i, j \leq n)$.
- Processor $P_{i,j} = P_{(i-1)\cdot n+j} \ (1 \leq i, j \leq n)$.

Use the above notation to simplify the algorithm.
Each processor has to do some hidden local computation to implement the above expressions.

Assume w.l.o.g $n = 2^k$ for $k \in \mathbb{N}$.
Multiplikation of Matrices

- Let A, B be two $(n \times n)$-Matrices
- Product $A \cdot B$ is computable with n^2 processors in time $O(n)$ on a CREW PRAM.

 Programm: MatrProd 1
 for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

 $h = 0$
 for $l = 1$ to n do
 $A_{i,l} \rightarrow P_{i,j}(a)$
 $B_{l,j} \rightarrow P_{i,j}(b)$
 $h = h + a \cdot b$
 $P_{i,j}(h) \rightarrow C_{i,j}$

 - Running time: $O(n)$.
 - Number of processors: $O(n^2)$.
 - Size of memory: $O(n^2)$.

\[
\begin{align*}
A_{i,j} &= R(i-1) \cdot n + j \\
B_{i,j} &= R(i-1) \cdot n + j + n^2 \\
C_{i,j} &= R(i-1) \cdot n + j + 2 \cdot n^2 \\
P_{i,j} &= P(i-1) \cdot n + j \\
\end{align*}
\]
Let A, B be two $(n \times n)$-Matrices

Product $A \cdot B$ is computable with n^2 processors in time $O(n)$ on a EREW PRAM.

Programm: MatrProd 2

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

$h = 0$

for $l = 1$ to n do

$A_{i,l} \rightarrow P_{i,j}(a)$

$B_{l,j} \rightarrow P_{i,j}(b)$

$h = h + a \cdot b$

$P_{i,j}(h) \rightarrow C_{i,j}$

Running time: $O(n)$.

Number of processors: $O(n^2)$.

Size of memory: $O(n^2)$.
Compute the Prefixsum

Problem:

- Task: Compute $s_i = \sum_{j=1}^{i} x_j$ for $1 \leq i \leq n$.
- Input: x_j is in register R_j ($1 \leq j \leq n$).
- Output: s_i should be in register R_i for $1 \leq i \leq n$.
Computing Prefixsum (Idea)
Computing the Prefixsum

- Task: Compute \(s_i = \sum_{j=1}^{i} x_j \) for \(1 \leq i \leq n \).
- Input: \(x_j \) is in register \(R_j \) (\(1 \leq j \leq n \)).
- Output: \(s_i \) should be in register \(R_i \) for \(1 \leq i \leq n \).
- Model: EREW
- Programm: Summe

 for all \(P_i \) where \(1 \leq i \leq n \) do in parallel

 \(R_i \rightarrow P_i(x) \)

 for \(j = 1 \) to \(k \) do

 if \(i > 2^{j-1} \) then

 \(R_{i-2^{j-1}} \rightarrow P_i(y) \)

 \(x := x + y \)

 \(P_i(x) \rightarrow R_i \)

- Running time: \(O(k) = O(\log n) \) (precisely \(3 \cdot k + 1 \) steps).
- Number of processors: \(n \).
- Size of memory: \(n \).
Compute the Maximum

- Task: Compute $m = \max_{j=1}^{i=1} x_j$ with $n = 2^k$.
- Input: x_j is in register R_j ($1 \leq j \leq n$).
- Output: m should be in register R_{n+1}.
- Possible with n processors in time $O(\log n)$ using a EREW PRAM.
- Question: could it be done faster? (i.e. on an ERCW PRAM).
- A maximum is larger or equal than all other values.
- Idea: compare all pairs of numbers.
- The maximum will always win.
Compute the Maximum (Idea)

22	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
33	0	1	1	0	1	0	0	1	0	0	0	0	0	1	0	1	1	0
41	1	1	1	0	1	0	0	1	0	0	0	0	0	1	1	1	1	0
26	0	1	1	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0
59	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	0
57	1	1	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	0
52	1	1	1	0	1	0	1	1	0	1	0	0	0	1	1	1	1	0
61	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0
27	0	1	1	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0
49	1	1	1	0	1	0	1	1	0	0	0	0	0	1	1	1	1	0
67	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
23	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
56	1	1	1	1	1	0	1	1	0	1	0	0	0	1	1	1	1	0
14	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34	1	1	1	0	1	0	0	1	0	0	0	0	0	1	0	1	1	0
34	12	14	56	23	67	49	27	61	52	57	59	26	41	33	22			
Compute the Maximum (Idea)

<table>
<thead>
<tr>
<th></th>
<th>22</th>
<th>33</th>
<th>41</th>
<th>26</th>
<th>59</th>
<th>67</th>
<th>52</th>
<th>61</th>
<th>27</th>
<th>49</th>
<th>67</th>
<th>23</th>
<th>56</th>
<th>14</th>
<th>12</th>
<th>34</th>
<th>34</th>
<th>12</th>
<th>14</th>
<th>56</th>
<th>23</th>
<th>67</th>
<th>49</th>
<th>27</th>
<th>61</th>
<th>52</th>
<th>67</th>
<th>59</th>
<th>26</th>
<th>41</th>
<th>33</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Computing the Maximum

- Task: Compute \(m = \max_{j=1}^{i} x_j \) with \(n = 2^k \).
- Input: \(x_j \) is in register \(R_j \) (\(1 \leq x_j \leq n \)).
- Output: \(m \) in register \(R_{n+1} \).
- Model: CRCW.

Programm: Maximum

for all \(P_{i,1} \) where \(1 \leq i \leq n \) do in parallel

\(P_{i,1}(1) \rightarrow W_i \)

for all \(P_{i,j} \) where \(1 \leq i, j \leq n \) do in parallel

\(R_i \rightarrow P_{i,j}(a) \)
\(R_j \rightarrow P_{i,j}(b) \)

if \(a < b \) then \(P_{i,j}(0) \rightarrow W_i \)

for all \(P_{i,1} \) where \(1 \leq i \leq n \) do in parallel

\(W_i \rightarrow P_{i,1}(h) \)

if \(h = 1 \) then

\(R_i \rightarrow P_{i,1}(h) \)
\(P_{i,1}(h) \rightarrow R_{n+1} \)
Computing the Maximum

- **Programm: Maximum**

 for all $P_{i,1}$ where $1 \leq i \leq n$ do in parallel

 $P_{i,1}(1) \rightarrow W_i$

 for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

 $R_i \rightarrow P_{i,j}(a)$

 $R_j \rightarrow P_{i,j}(b)$

 if $a < b$ then $P_{i,j}(0) \rightarrow W_i$

 for all $P_{i,1}$ where $1 \leq i \leq n$ do in parallel

 $W_i \rightarrow P_{i,1}(h)$

 if $h = 1$ then

 $R_i \rightarrow P_{i,1}(h)$

 $P_{i,1}(h) \rightarrow R_{n+1}$

- Running time: $O(1)$.

- Number of processors: $O(n^2)$.

- Memory: $O(n)$.
Nodes are identified by numbers from 1 till n.

Input: Father of node i is written in register R_i.

For the roots i we have: in register R_i is written i.

Programm: Ranking

\begin{align*}
&\text{for all } P_i \text{ where } 1 \leq i \leq n \text{ do in parallel} \\
&\quad \text{for } j = 1 \text{ to } \lceil \log n \rceil \text{ do} \\
&\quad\quad R_i \rightarrow P_i(h) \\
&\quad\quad R_h \rightarrow P_i(h) \\
&\quad\quad P_i(h) \rightarrow R_i
\end{align*}

Running time: $O(\log n)$.

Number of processors: $O(n)$.

Memory: $O(n)$.

Model: CREW.
Motivation and History

PRAM Introduction

Efficiency

Selection

Merging

Short Summary

<table>
<thead>
<tr>
<th>Problem</th>
<th>processors</th>
<th>memory</th>
<th>time</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>$O(n/t)$</td>
<td>$O(n)$</td>
<td>$O(t)$</td>
<td>ERCW</td>
</tr>
<tr>
<td>Or</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Maximum</td>
<td>$O(n^2/t)$</td>
<td>$O(n)$</td>
<td>$O(t)$</td>
<td>CRCW</td>
</tr>
<tr>
<td>Sum</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Ranking</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>CREW</td>
</tr>
<tr>
<td>Prefixsum</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.sum</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(n \cdot \log n)$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(\log n)$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
</tbody>
</table>

Question: May we save some processors?

May we do this saving in any situation?

How do we estimate the efficiency of a parallel algorithm?
Cost Measurement

Let A be any parallel algorithm, we denote:

- $T_A(n)$ the running time of A.
- $P_A(n)$ the number of processors used by A.
- $R_A(n)$ the number of registers used by A.
- $W_A(n)$ the number of accesses to registers done by A.
- $ST(n)$ the running time of the best [known] sequential algorithm.
- $Eff_A(n) := \frac{ST(n)}{P_A(n) \cdot T_A(n)}$ the efficiency of A.
- $AEff_A(n) := \frac{W_A(n)}{P_A(n) \cdot T_A(n)}$ the usage efficiency of A.
Efficiency

<table>
<thead>
<tr>
<th>Problem</th>
<th>processors</th>
<th>time</th>
<th>$W(n)$</th>
<th>$AEff$</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>$O(n/t)$</td>
<td>$O(t)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>ERCW</td>
</tr>
<tr>
<td>Or</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Maximum</td>
<td>$O(n^2/t)$</td>
<td>$O(t)$</td>
<td>$O(n^2)$</td>
<td>1</td>
<td>CRCW</td>
</tr>
<tr>
<td>Sum</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Ranking</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Prefixsum</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.sum</td>
<td>$O(n^2/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^2)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^3)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^3)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^3)$</td>
<td>1</td>
<td>EREW</td>
</tr>
</tbody>
</table>
Efficiency

<table>
<thead>
<tr>
<th>Problem</th>
<th>processors</th>
<th>timet</th>
<th>(ST(n))</th>
<th>(Eff)</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>(O(n/t))</td>
<td>(O(t))</td>
<td>(O(n))</td>
<td>1</td>
<td>ERCW</td>
</tr>
<tr>
<td>Or</td>
<td>(O(n/\log n))</td>
<td>(O(\log n))</td>
<td>(O(n))</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Maximum</td>
<td>(O(n^2/t))</td>
<td>(O(t))</td>
<td>(O(n))</td>
<td>(O(1/n))</td>
<td>CRCW</td>
</tr>
<tr>
<td>Sum</td>
<td>(O(n/\log n))</td>
<td>(O(\log n))</td>
<td>(O(n))</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Ranking</td>
<td>(O(n/\log n))</td>
<td>(O(\log n))</td>
<td>(O(n))</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Prefixsum</td>
<td>(O(n/\log n))</td>
<td>(O(\log n))</td>
<td>(O(n^2))</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.sum</td>
<td>(O(n^2/\log n))</td>
<td>(O(\log n))</td>
<td>(O(n^{2.276}))</td>
<td>(O(n^{-0.734}))</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>(O(n^2/\log n))</td>
<td>(O(n \log n))</td>
<td>(O(n^{2.276}))</td>
<td>(O(n^{-0.734}))</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>(O(n^3/\log n))</td>
<td>(O(\log n))</td>
<td>(O(n^{2.276}))</td>
<td>(O(n^{-0.734}))</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>(O(n^3/\log n))</td>
<td>(O(\log n))</td>
<td>(O(n^{2.276}))</td>
<td>(O(n^{-0.734}))</td>
<td>CREW</td>
</tr>
</tbody>
</table>
Motivation and History

PRAM Introduction

Efficiency

Selection

Merging

1:41 Idea for the k-th Element

k-th Element

- Task: Compute the k-th (k-smallest) element in a unsorted sequence $S = \{s_1, \ldots, s_n\}$.

- Lower bound: $n - 1$ comparisons

- Start with a nice sequential algorithm

- **Programm**: Select(k, S)

 \[
 \text{if } |S| \leq 50 \text{ then return } k\text{-th number in } S
 \]

 \[
 \text{Split } S \text{ in } \lceil n/5 \rceil \text{ sub-sequences } H_i \text{ of size } \leq 5
 \]

 \[
 \text{Sort each } H_i
 \]

 \[
 \text{Let } M \text{ be the sequence of the middle elements in } H_i
 \]

 \[
 m := \text{Select}(\lceil |M|/2 \rceil, M)
 \]

 \[
 S_1 := \{s \in S \mid s < m\}
 \]

 \[
 S_2 := \{s \in S \mid s = m\}
 \]

 \[
 S_3 := \{s \in S \mid s > m\}
 \]

 \[
 \text{if } |S_1| \geq k \text{ then return } \text{Select}(k, S_1)
 \]

 \[
 \text{if } |S_1| + |S_2| \geq k \text{ then return } m
 \]

 \[
 \text{return } \text{Select}(k - |S_1| - |S_2|, S_3)
 \]
Example for the k-th Element (Slow Motion)

Input/Data:

| 80 | 33 | 53 | 67 | 22 | 72 | 0 | 39 | 14 | 79 | 24 | 27 | 64 | 87 | 67 | 74 | 33 | 47 | 59 | 76 | 21 |
|----|----|----|----|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 4 | 44 | 88 | 58 | 61 | 47 | 76 | 77 | 29 | 51 | 84 | 14 | 10 | 36 | 78 | 12 | 27 | 92 | 49 | 40 | 35 |
| 15 | 79 | 65 | 40 | 97 | 8 | 3 | 28 | 61 | 25 | 75 | 7 | 26 | 86 | 94 | 39 | 50 | 23 | 41 | 8 | 30 |
| 57 | 42 | 86 | 45 | 64 | 80 | 79 | 72 | 66 | 62 | 1 | 66 | 83 | 59 | 47 | 38 | 49 | 39 | 88 | 56 | 50 |
| 61 | 90 | 6 | 27 | 45 | 53 | 19 | 61 | 93 | 69 | 72 | 13 | 18 | 19 | 43 | 61 | 97 | 23 | 3 | 92 | 39 |

M:

| 57 | 44 | 65 | 45 | 61 | 53 | 19 | 61 | 61 | 62 | 72 | 14 | 26 | 59 | 67 | 39 | 49 | 39 | 49 | 56 | 35 |

sorted M:

| 14 | 19 | 26 | 35 | 39 | 39 | 44 | 45 | 49 | 49 | 53 | 56 | 57 | 59 | 61 | 61 | 61 | 62 | 65 | 67 | 72 |
Example for the k-th Element

Input/Data:

| 94 | 31 | 90 | 86 | 60 | 53 | 52 | 23 | 12 | 49 | 51 | 26 | 87 | 45 | 1 | 52 | 57 | 16 | 35 | 12 | 36 |
|----|
| 83 | 27 | 93 | 70 | 68 | 45 | 55 | 26 | 45 | 95 | 32 | 31 | 93 | 24 | 78 | 78 | 59 | 50 | 62 | 17 | 40 |
| 0 | 58 | 82 | 21 | 54 | 33 | 42 | 34 | 64 | 63 | 73 | 78 | 58 | 57 | 30 | 66 | 93 | 33 | 19 | 96 | 78 |
| 47 | 57 | 91 | 59 | 43 | 54 | 81 | 88 | 60 | 36 | 7 | 42 | 58 | 66 | 80 | 78 | 59 | 43 | 79 | 62 | 46 |
| 20 | 93 | 2 | 68 | 41 | 61 | 51 | 74 | 82 | 58 | 10 | 32 | 12 | 67 | 93 | 54 | 48 | 58 | 56 | 89 | 26 |

M:

| 47 | 57 | 90 | 68 | 54 | 53 | 52 | 34 | 60 | 58 | 32 | 32 | 58 | 57 | 78 | 66 | 59 | 43 | 56 | 62 | 40 |

sorted M:

| 32 | 32 | 34 | 40 | 43 | 47 | 52 | 53 | 54 | 56 | 57 | 57 | 58 | 58 | 59 | 60 | 62 | 66 | 68 | 78 | 90 |
Example for the k-th Element (Worst Case)

Input/Data:

| 73 | 65 | 54 | 57 | 71 | 94 | 61 | 85 | 73 | 64 | 93 | 82 | 82 | 67 | 71 | 59 | 84 | 61 | 56 | 91 | 69 |
|----|
| 92 | 76 | 64 | 88 | 59 | 74 | 53 | 68 | 77 | 56 | 89 | 88 | 89 | 76 | 64 | 60 | 56 | 80 | 64 | 67 | 56 |
| 29 | 17 | 10 | 42 | 33 | 10 | 34 | 3 | 19 | 42 | 4 | 69 | 84 | 89 | 89 | 83 | 85 | 70 | 52 | 54 | 77 |
| 43 | 26 | 5 | 20 | 19 | 18 | 1 | 18 | 29 | 0 | 81 | 52 | 82 | 67 | 90 | 67 | 66 | 64 | 66 | 52 |
| 12 | 40 | 13 | 11 | 11 | 5 | 42 | 6 | 44 | 4 | 16 | 77 | 73 | 85 | 78 | 78 | 70 | 55 | 73 | 58 | 60 |

M:

| 43 | 40 | 13 | 42 | 33 | 18 | 42 | 6 | 44 | 42 | 16 | 81 | 82 | 82 | 71 | 78 | 70 | 66 | 64 | 66 | 60 |

sorted M:

| 6 | 13 | 16 | 18 | 33 | 40 | 42 | 42 | 42 | 43 | 44 | 60 | 64 | 66 | 66 | 70 | 71 | 78 | 81 | 82 | 82 |
Running Time

For some constants c, d we get:

- $T(n) \leq d \cdot n$ for $n \leq 50$
- $T(n) \leq c \cdot n + T(n/5) + T(3n/4)$

if $|S| \leq 50$ then return k-th number in S
Split S in $\lceil n/5 \rceil$ sub-sequences H_i of size ≤ 5
Sort each H_i
Let M be the sequence of the middle elements in H_i
$m := \text{Select}(\lceil |M|/2 \rceil, M)$
$S_1 := \{s \in S \mid s < m\}$
$S_2 := \{s \in S \mid s = m\}$
$S_3 := \{s \in S \mid s > m\}$
if $|S_1| \geq k$ then return $\text{Select}(k, S_1)$
if $|S_1| + |S_2| \geq k$ then return m
return $\text{Select}(k - |S_1| - |S_2|, S_3)$
Claim: \(T(n) \leq 20 \cdot r \cdot n \) with \(r = \max(d, c) \).

Proof:

\(n = 50 \):

\[
T(n) \leq c \cdot n + \frac{d \cdot n}{5} + \frac{3 \cdot d \cdot n}{4}
\]

\(n > 50 \):

\[
T(n) \leq c \cdot n + T\left(\frac{d \cdot n}{5}\right) + T\left(\frac{3 \cdot d \cdot n}{4}\right)
\]

\[
T(n) \leq c \cdot n + 4 \cdot r \cdot n + 15 \cdot r \cdot n
\]

Running time \(T(n) \) is in \(O(n) \).
Motivation and History
PRAM Introduction
Efficiency
Selection
Merging

1:47 Algorithm and Running Time

Parallel k-Select

- Input $S = \{s_1, \cdots, s_n\}$.
- Processors $P_1, P_2, \cdots P_{\lceil n^{1-x} \rceil}$, thus $P(n) = \lceil n^{1-x} \rceil$.
- Each P_i knows n, $P(n)$.
- Each P_i works on $\lceil n^x \rceil$ elements.
- We will now create a parallel version of the program Select(k, S).
- We will get a parallel recursive program.

1. Easy solution for small S.
2. Split S into small sub-sequences for the processors.
3. Compute parallel the median of the sub-sequences.
4. Compute parallel and recursive the median of medians.
5. Compute the splitting into the three sub-sequences.
6. Do the final recursion.
Example for the k-th Element

Input/Data:

79	96	1	19	38	18	19	68	31	87	43	90	96	32	7	10	9	69	35	88	34	34	46	14	49	89	33	10	73	45	42	89	66	37	54		
74	93	81	35	39	9	19	18	51	47	24	92	8	8	65	72	77	54	9	63	94	90	82	1	0	40	37	61	8	42	40	44	36	60	5	7	
63	58	25	85	20	46	83	62	7	21	83	2	95	26	19	17	68	58	61	21	64	3	49	54	35	79	20	2	71	13	3	17	82	46	10		
56	84	94	93	25	9	21	6	73	78	40	71	97	15	14	3	25	19	8	13	21	84	84	1	66	90	68	56	43	73	76	83	40	84	26		
49	22	31	50	73	84	10	91	58	82	45	54	26	9	53	15	74	46	6	97	8	9	86	68	2	20	1	53	96	20	6	27	20	92	87		
57	6	2	18	66	11	7	53	80	6	82	53	44	19	74	16	12	30	65	79	74	47	80	74	16	9	94	14	66	46	55	4	14	51	81		
94	95	47	39	46	45	34	30	66	80	23	2	52	52	22	60	55	94	65	75	0	5	96	49	10	13	60	2	56	50	84	70	75	55	21		
76	97	90	53	52	92	88	58	10	92	14	85	33	4	30	22	63	87	23	2	22	31	38	25	32	77	94	46	34	2	73	9	82	65	42		
65	30	10	77	43	85	31	7	70	56	7	21	97	55	60	5	32	77	88	66	85	32	29	28	73	17	64	14	78	84	41	5	19	48	26		
73	21	25	90	0	8	13	61	42	79	19	84	70	74	66	97	18	58	16	21	43	13	46	87	90	44	87	41	9	1	60	86	57	5			
9	30	24	91	54	41	4	59	94	65	44	31	96	87	57	26	87	20	91	56	28	44	87	65	83	78	87	17	17	48	5	84	36	59	46	29	46
56	31	27	90	5	6	64	75	64	46	96	14	7	10	35	81	16	13	50	35	14	52	82	92	88	23	85	80	78	47	37	2	17	43	12		
4	53	73	29	3	74	70	15	21	0	48	2	62	70	30	54	4	73	75	76	63	35	13	96	81	68	32	24	73	2	47	22	46	59	16		
93	28	90	38	93	23	70	69	15	45	18	56	49	82	64	47	15	43	54	67	3	80	29	28	48	8	49	29	46	44	3	18	84	47	54		
15	59	96	46	47	55	52	24	13	0	31	44	16	49	17	70	81	80	78	24	21	60	62	65	30	66	14	26	87	28	78	28	65	50	64		

M:

| P_1 | P_2 | P_3 | P_4 | P_5 | P_6 | P_7 | P_8 | P_9 | P_10 | P_11 | P_12 | P_13 | P_14 | P_15 | P_16 | P_17 | P_18 | P_19 | P_20 | P_21 | P_22 | P_23 | P_24 | P_25 | P_26 | P_27 | P_28 | P_29 | P_30 | P_31 | P_32 | P_33 | P_34 | P_35 |
|-----|
| 63 | 53 | 31 | 50 | 43 | 41 | 31 | 58 | 58 | 47 | 43 | 44 | 52 | 32 | 35 | 26 | 55 | 54 | 58 | 63 | 22 | 43 | 62 | 49 | 48 | 40 | 44 | 29 | 66 | 44 | 41 | 27 | 46 | 51 | 26 |

sorted M:

| 22 | 26 | 27 | 29 | 31 | 31 | 32 | 35 | 40 | 41 | 41 | 43 | 43 | 44 | 44 | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 58 | 58 | 58 | 62 | 63 | 63 | 66 |
Parallel k-Select

Programm: ParSelect(k,S)
1: \textbf{if } |S| \leq k_1 \textbf{ then } P_1 \textbf{ returns } Select(k, S).
2: \text{S is split into } \lceil |S|^{1-x} \rceil \text{ sub-sequences } S_i \text{ with } |S_i| \leq \lceil n^x \rceil \n\text{P}_i \text{ stores the start-address of } S_i.
3: \textbf{for all } P_i \text{ where } 1 \leq i \leq \lceil n^{1-x} \rceil \textbf{ do in parallel}
 \hspace{1cm} m_i := Select(\lceil |S_i|/2 \rceil, S_i)
 \hspace{1cm} P_i(m_1) \rightarrow R_i.
 \hspace{1cm} \text{Assume in the following that } M \text{ is the sequence of these values.}
4: \hspace{1cm} m := ParSelect(\lceil |M|/2 \rceil, M).
5: \hspace{1cm} \text{More to come!}
Parallel k-Select

Programm: ParSelect(k,S) Steps 5

5.1:
Distribute m via broadcast to all P_i.

for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel

$L_i := \{s \in S_i \mid s < m\}$

$E_i := \{s \in S_i \mid s = m\}$

$G_i := \{s \in S_i \mid s > m\}$

5.2:

Compute with Parallel Prefix:

$l_i := \sum_{j=1}^{i} |L_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

$e_i := \sum_{j=1}^{i} |E_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

$g_i := \sum_{j=1}^{i} |G_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

Let: $l_0 = e_0 = g_0 = 0$

5.3:

Even more to come!
Parallel k-Select

Programm: ParSelect(k,S) Steps 5+6

5.3:

Compute $L = \{ s \in S \mid s < m \}$, $E = \{ s \in S \mid s = m \}$ and $G = \{ s \in S \mid s > m \}$ as follows:

for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel

P_i writes L_i in $R_{l_{i-1}+1}, \ldots, R_{l_i}$.
P_i writes E_i in $R_{e_{i-1}+1}, \ldots, R_{e_i}$.
P_i writes G_i in $R_{g_{i-1}+1}, \ldots, R_{g_i}$.

6:

if $|L| \geq k$ then return $\text{ParSelect}(k, L)$
if $|L| + |E| \geq k$ then return m
return $\text{Select}(k - |L| - |E|, G)$
Parallel k-Select (Running Time)

Programm: ParSelect(k,S)
1: $O(1)$
 if $|S| \leq k_1$ then P_1 returns $\text{Select}(k, S)$.
2: $O(\log_2(|S|^{1-x}))$ thus we have $O(\log n)$
 S is split into $\lceil |S|^{1-x} \rceil$ sub-sequences S_i with $|S_i| \leq \lceil n^x \rceil$
 P_i stores the start-address of S_i.
3: $O(n^x)$
 for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel
 $m_i := \text{Select}(\lceil |S_i|/2 \rceil, S_i)$
 $P_i(m_1) \rightarrow R_i$.
 Assume in the following that M is the sequence of these values
4: $T_{\text{ParSelect}}(n^{1-x})$
 $m := \text{ParSelect}(\lceil |M|/2 \rceil, M)$.
Programm: ParSelect(k, S) Steps 5

5.1a: $O(\log_2(n^{1-x}))$
- Distribute m via broadcast to all P_i.

5.1b: $O(|S_i|)$ thus we have $O(n^x)$
- for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel
 - $L_i := \{ s \in S_i \mid s < m \}$
 - $E_i := \{ s \in S_i \mid s = m \}$
 - $G_i := \{ s \in S_i \mid s > m \}$

5.2: $O(\log_2(n^{1-x}))$
- Compute with Parallel Prefix:
 - $l_i := \sum_{j=1}^{i} |L_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.
 - $e_i := \sum_{j=1}^{i} |E_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.
 - $g_i := \sum_{j=1}^{i} |G_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.
- Let: $l_0 = e_0 = g_0 = 0$
Parallel k-Select (Running Time)

Programm: ParSelect(k,S) Steps 5+6

5.3: $O(n^x)$

Compute $L = \{s \in S \mid s < m\}$, $E = \{s \in S \mid s = m\}$
and $G = \{s \in S \mid s > m\}$ as follows:

for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel

P_i writes L_i in $R_{l_{i-1}+1}, \ldots, R_{l_i}$.
P_i writes E_i in $R_{e_{i-1}+1}, \ldots, R_{e_i}$.
P_i writes G_i in $R_{g_{i-1}+1}, \ldots, R_{g_i}$.

6: $T_{ParSelect}(3 \cdot n/4)$

if $|L| \geq k$ then return $ParSelect(k, L)$
if $|L| + |E| \geq k$ then return m
return $Select(k - |L| - |E|, G)$
Parallel k-Select (Running Time)

Adding all up we get:

- $T_{\text{ParSelect}}(n) = c_1 \log n + c_2 \cdot n^x + T_{\text{ParSelect}}(n^{1-x}) + T_{\text{ParSelect}}(3/4 \cdot n)$.
- $T_{\text{ParSelect}}(n) = O(n^x)$ with $P_{\text{ParSelect}}(n) = O(n^{1-x})$.
- $\text{Eff}_{\text{ParSelect}}(n) = \frac{O(n)}{O(n^x) \cdot O(n^{1-x})} = O(1)$.
Sequential Merging

- **Input:**
 \[A = (a_1, a_2, \cdots, a_r) \text{ and } B = (b_1, b_2, \cdots, b_s) \text{ two sorted sequences} \]

- **Output:**
 \[C = (c_1, c_2, \cdots, c_n) \text{ sorted sequence of } A \text{ and } B \text{ with } n = r + s. \]

- **Program:** Merge

 \[
 i := 1; j := 1; n := r + s \\
 \text{for } k := 1 \text{ to } n \text{ do} \\
 \quad \text{if } a_i < b_j \\
 \quad \quad \text{then } c_k := a_i; i := i + 1; \\
 \quad \quad \text{else } c_k := b_j; j := j + 1;
 \]

- Algorithm does not care about special cases.

- Running time: at most \(r + s \) comparisons, i.e. \(O(n) \).

- Lower bound on the number of comparisons is \(r + s \), i.e. \(\Omega(n) \).
The border lines may not intersect each other.

Thus we may separate the two sequences into disjoint blocks.

Let A_i the i block of size $\lceil r/p \rceil$.

Let \hat{B}_i block in B which should be merged with A_i.

Thus we may uses a PRAM easily (in this case).
Let A_i [resp. B_i] the i block of size $\lceil r/p \rceil$ [resp. $\lceil s/p \rceil$].

Let \hat{B}_i [resp. A_i] block in B [resp. A] which should be merged with A_i [resp. B_i].

P_i cares about A_i and \hat{B}_i if $|\hat{B}_i| \leq \lceil r/p \rceil$.

Let C be those where one P_j takes already care of.

P_i cares about $A_i \setminus C$ and $\hat{B}_i \setminus C$.
Parallel Merging (CREW)

1. Use $P(n)$ processors.
2. Each processor P_i computes for A [B] its part of size $r/P(n)$ [$s/P(n)$].
3. Each processor P_i computes the part from B [A] which should be merged with its A-block [B-block].
4. Each processor computes its A or B block, where only he is responsible for.
5. This block has size $O(n/P(n))$.
6. Each processor merges its block into the resulting sequence.
7. Time: $O(\log n + n/P(n))$.
8. Efficiency

$$\frac{n}{O(P(n)) \cdot O(\log n + n/P(n))}.$$

9. Efficiency is 1 for $P(n) \leq n/\log n$.
Idea for Merging (EREW)

- Do some splitting into pairs of blocks of the same size.
- Recursive splitting into pairs of blocks of the same size.
- Thus we may avoid read conflicts.
Merging (EREW)

1. Use \(P(n) \) processors.
2. Compute the median \(m \) of the sequences \(A \) and \(B \).
3. Split the sequences \(A \) and \(B \) in two sub-sequences each of the “same” size \((-1 \leq |A| - |B| \leq 1)\).
4. Continue recursively, till all sub-sequences are smaller than \(n/P(n) \).
5. Do the merging in the same way as before.

Remaining problem: Find the median of two sequences.
Example for the Median for two Sorted Sequences

- Sequences A and B are sorted.
- Compute median a of A and median b of B.
Median for two Sorted Sequences

1. Sequences A and B are sorted.
2. Compute median a of A and median b of B.
4. The median of A and B is in one block-pair of the four blocks.
5. Search recursively for the median.

Running time: $O(\log n)$
Running Time for Merging (EREW)

1. Use \(P(n) \) processors.
2. Compute the median \(m \) of the sequences \(A \) and \(B \). \(O(\log n) \)
3. Split the sequences \(A \) and \(B \) in two sub-sequences each.
4. Continue recursively, till all sub-sequences are smaller than \(n/P(n) \). \(O(\log n \cdot \log(P(n))) \)
5. Merge in the same way as before. \(O(n/P(n)) \)

- Running time: \(O(n/P(n) + \log(n)^2) \).
- Efficiency

\[
\frac{O(n)}{O(P(n)) \cdot O(n/P(n) + \log(n)^2)} = \frac{O(n)}{O(n + P(n) \cdot \log(n)^2)}.
\]

- Efficiency is 1 for \(P(n) < \frac{n}{(\log n)^2} \).
Questions

- Explain the motivation behind parallel systems.
- Describe the different models of a PRAM.
- Describe idea of the k-select algorithm.
- For which problems do the running time of CWCR and EWCR algorithms differ?
Legende

- Nicht relevant
- Grundlagen, die implizit genutzt werden
- Idee des Beweises oder des Vorgehens
- Struktur des Beweises oder des Vorgehens
- Vollständiges Wissen