Theory of Parallel and Distributed Systems (WS2016/17)

Kapitel 1
First Algorithms for PRAM

Walter Unger

Lehrstuhl für Informatik 1

8:54 Uhr, den 28. November 2016
Inhalt I

1 Motivation and History
 - Systolic Arrays and Vector Computer
 - Transputer
 - Parallel Rechner
 - PRAM

2 PRAM Introduction
 - Definition
 - Or
 - Sum
 - Matrices
 - Prefixsum
 - Maximum
 - Identify Root

3 Situation

4 Efficiency
 - Definition
 - Overview

5 Selection
 - Idea for the k-th Element
 - Examples
 - Algorithm and Running Time

6 Merging
 - Sequential Merging
 - Parallel Merging
 - Parallel Merging
Motivation

There are limits to the computing power of a single Computer

Computers become cheaper

Specialized computers are expensive

There are tasks with large data

Many problems are very complex

Weather and other Simulations

Crash tests

Military applications

Large data: (SETI, ...)

More similar problems

Thus there is the need for computers with more than one CPU

or a quantum computer?
Pipeline: (systolic array)

- There is a sequence of processors \((P_i)\) \(1 \leq i \leq n\).
- Processor \(P_1\) receives the input.
- Output of \(P_1\) will be passed as the input of \(P_2\).
- Output of \(P_i\) will be passed as the input of \(P_{i+1}\) \(1 \leq i < n\).
- Processor \(P_n\) delivers the final output.
- Processors may be different.
- Processors may run different programs.
- Intermediate outputs may be buffered.
- Pipelining is one important type of parallel system (in practice).
Systolic Arrays

- Idea: use more than one data stream.
- Data streams may interact with each other.
- Each processor is the same.
- There is a global synchronization.
- Processors may run simple programs.
- Advantage: really fast (for special applications).
Systolic Array with three data streams
Vector Computer

- Vector of processes.
- Each processor has different data.
- But each processor executes the same programm.
- Addition of two vectors:
 1. Read vector A
 2. Read vector B
 3. Add (each processor)
 4. Output the summ

- **Single Instruction Multiple Data** SIMD-Computer.
- **Aim**: **Multiple Instruction Multiple Data** MIMD-Computer.
- I.e. Fast processors with fast connections.
Example: Transputer

- Advantage: very flexible, any fixed network of degree 4 possible.
- Disadvantage: long wires may be necessary, only a fixed network possible.
Beispiel: Transputer II
Parallele Computer I

- Advantage: “normal” CPUs.
- Advantage: fast links possible.
- Advantage: no special hardware.
- Advantage: variable network, may change during execution.
- Advantage: very large networks may be possible.
- Disadvantage: still a limited degree for the network.
- Disadvantage: large network are complicated.
- Problem: cooling large systems.
- Problem: fault tolerance.
- Problem: construct such a system.
- Problem: generate good data throughput with constant degree network.
- Problem: do the program structures fit the structure of the network.
Parallel Computer II (Goodput)

- Look for good networks.
- Trees, Grids, Pyramids, ...
- $HQ(n)$, $CCC(n)$, $BF(n)$, $SE(n)$, $DB(n)$, ...
- Pancake Network and Burned Pancake Network.
- Problem: Physical placement of the processors.
- Problem: Length of wires.
- Problem: Has the network a nice structure.
- If the network becomes too large, we may use efficiency.
- Solution: choose a mixed network structure.
Parallel Computer III (Network)
Parallel Computer IV (Network)
Parallel Computer V (Network)

1. CPU and memory are one logical unit:

```
CPU   RAM   CPU   RAM   CPU   RAM   CPU   RAM
```

Network

2. CPUs and memory are connected by a network:

```
CPU   CPU   CPU   CPU   CPU
```

```
RAM   RAM   RAM   RAM   RAM
```

Network

The difference is more on the practical side.
PRAM (theoretical model)

- Ignore/unify the costs for each computation step.
- Ignore/unify the costs for each communication step.
Definition RAM

- RAM: Random Access Machine
- CPU may access any memory cell
- Memory is unlimited
- Complexity measurements
 - uniform: each operation cost one unit
 - logarithmic: cost are measured according to the size of the numbers
Idea of PRAM

- Many processes
- Common program
- Program may select single processors
- Common memory
Definition PRAM

- Consists of processors P_i with $1 \leq i \leq p$ (processor has id i).
- Consists of registers R_j with $1 \leq j \leq m$.
- Each processor has some local registers.
- Each processor P_i may access each register R_j.
- Each processor executes the same program.
- The program is synchronized, thus each processor executes the same instructions.
- A selection is possible by using the processor id.
- The input of length n is written to registers R_j with $1 \leq j \leq n$.
- The output is placed in some known registers.
- The registers contain words (numbers) in the uniform cost measurement.
- The registers contain bits in the logarithmic cost measurement.
Definition PRAM

The following instructions are possible:

1. processor P_i reads register R_j: $R_j \rightarrow P_i(x)$.
2. processor P_i writes value of x into register R_j: $P_i(x) \rightarrow R_j$.
3. processor may do some local computation using local registers:

 $x := y \times 5$.

For the access to the register we have the following variations:

- EREW _Exclusive Read Exclusive Write_
- CREW _Concurrent Read Exclusive Write_
- CRCW _Concurrent Read Concurrent Write_
- ERCW _Exclusive Read Concurrent Write_

Write conflicts may be solved using the following rules:

- Arbitrary: any processor gets access to the register.
- Common: all processors writing to the same register have to write the same value.
- Priority: the processor with the smallest id gets access to the register.
Computation of an “Or” (Idea)
Computing an “Or”

- Task: Compute \(x = \bigvee_{i=1}^{n} x_i \).
- Input: \(x_i \) is in register \(R_i \) (\(1 \leq i \leq n \)).
- Output computed in \(R_{n+1} \).
- Program: Or
  ```
  for all \( P_i \) where \( 1 \leq i \leq n \) do in parallel
  \( R_i \rightarrow P_i(x) \)
  if \( x = \text{true} \) then \( P_i(x) \rightarrow R_{n+1} \)
  ```
- Running time: \(O(1) \) (exact 2 steps).
- Number of processors: \(n \).
- Memory: \(n + 1 \).
- Possible models: ERCW (Arbitrary, Common oder Priority).
Computing an “Or” (EREW)

- Problem:
 no writing of two processors
 to the same register
 at the same time.

- Idea: combine pairwise the results

- With this idea, computing the sum is also possible.

- Thus computing the “Or” is just a special case of computing a sum.
Computing the Sum (Idea)
Computing the Sum (Idea)

\[P_1 \quad P_2 \quad P_3 \quad P_4 \]

\[103 \quad 45 \quad 30 \quad 15 \]

\[12 \quad 6 \quad 34 \quad 5 \quad 7 \quad 23 \quad 4 \quad 11 \]
Computing the sum (EREW)

Assume w.l.o.g. $n = 2^k$ for $k \in \mathbb{N}$.

- Task: compute $x = \sum_{i=1}^{n} x_i$ with $n = 2^k$.
- Input: x_i is in register R_i ($1 \leq i \leq n$).
- Output: should be in R_1 (input may be overwritten).
- Model: EREW.

Program: Summe

for all P_i where $1 \leq i \leq n/2$ do in parallel

$R_{2 \cdot i - 1} \rightarrow P_i(x)$

for $j = 1$ to k do

if $(i - 1) \equiv 0 \pmod{2^{j-1}}$ then

$R_{2 \cdot i - 1 + 2^{j-1}} \rightarrow P_i(y)$

$x := x + y$

$P_i(x) \rightarrow R_{2 \cdot i - 1}$

- Running time: $O(k) = O(\log n)$ (precise $3 \cdot k + 1$ steps).
- Number of processors: $n/2$.
- Size of memory: n.

Addition of Matrices

- Let A, B two $(n \times n)$-Matrices.
- Sum $A + B$ is computable with n^2 processors in Zeit $O(1)$ on a EREW PRAM.
- R_1 till R_{n^2} contain A (one row after the other).
- R_{1+n^2} bis $R_{2.n^2}$ contains B (one row after the other).
- Result in $R_{1+2.n^2}$ bis $R_{3.n^2}$.
- Programm: MatSumme

\[
\text{for all } P_i \text{ where } 1 \leq i \leq n^2 \text{ do in parallel}
\]

$R_i \rightarrow P_i(x)$

$R_{i+n^2} \rightarrow P_i(y)$

$x := x + y$

$P_i(x) \rightarrow R_{i+2.n^2}$

- Running time: $O(1)$.
- Number of processors: $O(n^2)$.
- Size of memory: $O(n^2)$.

Assume w.l.o.g $n = 2^k$ for $k \in \mathbb{N}$.
Assume w.l.o.g $n = 2^k$ for $k \in \mathbb{N}$.

- Let A, B be two $(n \times n)$-Matrices.
- R_1 till R_{n^2} contain A (one row after the other).
- R_{1+n^2} bis $R_{2 \cdot n^2}$ contains B (one row after the other).
- Result in $R_{1+2 \cdot n^2}$ bis $R_{3 \cdot n^2}$
- Register $A_{i,j} = R_{(i-1) \cdot n+j}$ ($1 \leq i, j \leq n$).
- Register $B_{i,j} = R_{(i-1) \cdot n+j+n^2}$ ($1 \leq i, j \leq n$).
- Register $C_{i,j} = R_{(i-1) \cdot n+j+2 \cdot n^2}$ ($1 \leq i, j \leq n$).
- processor $P_{i,j} = P_{(i-1) \cdot n+j}$ ($1 \leq i, j \leq n$).
- Use the above notation to simplify the algorithm.
- Each processor has to do some hidden local computation to implement the above expressions.
Multiplikation of Matrices

- Let A, B be two $(n \times n)$-Matrices.
- Product $A \cdot B$ is computable with n^2 processors in time $O(n)$ on a CREW PRAM.
- **Programm: MatrProd 1**
 - for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
 - $h = 0$
 - for $l = 1$ to n do
 - $A_{i,l} \rightarrow P_{i,j}(a)$
 - $B_{i,j} \rightarrow P_{i,j}(b)$
 - $h = h + a \cdot b$
 - $P_{i,j}(h) \rightarrow C_{i,j}$
 - Running time: $O(n)$.
 - Number of processors: $O(n^2)$.
 - Size of memory: $O(n^2)$.

\[
A_{i,j} = R(i-1) \cdot n + j \\
B_{i,j} = R(i-1) \cdot n + j + n^2 \\
C_{i,j} = R(i-1) \cdot n + j + 2 \cdot n^2 \\
P_{i,j} = P(i-1) \cdot n + j
\]
Multiplikation of Matrices

- Let A, B be two $(n \times n)$-Matrices
- Product $A \cdot B$ is computable with n^2 processors in time $O(n)$ on a EREW PRAM.
- Programm: MatrProd 2
 for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
 $h = 0$
 for $l = 1$ to n do
 $A_{i,l} \rightarrow P_{i,j}(a)$
 $B_{l,j} \rightarrow P_{i,j}(b)$
 $h = h + a \cdot b$
 $P_{i,j}(h) \rightarrow C_{i,j}$
- Running time: $O(n)$.
- Number of processors: $O(n^2)$.
- Size of memory: $O(n^2)$.

$$A_{i,j} = R(i-1) \cdot n + j$$
$$B_{i,j} = R(i-1) \cdot n + j + n^2$$
$$C_{i,j} = R(i-1) \cdot n + j + 2 \cdot n^2$$
$$P_{i,j} = P(i-1) \cdot n + j$$
Compute the Prefixsum

Problem:

- Task: Compute $s_i = \sum_{j=1}^{i} x_j$ for $1 \leq i \leq n$.
- Input: x_j is in register R_j ($1 \leq j \leq n$).
- Output: s_i should be in register R_i for $1 \leq i \leq n$.
Computing Prefixsum (Idea)
Computing the Prefixsum

- **Task:** Compute \(s_i = \sum_{j=1}^{i} x_j \) for \(1 \leq i \leq n \).
- **Input:** \(x_j \) is in register \(R_j \) (\(1 \leq j \leq n \)).
- **Output:** \(s_i \) should be in register \(R_i \) for \(1 \leq i \leq n \).
- **Model:** EREW

Programm: Summe

```
for all \( P_i \) where \( 1 \leq i \leq n \) do in parallel
    \( R_i \rightarrow P_i(x) \)
    for \( j = 1 \) to \( k \) do
        if \( i > 2^{j-1} \) then
            \( R_{i-2^{j-1}} \rightarrow P_i(y) \)
            \( x := x + y \)
            \( P_i(x) \rightarrow R_i \)
```

- **Running time:** \(O(k) = O(\log n) \) (precisely \(3 \cdot k + 1 \) steps).
- **Number of processors:** \(n \).
- **Size of memory:** \(n \).
Compute the Maximum

- Task: Compute \(m = \max_{j=1}^{i} x_j \) with \(n = 2^k \).
- Input: \(x_j \) is in register \(R_j \) (\(1 \leq j \leq n \)).
- Output: \(m \) should be in register \(R_{n+1} \).
- Possible with \(n \) processors in time \(O(\log n) \) using a EREW PRAM.
- Question: could it be done faster? (i.e. on a ERCW PRAM).
- A maximum is larger or equal than all other values.
- Idea: compare all pairs of numbers.
- The maximum will always win.
Compute the Maximum (Idea)

<table>
<thead>
<tr>
<th>22</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>14</td>
<td>56</td>
<td>23</td>
<td>67</td>
<td>49</td>
<td>27</td>
<td>61</td>
<td>52</td>
<td>57</td>
<td>59</td>
<td>26</td>
<td>41</td>
<td>33</td>
</tr>
</tbody>
</table>
Compute the Maximum (Idea)

| | 22 | 33 | 41 | 26 | 59 | 67 | 52 | 61 | 27 | 49 | 67 | 23 | 56 | 14 | 12 | 34 | 34 | 12 | 14 | 56 | 23 | 67 | 49 | 27 | 61 | 52 | 67 | 59 | 26 | 41 | 33 | 22 |
|---|----|
Computing the Maximum

- Task: Compute \(m = \max_{j=1}^i x_j \) with \(n = 2^k \).
- Input: \(x_j \) is in register \(R_j \) (\(1 \leq x_j \leq n \)).
- Output: \(m \) in register \(R_{n+1} \).
- Model: CRCW.
- Program: Maximum

\[
\text{for all } P_{i,1} \text{ where } 1 \leq i \leq n \text{ do in parallel} \\
\quad P_{i,1}(1) \rightarrow W_i \\
\text{for all } P_{i,j} \text{ where } 1 \leq i, j \leq n \text{ do in parallel} \\
\quad R_i \rightarrow P_{i,j}(a) \\
\quad R_j \rightarrow P_{i,j}(b) \\
\quad \text{if } a < b \text{ then } P_{i,j}(0) \rightarrow W_i \\
\text{for all } P_{i,1} \text{ where } 1 \leq i \leq n \text{ do in parallel} \\
\quad W_i \rightarrow P_{i,1}(h) \\
\quad \text{if } h = 1 \text{ then} \\
\quad \quad R_i \rightarrow P_{i,1}(h) \\
\quad \quad P_{i,1}(h) \rightarrow R_{n+1}
\]
Computing the Maximum

- Programm: Maximum

 for all $P_{i,1}$ where $1 \leq i \leq n$ do in parallel

 $P_{i,1}(1) \rightarrow W_i$

 for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

 $R_i \rightarrow P_{i,j}(a)$
 $R_j \rightarrow P_{i,j}(b)$

 if $a < b$ then $P_{i,j}(0) \rightarrow W_i$

 for all $P_{i,1}$ where $1 \leq i \leq n$ do in parallel

 $W_i \rightarrow P_{i,1}(h)$

 if $h = 1$ then

 $R_i \rightarrow P_{i,1}(h)$
 $P_{i,1}(h) \rightarrow R_{n+1}$

- Running time: $O(1)$.

- Number of processors: $O(n^2)$.

- Memory: $O(n)$.
Identify the Roots of a Forest

- Nodes are identified by numbers from 1 till \(n \).
- Input: Father of node \(i \) is written in register \(R_i \).
- For the roots \(i \) we have: in register \(R_i \) is written \(i \).
- **Programm: Ranking**

 for all \(P_i \) where \(1 \leq i \leq n \) do in parallel

 for \(j = 1 \) to \(\lceil \log n \rceil \) do

 \(R_i \rightarrow P_i(h) \)

 \(R_h \rightarrow P_i(h) \)

 \(P_i(h) \rightarrow R_i \)

 Running time: \(O(\log n) \).

 Number of processors: \(O(n) \).

 Memory: \(O(n) \).

 Model: CREW.
Short Summary

<table>
<thead>
<tr>
<th>Problem</th>
<th>processors</th>
<th>memory</th>
<th>time</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>$O(n/t)$</td>
<td>$O(n)$</td>
<td>$O(t)$</td>
<td>ERCW</td>
</tr>
<tr>
<td>Or</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Maximum</td>
<td>$O(n^2/t)$</td>
<td>$O(n)$</td>
<td>$O(t)$</td>
<td>CRCW</td>
</tr>
<tr>
<td>Sum</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Ranking</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>CREW</td>
</tr>
<tr>
<td>Prefixsum</td>
<td>$O(n/\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.sum</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(n \cdot \log n)$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(\log n)$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(n^2)$</td>
<td>$O(\log n)$</td>
<td>EREW</td>
</tr>
</tbody>
</table>

Question: May we save some processors?
May we do this saving in any situation?
How do we estimate the efficiency of a parallel algorithm?
Cost Measurement

Let A be any parallel algorithm, we denote:

- $T_A(n)$ the running time of A.
- $P_A(n)$ the number of processors used by A.
- $R_A(n)$ the number of registers used by A.
- $W_A(n)$ the number of accesses to registers done by A.
- $ST(n)$ the running time of the best [known] sequential algorithm.
- $\text{Eff}_A(n) := \frac{ST(n)}{P_A(n) \cdot T_A(n)}$ the efficiency of A.
- $\text{AEff}_A(n) := \frac{W_A(n)}{P_A(n) \cdot T_A(n)}$ the usage efficiency of A.
Efficiency

<table>
<thead>
<tr>
<th>Problem</th>
<th>processors</th>
<th>time</th>
<th>$W(n)$</th>
<th>$AEff$</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>$O(n/t)$</td>
<td>$O(t)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>ERCW</td>
</tr>
<tr>
<td>Or</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Maximum</td>
<td>$O(n^2/t)$</td>
<td>$O(t)$</td>
<td>$O(n^2)$</td>
<td>1</td>
<td>CRCW</td>
</tr>
<tr>
<td>Sum</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Ranking</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Prefixsum</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.sum</td>
<td>$O(n^2/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^2)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^3)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^3)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^3)$</td>
<td>1</td>
<td>EREW</td>
</tr>
</tbody>
</table>
Efficiency

<table>
<thead>
<tr>
<th>Problem</th>
<th>processors</th>
<th>time t</th>
<th>$ST(n)$</th>
<th>Eff</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Or</td>
<td>$O(n/t)$</td>
<td>$O(t)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>ERCW</td>
</tr>
<tr>
<td>Or</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Maximum</td>
<td>$O(n^2/t)$</td>
<td>$O(t)$</td>
<td>$O(n)$</td>
<td>$O(1/n)$</td>
<td>CRCW</td>
</tr>
<tr>
<td>Sum</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>CREW</td>
</tr>
<tr>
<td>Ranking</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Prefixsum</td>
<td>$O(n/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^2)$</td>
<td>1</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.sum</td>
<td>$O(n^2/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^{2.276})$</td>
<td>$O(n^{-0.734})$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^2/\log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^{2.276})$</td>
<td>$O(n^{-0.734})$</td>
<td>CREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^{2.276})$</td>
<td>$O(n^{-0.734})$</td>
<td>EREW</td>
</tr>
<tr>
<td>Mat.prod.</td>
<td>$O(n^3/\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n^{2.276})$</td>
<td>$O(n^{-0.734})$</td>
<td>EREW</td>
</tr>
</tbody>
</table>
k-th Element

- Task: Compute the k-th (k-smallest) element in a unsorted sequence $S = \{s_1, \ldots, s_n\}$.

- Lower bound: $n - 1$ comparisons

- Start with a nice sequential algorithm

- Programm: Select(k, S)

 if $|S| \leq 50$ then return k-th number in S

 Split S in $\lceil n/5 \rceil$ sub-sequences H_i of size ≤ 5

 Sort each H_i

 Let M be the sequence of the middle elements in H_i

 $m := \text{Select}(\lceil|M|/2\rceil, M)$

 $S_1 := \{s \in S \mid s < m\}$

 $S_2 := \{s \in S \mid s = m\}$

 $S_3 := \{s \in S \mid s > m\}$

 if $|S_1| \geq k$ then return $\text{Select}(k, S_1)$

 if $|S_1| + |S_2| \geq k$ then return m

 return $\text{Select}(k - |S_1| - |S_2|, S_3)$
Example for the k-th Element (Slow Motion)

Input/Data:

<table>
<thead>
<tr>
<th></th>
<th>61</th>
<th>76</th>
<th>58</th>
<th>37</th>
<th>96</th>
<th>31</th>
<th>49</th>
<th>50</th>
<th>9</th>
<th>70</th>
<th>18</th>
<th>29</th>
<th>18</th>
<th>30</th>
<th>68</th>
<th>4</th>
<th>48</th>
<th>82</th>
<th>11</th>
<th>46</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>78</td>
<td>40</td>
<td>38</td>
<td>24</td>
<td>33</td>
<td>58</td>
<td>82</td>
<td>35</td>
<td>33</td>
<td>90</td>
<td>54</td>
<td>10</td>
<td>44</td>
<td>46</td>
<td>49</td>
<td>38</td>
<td>30</td>
<td>14</td>
<td>29</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7</td>
<td>40</td>
<td>91</td>
<td>45</td>
<td>64</td>
<td>21</td>
<td>30</td>
<td>94</td>
<td>30</td>
<td>41</td>
<td>67</td>
<td>2</td>
<td>79</td>
<td>42</td>
<td>28</td>
<td>15</td>
<td>9</td>
<td>44</td>
<td>88</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>8</td>
<td>77</td>
<td>47</td>
<td>32</td>
<td>79</td>
<td>65</td>
<td>24</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>74</td>
<td>23</td>
<td>41</td>
<td>66</td>
<td>82</td>
<td>59</td>
<td>63</td>
<td>52</td>
<td>64</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td>44</td>
<td>48</td>
<td>72</td>
<td>82</td>
<td>12</td>
<td>16</td>
<td>51</td>
<td>2</td>
<td>22</td>
<td>42</td>
<td>41</td>
<td>56</td>
<td>55</td>
<td>72</td>
<td>42</td>
<td>67</td>
<td>64</td>
<td>61</td>
<td>90</td>
</tr>
</tbody>
</table>

M:

| | 61 | 8 | 44 | 47 | 45 | 64 | 49 | 30 | 33 | 30 | 22 | 42 | 23 | 46 | 55 | 38 | 42 | 63 | 44 | 61 | 50 |

sorted M:

| | 8 | 22 | 23 | 30 | 30 | 33 | 38 | 42 | 42 | 44 | 44 | 45 | 46 | 47 | 49 | 50 | 55 | 61 | 61 | 63 | 64 |
Example for the k-th Element

Input/Data:

```
4  60  16  28  89  56  97  8  11  94  7  0  86  51  40  16  78  67  55  49  39
90  56  21  3  31  35  47  18  52  50  69  93  94  26  32  11  37  33  44  82  10
97  56  72  49  87  70  95  83  74  70  28  94  13  92  80  26  80  94  53  11  21
41  1  89  2  2  89  14  55  85  65  32  11  60  43  10  48  18  18  60  55  57
31  33  75  68  56  22  54  22  1  11  8  16  89  60  70  38  16  57  70  56  62
```

M:

```
41  56  72  28  56  56  54  22  52  65  28  16  86  51  40  26  37  57  55  55  39
```

sorted M:

```
16  22  26  28  28  37  39  40  41  51  52  54  55  55  56  56  56  57  65  72  86
```
Example for the k-th Element (Worst Case)

Input/Data:

<table>
<thead>
<tr>
<th>60</th>
<th>76</th>
<th>56</th>
<th>75</th>
<th>51</th>
<th>94</th>
<th>86</th>
<th>78</th>
<th>78</th>
<th>84</th>
<th>63</th>
<th>51</th>
<th>93</th>
<th>63</th>
<th>88</th>
<th>54</th>
<th>76</th>
<th>82</th>
<th>87</th>
<th>63</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>69</td>
<td>56</td>
<td>62</td>
<td>50</td>
<td>85</td>
<td>94</td>
<td>90</td>
<td>60</td>
<td>73</td>
<td>84</td>
<td>94</td>
<td>90</td>
<td>93</td>
<td>85</td>
<td>67</td>
<td>81</td>
<td>66</td>
<td>60</td>
<td>85</td>
<td>88</td>
</tr>
<tr>
<td>44</td>
<td>31</td>
<td>0</td>
<td>17</td>
<td>13</td>
<td>0</td>
<td>18</td>
<td>33</td>
<td>39</td>
<td>34</td>
<td>11</td>
<td>75</td>
<td>65</td>
<td>84</td>
<td>68</td>
<td>62</td>
<td>78</td>
<td>85</td>
<td>51</td>
<td>75</td>
<td>88</td>
</tr>
<tr>
<td>38</td>
<td>17</td>
<td>22</td>
<td>2</td>
<td>21</td>
<td>16</td>
<td>25</td>
<td>24</td>
<td>21</td>
<td>0</td>
<td>16</td>
<td>87</td>
<td>84</td>
<td>94</td>
<td>51</td>
<td>73</td>
<td>78</td>
<td>67</td>
<td>66</td>
<td>58</td>
<td>66</td>
</tr>
<tr>
<td>33</td>
<td>8</td>
<td>21</td>
<td>4</td>
<td>6</td>
<td>20</td>
<td>12</td>
<td>11</td>
<td>14</td>
<td>36</td>
<td>38</td>
<td>66</td>
<td>64</td>
<td>92</td>
<td>50</td>
<td>57</td>
<td>57</td>
<td>67</td>
<td>64</td>
<td>63</td>
<td>66</td>
</tr>
</tbody>
</table>

M:

| 44 | 31 | 22 | 17 | 21 | 20 | 25 | 33 | 39 | 36 | 38 | 75 | 84 | 92 | 68 | 62 | 78 | 67 | 64 | 63 | 88 |

sorted M:

| 17 | 20 | 21 | 22 | 25 | 31 | 33 | 36 | 38 | 39 | 44 | 62 | 63 | 64 | 67 | 68 | 75 | 78 | 84 | 88 | 92 |
Running Time

- For some constants c, d we get:
 - $T(n) \leq d \cdot n$ for $n \leq 50$
 - $T(n) \leq c \cdot n + T(n/5) + T(3n/4)$

if $|S| \leq 50$ then return k-th number in S
Split S in $\lceil n/5 \rceil$ sub-sequences H_i of size ≤ 5
Sort each H_i
Let M be the sequence of the middle elements in H_i
\[m := \text{Select}(\lceil |M|/2 \rceil, M) \]
\[S_1 := \{ s \in S \mid s < m \} \]
\[S_2 := \{ s \in S \mid s = m \} \]
\[S_3 := \{ s \in S \mid s > m \} \]
if $|S_1| \geq k$ then return $\text{Select}(k, S_1)$
if $|S_1| + |S_2| \geq k$ then return m
return $\text{Select}(k - |S_1| - |S_2|, S_3)$
Claim: $T(n) \leq 20 \cdot r \cdot n$ with $r = \max(d, c)$.

Proof:

$n = 50$:

$$T(n) \leq c \cdot n + \frac{d \cdot n}{5} + \frac{3 \cdot d \cdot n}{4}$$

$n > 50$:

$$T(n) \leq c \cdot n + T\left(\frac{d \cdot n}{5}\right) + T\left(\frac{3 \cdot d \cdot n}{4}\right)$$

$$T(n) \leq c \cdot n + 4 \cdot r \cdot n + 15 \cdot r \cdot n$$

Running time $T(n)$ is in $O(n)$.
Parallel k-Select

- Input $S = \{s_1, \cdots, s_n\}$.
- Processors $P_1, P_2, \cdots P_{\lceil n^{1-x} \rceil}$, thus $P(n) = \lceil n^{1-x} \rceil$.
- Each P_i knows $n, P(n)$.
- Each P_i works on $\lceil n^x \rceil$ elements.
- We will now create a parallel version of the program Select(k,S).
- We will get a parallel recursive program.

1. Easy solution for small S.
2. Split S into small sub-sequences for the processors.
3. Compute parallel the median of the sub-sequences.
4. Compute parallel and recursive the median of medians.
5. Compute the splitting into the three sub-sequences.
6. Do the final recursion.
Example for the k-th Element

Input/Data:

43	22	69	12	21	9	83	26	45	66	42	78	27	96	85	46	53	36	41	48	93	61	52	59	2	72	24	33	28	77	87	89	36	43	42				
79	95	97	25	1	13	93	61	3	28	95	32	78	55	88	92	50	71	97	85	1	29	76	47	96	81	34	90	20	45	26	40	18	17	32				
9	94	29	27	81	60	81	8	34	89	65	91	97	82	48	64	39	82	63	94	23	33	51	38	10	41	14	61	84	37	66	58	34	95	48				
41	92	19	71	69	2	88	67	39	5	68	62	7	19	40	27	45	54	68	66	10	35	54	31	92	17	24	29	8	0	12	91	22	64	32				
31	14	28	34	89	88	45	57	77	51	31	52	85	42	29	33	21	7	32	66	50	24	66	21	39	73	57	93	6	26	2	91	30	81	45				
51	69	83	74	12	31	89	11	36	42	2	92	69	1	5	83	43	68	69	84	90	96	96	46	78	59	69	11	79	18	7	85	83	72	66				
76	94	19	12	60	60	87	93	7	81	86	16	87	58	57	34	83	89	87	5	82	9	20	66	81	14	13	5	18	45	15	48	60	69	56				
7	60	89	36	59	18	58	55	20	61	71	36	88	26	80	86	17	84	21	13	52	66	97	33	9	46	13	87	31	12	69	67	55	44	92				
50	49	67	35	32	70	77	17	24	70	64	84	40	37	5	26	62	74	84	46	28	20	92	66	64	76	64	23	28	3	30	95	37	51	72				
76	13	62	73	67	25	41	16	81	53	63	32	41	39	46	49	31	90	86	79	20	29	8	13	47	18	59	30	54	30	20	38	84	18	42				
88	42	92	78	44	89	91	50	83	39	78	91	52	63	68	34	67	43	91	59	24	63	23	69	13	79	58	56	86	69	88	78	69	7	69	23	20	88	63
44	10	64	13	69	80	9	12	87	37	74	49	20	28	51	64	1	22	76	23	31	79	58	56	86	69	88	78	69	7	69	23	20	88	63				
87	12	56	72	24	54	10	20	39	68	77	77	87	44	25	70	34	3	23	75	97	53	23	20	19	58	18	86	97	60	3	49	44	47	18				
76	54	73	35	60	1	94	38	97	7	55	69	12	37	68	87	89	24	75	21	89	35	51	16	1	93	92	54	63	72	6	69	57	2	39				
23	74	72	74	28	33	51	0	56	77	54	0	90	33	31	11	70	1	78	31	17	22	39	16	24	95	63	74	23	38	40	59	2	79	64				

\[P_1 \quad P_2 \quad P_3 \quad P_4 \quad P_5 \quad P_6 \quad P_7 \quad P_8 \quad P_9 \quad P_{10} \quad P_{11} \quad P_{12} \quad P_{13} \quad P_{14} \quad P_{15} \quad P_{16} \quad P_{17} \quad P_{18} \quad P_{19} \quad P_{20} \quad P_{21} \quad P_{22} \quad P_{23} \quad P_{24} \quad P_{25} \quad P_{26} \quad P_{27} \quad P_{28} \quad P_{29} \quad P_{30} \quad P_{31} \quad P_{32} \quad P_{33} \quad P_{34} \quad P_{35} \]

M:

| 50 | 54 | 67 | 35 | 59 | 33 | 81 | 26 | 39 | 53 | 65 | 52 | 69 | 39 | 46 | 64 | 45 | 54 | 69 | 48 | 31 | 35 | 54 | 38 | 39 | 59 | 57 | 59 | 59 | 64 | 65 | 66 | 67 | 69 | 69 | 81 |

sorted M:

| 21 | 26 | 28 | 31 | 33 | 35 | 35 | 36 | 37 | 38 | 39 | 39 | 45 | 45 | 46 | 48 | 50 | 51 | 52 | 53 | 54 | 54 | 54 | 54 | 57 | 59 | 59 | 64 | 65 | 66 | 67 | 69 | 69 | 81 |
Parallel k-Select

Programm: ParSelect(k,S)
1: \[
\text{if } |S| \leq k_1 \text{ then } P_1 \text{ returns } Select(k, S).
\]
2: \[
S \text{ is split into } \left\lceil |S|^{1-x} \right \rceil \text{ sub-sequences } S_i \text{ with } |S_i| \leq \left\lceil n^x \right \rceil \text{.}
\]
P_i \text{ stores the start-address of } S_i.
3: \[
\text{for all } P_i \text{ where } 1 \leq i \leq \left\lceil n^{1-x} \right \rceil \text{ do in parallel}
\]
\[
m_i := Select(\left\lceil |S_i|/2 \right \rceil, S_i)
\]
\[
P_i(m_1) \rightarrow R_i.
\]
Assume in the following that M is the sequence of these values.
4: \[
m := ParSelect(\left\lceil |M|/2 \right \rceil, M).
\]
5: More to come!
Motivation and History

PRAM Introduction

Efficiency

Selection

Merging

1:50 Algorithm and Running Time

Walter Unger 28.11.2016 8:54 WS2016/17

WSH

Parallel k-Select

Programm: ParSelect(k,S) Steps 5

5.1:

Distribute m via broadcast to all P_i.

for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel

$L_i := \{ s \in S_i \mid s < m \}$

$E_i := \{ s \in S_i \mid s = m \}$

$G_i := \{ s \in S_i \mid s > m \}$

5.2:

Compute with Parallel Prefix:

$l_i := \sum_{j=1}^{i} |L_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

$e_i := \sum_{j=1}^{i} |E_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

$g_i := \sum_{j=1}^{i} |G_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

Let: $l_0 = e_0 = g_0 = 0$

5.3:

Even more to come!
Parallel k-Select

Programm: ParSelect(k, S) Steps 5+6

5.3:
Compute $L = \{ s \in S \mid s < m \}$, $E = \{ s \in S \mid s = m \}$ and $G = \{ s \in S \mid s > m \}$ as follows:
for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel
- P_i writes L_i in $R_{l_{i-1}+1}, \ldots, R_{l_i}$.
- P_i writes E_i in $R_{e_{i-1}+1}, \ldots, R_{e_i}$.
- P_i writes G_i in $R_{g_{i-1}+1}, \ldots, R_{g_i}$.

6:
if $|L| \geq k$ then return ParSelect(k, L)
if $|L| + |E| \geq k$ then return m
return Select($k - |L| - |E|, G$)
Parallel k-Select (Running Time)

Programm: ParSelect(k,S)

1: $O(1)$
 if $|S| \leq k_1$ then P_1 returns $Select(k, S)$.

2: $O(\log_2(|S|^{1-x}))$ thus we have $O(\log n)$
 S is split into $\lceil |S|^{1-x} \rceil$ sub-sequences S_i with $|S_i| \leq \lceil n^x \rceil$
 P_i stores the start-address of S_i.

3: $O(n^x)$
 for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel
 $m_i := Select(\lceil |S_i|/2 \rceil, S_i)$
 $P_i(m_1) \rightarrow R_i$.
 Assume in the following that M is the sequence of these values

4: $T_{ParSelect}(n^{1-x})$
 $m := ParSelect(\lceil |M|/2 \rceil, M)$.
Parallel k-Select (Running Time)

Programm: ParSelect(k,S) Steps 5

5.1a: $O(\log_2(n^{1-x}))$

Distribute m via broadcast to all P_i.

5.1b: $O(|S_i|)$ thus we have $O(n^x)$

for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel

$L_i := \{ s \in S_i \mid s < m \}$

$E_i := \{ s \in S_i \mid s = m \}$

$G_i := \{ s \in S_i \mid s > m \}$

5.2: $O(\log_2(n^{1-x}))$

Compute with Parallel Prefix:

$l_i := \sum_{j=1}^i |L_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

$e_i := \sum_{j=1}^i |E_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

$g_i := \sum_{j=1}^i |G_i|$ for all $1 \leq i \leq \lceil n^{1-x} \rceil$.

Let: $l_0 = e_0 = g_0 = 0$
Parallel k-Select (Running Time)

Programm: ParSelect(k,S) Steps 5+6

5.3: $O(n^x)$

Compute $L = \{s \in S \mid s < m\}$, $E = \{s \in S \mid s = m\}$ and $G = \{s \in S \mid s > m\}$ as follows:

for all P_i where $1 \leq i \leq \lceil n^{1-x} \rceil$ do in parallel

P_i writes L_i in $R_{l_{i-1}+1}, \ldots, R_{l_i}$.
P_i writes E_i in $R_{e_{i-1}+1}, \ldots, R_{e_i}$.
P_i writes G_i in $R_{g_{i-1}+1}, \ldots, R_{g_i}$.

6: $T_{ParSelect}(3 \cdot n/4)$

if $|L| \geq k$ then return $ParSelect(k, L)$
if $|L| + |E| \geq k$ then return m
return $Select(k - |L| - |E|, G)$
Parallel k-Select (Running Time)

Adding all up we get:

- \(T_{ParSelect}(n) = c_1 \log n + c_2 \cdot n^x + T_{ParSelect}(n^{1-x}) + T_{ParSelect}(3/4 \cdot n). \)
- \(T_{ParSelect}(n) = O(n^x) \) with \(P_{ParSelect}(n) = O(n^{1-x}). \)
- \(Eff_{ParSelect}(n) = \frac{O(n)}{O(n^x) \cdot O(n^{1-x})} = O(1) \)
Sequential Merging

- **Input:**
 \[A = (a_1, a_2, \cdots, a_r) \text{ and } B = (b_1, b_2, \cdots, b_s) \] two sorted sequences

- **Output:**
 \[C = (c_1, c_2, \cdots, c_n) \] sorted sequence of \(A \) and \(B \) with \(n = r + s \).

- **Program:** Merge

 \[
 i := 1; j := 1; n := r + s \\
 \text{for } k := 1 \text{ to } n \text{ do} \\
 \quad \text{if } a_i < b_j \\
 \quad \quad \text{then } c_k := a_i; i := i + 1; \\
 \quad \quad \text{else } c_k := b_j; j := j + 1;
 \]

- Algorithm does not care about special cases.

- **Running time:** at most \(r + s \) comparisons, i.e. \(O(n) \).

- **Lower bound on the number of comparisons is** \(r + s \), i.e. \(\Omega(n) \).
Idea for Parallel Merging (CREW)

- The border lines may not intersect each other.
- Thus we may separate the two sequences into disjoint blocks.
- Let A_i the i block of size $\lceil r/p \rceil$.
- Let \hat{B}_i block in B which should be merged with A_i.
- Thus we may uses a PRAM easily (in this case).
Idea for Parallel Merging (CREW)

- Let A_i [resp. B_i] the i block of size $\lceil r/p \rceil$ [resp. $\lceil s/p \rceil$].
- Let \hat{B}_i [resp. A_i] block in B [resp. A] which should be merged with A_i [resp. B_i].
- P_i cares about A_i and \hat{B}_i if $|\hat{B}_i| \leq \lceil r/p \rceil$.
- Let C be those where one P_j takes already care of.
- P_i cares about $A_i \setminus C$ and $\hat{B}_i \setminus C$.
Parallel Merging (CREW)

1. Use $P(n)$ processors.
2. Each processor P_i computes for $A[B]$ its part of size $r/P(n) [s/P(n)]$.
3. Each processor P_i computes the part from $B[A]$ which should be merged with its A-block [B-block].
4. Each processor computes its A or B block, where only he is responsible for.
5. This block has size $O(n/P(n))$.
6. Each processor merges its block into the resulting sequence.
7. Time: $O(\log n + n/P(n))$.
8. Efficiency
 \[
 \frac{n}{O(P(n)) \cdot O(\log n + n/P(n))}.
 \]
9. Efficiency is 1 for $P(n) \leq n/\log n$.
Do some splitting into pairs of blocks of the same size.
Rekursive splitting into pairs of blocks of the same size.
Thus we may avoid read conflicts.
Merging (EREW)

1. Use $P(n)$ processors.
2. Compute the median m of the sequences A and B.
3. Split the sequences A and B in two sub-sequences each of the “same” size ($-1 \leq |A| - |B| \leq 1$).
4. Continue recursively, till all sub-sequences are smaller than $n/P(n)$.
5. Do the merging in the same way as before.

Remaining problem: Find the median of two sequences.
Example for the Median for two Sorted Sequences

- Sequences A and B are sorted.
- Compute median a of A and median b of B.
Median for two Sorted Sequences

1. Sequences A and B are sorted.
2. Compute median a of A and median b of B.
3. Median $a \ [b]$ splits $A \ [B]$ into half.
4. The median of A and B is in one block-pair of the four blocks.
5. Search recursively for the median.

Running time: $O(\log n)$
Running Time for Merging (EREW)

1. Use $P(n)$ processors.
2. Compute the median m of the sequences A and B. $O(\log n)$
3. Split the sequences A and B in two sub-sequences each.
4. Continue recursively, till all sub-sequences are smaller than $n/P(n)$. $O(\log n \cdot \log(P(n)))$
5. Merge in the same way as before. $O(n/P(n))$

Running time: $O(n/P(n) + \log(n)^2)$.

Efficiency

$$\frac{O(n)}{O(P(n)) \cdot O(n/P(n) + \log(n)^2)} = \frac{O(n)}{O(n + P(n) \cdot \log(n)^2)}.$$

Efficiency is 1 for $P(n) < \frac{n}{(\log n)^2}$.
Questions

- Explain the motivation behind parallel systems.
- Describe the different models of a PRAM.
- Describe idea of the k-select algorithm.
- For which problems do the running time of CWCR and EWCR algorithms differ?
Legende

- : Nicht relevant
- : Grundlagen, die implizit genutzt werden
- : Idee des Beweises oder des Vorgehens
- : Struktur des Beweises oder des Vorgehens
- : Vollständiges Wissen