Inhalt 1

1. **Sorting**
 - Simple Sorting Algorithm
 - Improved Algorithm

2. **Introduction to optimal Sorting**

3. **Algorithm of Cole**
 - Lower Bound
 - Batchers Sorting Algorithm
 - Sorting
 - Idea
Very simple Algorithm (Idea)

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

| | | | |
|---|---|---|
| 34 | 12 | 14 | 56 |
| 23 | 67 | 49 | 27 |
| 61 | 52 | 57 | 59 |
| 26 | 41 | 33 | 22 |
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \ldots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

 if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel

 for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel

 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.

 $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = \mathcal{O}(\log n)$ and $P(n) = n^2$.
- Efficiency: $\frac{O(n \log n)}{n^2 \cdot \mathcal{O}(\log n)} = \mathcal{O}(\frac{1}{n})$.
- Model: CREW.
Improved Algorithm for CREW

- Work with \(P(n) \) processors \((P(n) \leq n)\).
- Split the input in blocks of size \(O(n/P(n)) \). \(O(1) \)
- Sort parallel each block. \(O(n/P(n) \cdot \log(n/P(n))) \)
- Merge the blocks pairwise and parallel. \(O(n/P(n) + \log n) \cdot O(\log P(n)) \)

Complexity: \(T(n) = O(n/P(n) \cdot \log n + \log^2 n) \).

Efficiency: \(Eff(n) = \)

\[
\frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}
\]

- Is \(O(1) \) for \(P(n) \leq n/ \log n \).
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}(\text{EREW})}(n) = \lceil sO(n/p(n) + \log n \cdot \log P(n)) \rceil$.
- $T(n) = O(n/p(n) \cdot \log(n/p(n)) + O(n/p(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/p(n) + \log^2 n) \cdot \log n)$
- Efficiency:

 $$\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/p(n) + \log^2 n) \cdot \log n))}$$

 - Is $O(1)$ if $P(n) < n/\log^2 n$.
Theorem:

For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \ldots, s_n.
- **Programm:** `compare_exchange(i, j)
 if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$

- **Symbolic view (Batcher):**

 \[
 \begin{align*}
 y & \quad \max(x, y) \\
 x & \quad \min(x, y)
 \end{align*}
 \]

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Odd-even Merge (Definition)

- Input: Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. n even)
- Let $Odd(S)$ [$Even(S)$] be the elements of S with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $\text{interleave}(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

$T_{\text{interleave}}(n) = O(1)$ mit $P_{\text{interleave}}(n) = O(n)$
Odd-even Merge (Definition)

- **Programm: odd_even(S)**
 - for all i where $1 < i < n$ and i even do in parallel
 - compare_exchange$(i, i + 1)$.

- $T_{\text{compare_exchange}}(n) = O(1)$ mit $P_{\text{compare_exchange}}(n) = O(n)$
Odd-even Merge (Definition)

Programm: \(\text{join1}(S, S') \)

\[\text{odd_even(\text{interleave}(S, S'))} \]

\[T_{\text{join1}}(n) = O(1) \text{ mit } P_{\text{join1}}(n) = O(n) \]
Sorting with Merging

- **Programm:** `odd_even_merge(S, S')`

  ```
  if |S| = |S'| = 1 then merge with `compare_exchange`.
  S_{odd} = odd_even_merge(odd(S), odd(S')).
  S_{even} = odd_even_merge(even(S), even(S')).
  return `join1(S_{odd}, S_{even}).`
  ```

 - **Time Complexity:**

 \[T_{odd_even_merge}(n) = O(\log n) \quad \text{mit} \quad P_{odd_even_merge}(n) = O(n) \]

- **Theorem:**

 The algorithm `odd_even_merge` sorts two already sorted sequences into one.

 Proof follows.
Theorem:

There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

Theorem:

There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to \texttt{compare_exchange} operation are independent form the input (oblivious algorithm).
The 0-1 Principle

Theorem:

If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \cdots, a_n) to (b_1, b_2, \cdots, b_n), then if X gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
Theorem:
The algorithm odd_even_merge sorts two sorted sequences into a single one.

Proof:

- S has the form: $S = 0^p 1^{m-p}$ for some p with $0 \leq p \leq m$.
- S' has the form: $S' = 0^q 1^{m'-q}$ for some q with $0 \leq q \leq m'$.
- Thus the sequence S_{odd} has the form $0^{\lceil p/2 \rceil + \lfloor q/2 \rfloor} 1^*$.
- And S_{even} has the form $0^{\lfloor p/2 \rfloor + \lceil q/2 \rceil} 1^*$.
- Definiere: $d = \lceil p/2 \rceil + \lfloor q/2 \rfloor - (\lfloor p/2 \rfloor + \lceil q/2 \rceil)$
- Depending on d we consider three cases: $d = 0$, $d = 1$ and $d = 2$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.
 - The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'-p-q}
 \]
 - The resulting sequences is already sorted.
 - The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.
 - The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}01^{m+m'-p-q}
 \]
 - The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.
 - The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}101^{m+m'-p-q}
 \]
 - The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Testing the Correctness of a Network

Corollary:
The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p 1^{m-p}, 0^q 1^{m'-q})$.

Theorem:
The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- i.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
The Merging-Tree, a View

Each Processor starts with 256 elements

↑ each ↑

Each Processor starts with 256 elements
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $rng(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $Rng_{A,B}$ is the function $Rng_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $Rng_{A,B}(e) = rng(e, B)$ for all $e \in A$.
- $Rng_{A,B}$ is called the rank between A and B.
- Depending on the context $Rng_{A,B}$ could also be an array with $|A|$ elements.
Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Definition:

We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:

- Let \(S \) be a sorted sequence
- Let \(S_1 \) be the sequence consisting of each forth element of \(S \).
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- Example (\(k = 1 \)): \(1, 2, 3, 4 \).
- Example (\(k = 3 \)): \(1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \).
Merging using a Good Sampler

Let J, K and L be sorted sequences.

Let L be a good sampler of both J and K.

Let $L = (l_1, l_2, \ldots, l_s)$.

Programm: $\text{merge_with_help}(J, K, L)$

- for all i where $1 \leq i \leq s$ do in parallel
 - Assign $J_i = \{x \in J \mid l_{i-1} < x \leq l_i\}$.
 - Assign $K_i = \{x \in K \mid l_{i-1} < x \leq l_i\}$.
 - Assign $\text{res}_i = \text{merge}(J_i, K_i)$.

return $(\text{res}_1, \text{res}_2, \ldots, \text{res}_s)$.

Situation:

<table>
<thead>
<tr>
<th></th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
<th>L_5</th>
<th>L_6</th>
<th>L_7</th>
<th>L_8</th>
<th>L_9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>l_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Merging using a Good Sampler (Example)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{\mid A\mid} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>merge((K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>(\emptyset)</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) \)
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(L \) is a good sampler for \(K \) and \(J \).

If \(\text{Rng}_{L,J}, \text{Rng}_{L,K}, \text{Rng}_{K,L} \) and \(\text{Rng}_{J,L} \) is known, then we have:

\[T_{\text{merge_with_help}(J,K,L)} = O(1) \text{ with } P_{\text{merge_with_help}(J,K,L)} = O(|J| + |K|). \]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \(\text{Rng}_{L,J} \) resp. \(\text{Rng}_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(\text{Rng}_{J,L} \) and \(\text{Rng}_{K,L} \) to know the area to write its output sequence.
Properties of Good Samplers

Lemma:
If X is a good sampler for X' and
Y is a good sampler for Y', then
merge(X, Y) is a good sampler for X' [resp. Y'].

Proof:
- Consider X as a good sampler for X'.
- Any additional element make the good sampler just "better".

Note:
merge(X, Y) is not necessary a sampler for merge(X', Y').
- $X = (2, 7)$ and $X' = (2, 5, 6, 7)$.
- $Y = (1, 8)$ and $Y' = (1, 3, 4, 8)$.
- merge$(X, Y) = (1, 2, 7, 8)$ and merge$(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8)$.
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

Let \(X \) be a good sampler for \(X' \) and let \(Y \) be a good sampler for \(Y' \).

Then there are at most \(2 \cdot r + 2 \) elements of \(\text{merge}(X', Y') \) between \(r \) successive elements of \(\text{merge}(X, Y) \).

Proof:

- W.l.o.g. contain \(X \) and \(Y \) elements \(-\infty\) and \(+\infty\).
- Let \((e_1, e_2, \cdots, e_r)\) successive elements of \(\text{merge}(X, Y) \).
- W.l.o.g. let \(e_1 \in X \).
- Consider now two cases: \(e_r \in X \) and \(e_r \in Y \).
- Let in the following be

\[
\begin{align*}
 x &= |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \\
 y &= |Y \cap \{e_1, e_2, \cdots, e_r\}|.
\end{align*}
\]
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\).

If \(e_r \in X\)

- Between \(e_1\) and \(e_r\) are at most \(2(x - 1) + 1\) elements of \(X'\).
- Between \(e_1\) and \(e_r\) are at most \(2(y + 1) + 1\) elements of \(Y'\), because they are between \(y + 2\) elements of \(Y\).
- Thus we get: \(2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2\).

Example \(x = 3\) and \(y = 2\):

\[
a \in Y \quad e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X \quad b \in Y
\]
Properties of Good Samplers

Let \((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \cdots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \cdots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\[
e_0 \in Y \quad e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X
\]
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let $\text{reduce}(X)$ be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
We start with an explanation using a complete binary tree.

The leave contain the elements to be sorted.

Interior nodes \(v \) “cares” about as many elements as the number of leaves below \(v \).

A node \(v \) receives from its sons sequences of already sorted sequences.

The “length” of the sequences doubles each time.

Node \(v \) receives sequences \(X_1, X_2, \cdots, X_r \) and \(Y_1, Y_2, \cdots, Y_r \).

Node \(v \) sends to his father sequences \(Z_1, Z_2, \cdots, Z_r, Z_{r+1} \).

Node \(v \) updates a interior help-sequence \(val_v \).

It holds: \(|X_1| = |Y_1| = |Z_1| = 1 \).

It holds: \(|X_i| = 2 \cdot |X_{i-1}|, \quad |Y_i| = 2 \cdot |Y_{i-1}| \) and \(|Z_i| = 2 \cdot |Z_{i-1}| \).
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = merge_with_help(X, Y, val_v)$.
- Sends to its father: $reduce(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
Basic operation of a interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = merge_with_help(X, Y, val_v)$.
- Sends to its father: $reduce(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Thus we get the following pattern:

$$
\begin{align*}
X_1 & \quad X_2 & \quad X_3 & \quad X_4 & \quad \cdots & \quad X_r \\
Z_1 & \quad Z_2 & \quad \cdots & \quad Z_r & \quad Z_{r+1} & \quad Z_{r+2}
\end{align*}
$$

- If a node x is finished after t steps, then will the father of x be finished after $t + 3$ steps.
- Thus we get a running time of $3\log n$.
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1$.
Running time is $O(\log n)$.

The inner nodes v need $|val_v|$ many processors.

We still have to proof that the number of processors is in $O(n)$.

PRAM Model has to be verified.

Important: The computation of the values $Rng_{X,Y}$ has to be shown.

These values will be in the following also transmitted and updated.
Computing the Ranks

- In each step will compute: $\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i))$.
- Using the Lemma from above we have: $\text{merge}(X_i, Y_i)$ is a good sampler of X_{i+1} and Y_{i+1}.
- Let $L = \text{merge}(X_i, Y_i)$, $J = X_{i+1}$ and $K = Y_{i+1}$.
- We have to compute: $\text{Rng}_{L,J}$, $\text{Rng}_{L,K}$, $\text{Rng}_{J,L}$ and $\text{Rng}_{K,L}$.

Invariant:

- Let S_1, S_2, \cdots, S_p be a sequence of sequences at node v.
- Then node c also knows: $\text{Rng}_{S_{i+1}, S_i}$ for $1 \leq i < p$.
- Furthermore for each sequence S is known: $\text{Rng}_{S,S}$.
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \ldots, b_k)$ be a sorted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using k processors.

Proof:
- **Programm: rng1(a,S)**
 - **for all** P_i **where** $1 \leq i \leq k$ **do in parallel**
 - **if** $b_i < a \leq b_{i+1}$ **then return** i

 .
- **Note**, the program has no write-conflicts.
- **Note**, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let S_1, S_2, S be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute Rnk_{S_1, S_2} and Rnk_{S_2, S_1} in time $O(1)$ using $O(|S|)$ processors.

Proof:
- We do know $\text{Rnk}_{S, S}$, Rnk_{S_1, S_1} and Rnk_{S_2, S_2}.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

\[
\text{Programm: Rnk}_{X', U} \\
\text{for all } i \text{ where } 1 \leq i \leq k + 1 \text{ do in parallel} \\
\quad \text{for all } x \in X'_i \text{ do} \\
\quad \quad \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)
\]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.
Computing the Ranks \((\text{Rnk}_{U,X'})\)

- Note: \(\text{Rnk}_{U,X'}\) consists of \(\text{Rnk} \ X, X'\) and \(\text{Rnk} \ Y, X'\).
- \(\text{Rnk} \ X, X'\) is already known.
- Still to compute: \(\text{Rnk} \ Y, X'\).
- \(\text{Rnk} \ Y, X\) may be computed using the previous lemma.
- We compute \(\text{rnk}(a, X')\) using \(\text{rnk}(a, X)\) and \(\text{Rnk}_{X,X'}\).
- Thus we compute \(\text{Rnk}_{U,X'}\) with \(O(|U|)\) processors and time \(O(1)\).
Computing the Ranks

- Consider the step
 \(\text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \):

- Using the invariant we know: \(Rnk_{J,X_i} \) and \(Rnk_{K,Y_i} \).

- Using the above considerations we may compute: \(Rnk_{L,J} \), \(Rnk_{L,K} \), \(Rnk_{J,L} \) and \(Rnk_{K,L} \).

- Still to be computed: \(Rnk_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

- Known: \(Rnk_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \(Rnk_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \(Rnk_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \(Rnk_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \(Rnk_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).

We have \(\text{rnk}(a, S) \) and \(Rnk_{S_1, S_2} \) and \(Rnk_{S_2, S_1} \).
Algorithmn of Cole

Theorem:
We may sort \(n \) values on a CREW PRAM using \(O(n) \) processors in time \(O(\log n) \).

Proof: discussed before.

Theorem:
We may sort \(n \) values on a EREW PRAM using \(O(n) \) processors in time \(O(\log n) \).

Proof: see literature.

Theorem:
There exists a sorting network with \(O(n) \) processors and depth \(O(\log n) \).

Proof: see literature.
we have $\text{rnk}(a, S)$ and rnk_{S_1, S_2} and rnk_{S_2, S_1}.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Legende

■ : Nicht relevant
■ : Grundlagen, die implizit genutzt werden
■ : Idee des Beweises oder des Vorgehens
■ : Struktur des Beweises oder des Vorgehens
■ : Vollständiges Wissen