Kapitel 2
Sorting with a PRAM

Walter Unger

Lehrstuhl für Informatik 1

<table>
<thead>
<tr>
<th>Inhalt I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sorting</td>
</tr>
<tr>
<td></td>
<td>• Simple Sorting Algorithm</td>
</tr>
<tr>
<td></td>
<td>• Improved Algorithm</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to optimal Sorting</td>
</tr>
<tr>
<td>3</td>
<td>Algorithmn of Cole</td>
</tr>
<tr>
<td></td>
<td>• Idea</td>
</tr>
<tr>
<td></td>
<td>• Lower Bound</td>
</tr>
<tr>
<td></td>
<td>• Batchers Sorting Algorithm</td>
</tr>
<tr>
<td></td>
<td>• Sorting</td>
</tr>
</tbody>
</table>
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th>22</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>3</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

| 34 | 12 | 14 | 56 | 23 | 67 | 49 | 27 | 61 | 52 | 57 | 59 | 26 | 41 | 33 | 22 |
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.
- Programm: SimpleSort
 Eingabe: s_1, \ldots, s_n.
 for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
 if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$
 for all i where $1 \leq i \leq n$ do in parallel
 for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel
 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.
 $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.
- Model: CREW.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel. $O(n/P(n) + \log n) \cdot O(\log P(n))$

- Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.
- Efficiency: $\text{Eff}(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

 - Is $O(1)$ for $P(n) \leq n/\log n$.
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}(EREW)}(n) = \mathcal{O}(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = \mathcal{O}(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = \mathcal{O}((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

$$\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}$$

- Is $O(1)$ if $P(n) < n/\log^2 n$.
Theorem:

For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \ldots, s_n.
- Program: `compare_exchange(i,j)`

  ```
  if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
  ```

- Symbolic view (Batcher):

 $\begin{align*}
 y &= \text{max}(x, y) \\
 x &= \text{min}(x, y)
 \end{align*}$

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Odd-even Merge (Definition)

- Input: Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. n even)
- Let $Odd(S)$ [$Even(S)$] be the elements of S with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $\text{interleave}(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

![Diagram of interleave](attachment:image.png)

- $T_{\text{interleave}}(n) = O(1)$ mit $P_{\text{interleave}}(n) = O(n)$
Odd-even Merge (Definition)

- **Programm: odd_even(S)**
  ```plaintext
  for all i where 1 < i < n and i even do in parallel
  compare_exchange(i, i + 1).
  ```

- \(T_{compare_exchange}(n) = O(1) \) mit \(P_{compare_exchange}(n) = O(n) \)
Odd-even Merge (Definition)

Programm: $\text{join}_1(S, S')$

$\text{odd_even}(\text{interleave}(S, S'))$

$T_{\text{join}_1}(n) = O(1)$ mit $P_{\text{join}_1}(n) = O(n)$
Sorting with Merging

- **Programm: odd_even_merge(S, S')**
 - if $|S| = |S'| = 1$ then merge with *compare_exchange*.
 - $S_{odd} = odd_even_merge(odd(S), odd(S'))$.
 - $S_{even} = odd_even_merge(even(S), even(S'))$.
 - return $join1(S_{odd}, S_{even})$.

- $T_{odd_even_merge}(n) = O(\log n)$ mit $P_{odd_even_merge}(n) = O(n)$

Theorem:
The algorithm *odd_even_merge* sorts two already sorted sequences into one.

Proof follows.
Theorem:

There exists a sorting algorithm with \(T(n) = O(\log^2 n) \) and \(P(n) = n \).

Proof: use divide and conquer, and merging of depth \(O(\log n) \).

Theorem:

There exists a sorting network of size \(O(n \log^2 n) \).

Proof: All calls to \textit{compare_exchange} operation are independent from the input (oblivious algorithm).
The 0-1 Principle

Theorem:
If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \cdots, a_n) to (b_1, b_2, \cdots, b_n), then if X gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
Correctness of the Merging

Theorem:
The algorithm `odd_even_merge` sorts two sorted sequences into a single one.

Proof:
- S has the form: $S = 0^p 1^{m-p}$ for some p with $0 \leq p \leq m$.
- S' has the form: $S' = 0^q 1^{m'-q}$ for some q with $0 \leq q \leq m'$.
- Thus the sequence S_{odd} has the form $0^{\lceil p/2 \rceil + \lceil q/2 \rceil} 1^*$
- And S_{even} has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor} 1^*$.
- Define: $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$
- Depending on d we consider three cases: $d = 0$, $d = 1$ and $d = 2$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.

- The `interleave` step of `join1` has the form:

$$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'-p-q}$$

- The resulting sequences is already sorted.
- The `compare_exchange` step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.

- The `interleave` step of `join1` has the form:

$$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}01^{m+m'-p-q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.

- The `interleave` step of `join1` has the form:

$$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}101^{m+m'-p-q}$$

- The `compare_exchange` step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Testing the Correctness of a Network

Corollary:
The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p 1^{m-p}, 0^q 1^{m'-q})$.

Theorem:
The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
The Merging-Tree, a View
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final mergeing.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
The Merging-Tree, a View

Each Prozessor starts with 256 elements
Let J and K be two sorted sequences.

Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.

Let L be a third sequence, which will be called in the following good sampler for J and K.

Informal: $|L| < |J|$ and the elements of L are evenly spread in J.

Let $a < b$, c is between a and b iff $a < c \leq b$.

The rank of e in S is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.

Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.

$\text{Rng}_{A,B}$ is called the rank between A and B.

Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Good Sampler

Definition:

We call L a good sampler of J, iff:

- L and J are sorted.
- Between any $k + 1$ succeeding elements of $\{-\infty\} \cup L \cup \{+\infty\}$ are at most $2 \cdot k + 1$ many elements in J.

Example:

- Let S be a sorted sequence.
- Let S_1 be the sequence consisting of each forth element of S.
- Then S_1 is a good sampler of S.
- Let S_2 be the sequence consisting of each second element of S.
- Then S_1 is a good sampler of S_2.
- Example ($k = 1$): 1, 2, 3, 4.
- Example ($k = 3$): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Merging using a Good Sampler

\[
\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B)
\]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).
- **Programm:** `merge_with_help(J, K, L)`

 for all \(i \) where \(1 \leq i \leq s \) **do in parallel**

 Assign \(J_i = \{x \in J \mid l_{i-1} < x \leq l_i\} \).

 Assign \(K_i = \{x \in K \mid l_{i-1} < x \leq l_i\} \).

 Assign \(\text{res}_i = \text{merge}(J_i, K_i) \).

return \((\text{res}_1, \text{res}_2, \cdots, \text{res}_s)\).

Situation:

<table>
<thead>
<tr>
<th></th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
<th>L_5</th>
<th>L_6</th>
<th>L_7</th>
<th>L_8</th>
<th>L_9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>l_1</td>
<td></td>
<td></td>
<td></td>
<td>l_9</td>
</tr>
<tr>
<td>(K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_1</td>
<td>K_2</td>
<td>K_3</td>
<td>K_4</td>
<td>K_5</td>
<td>K_6</td>
<td>K_7</td>
<td>K_8</td>
<td>K_9</td>
<td></td>
</tr>
</tbody>
</table>
Merging using a Good Sampler (Example)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>(\text{merge}(K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>(\emptyset)</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{ x \in S \mid x < e \}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(L \) is a good sampler for \(K \) and \(J \).
If \(Rng_{L,J}, Rng_{L,K}, Rng_{K,L} \) and \(Rng_{J,L} \) is known, then we have:
\[
T_{\text{merge_with_help}(J,K,L)} = O(1) \text{ with } P_{\text{merge_with_help}(J,K,L)} = O(|J| + |K|).
\]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \(Rng_{L,J} \) resp. \(Rng_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(Rng_{J,L} \) and \(Rng_{K,L} \) to know the area to write its output sequence.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(X \) is a good sampler for \(X' \) and \(Y \) is a good sampler for \(Y' \), then \(\text{merge}(X, Y) \) is a good sampler for \(X' \) [resp. \(Y' \)].

Proof:

- Consider \(X \) as a good sampler for \(X' \).
- Any additional element make the good sampler just "better".

Note:

\(\text{merge}(X, Y) \) is not necessary a sampler for \(\text{merge}(X', Y') \).

- \(X = (2, 7) \) and \(X' = (2, 5, 6, 7) \).
- \(Y = (1, 8) \) and \(Y' = (1, 3, 4, 8) \).
- \(\text{merge}(X, Y) = (1, 2, 7, 8) \) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

Let \(X \) be a good sampler for \(X' \) and let \(Y \) be a good sampler for \(Y' \). Then there are at most \(2 \cdot r + 2 \) elements of \(\text{merge}(X', Y') \) between \(r \) successive elements of \(\text{merge}(X, Y) \).

Proof:

- W.l.o.g. contain \(X \) and \(Y \) elements \(-\infty\) and \(+\infty\).
- Let \((e_1, e_2, \cdots, e_r)\) successive elements of \(\text{merge}(X, Y) \).
- W.l.o.g. let \(e_1 \in X \).
- Consider now two cases: \(e_r \in X \) and \(e_r \in Y \).
- Let in the following be

\[
\begin{align*}
 x &= |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \\
 y &= |Y \cap \{e_1, e_2, \cdots, e_r\}|.
\end{align*}
\]
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of \(\text{merge}(X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of \(\text{merge}(X', Y')\) between \(r\) successive elements of \(\text{merge}(X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\).

If: \(e_r \in X\)

- Between \(e_1\) and \(e_r\) are at most \(2(x - 1) + 1\) elements of \(X'\).
- Between \(e_1\) and \(e_r\) are at most \(2(y + 1) + 1\) elements of \(Y'\), because they are between \(y + 2\) elements of \(Y\).

Thus we get: \(2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2\).

Example \(x = 3\) and \(y = 2\):

\[a \in Y \quad e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X \quad b \in Y\]
Properties of Good Samplers

Let \((e_1, e_2, \ldots, e_r) \) successive elements of \(\text{merge}(X, Y) \) and \(x = |X \cap \{e_1, e_2, \ldots, e_r\}| \) and \(y = |Y \cap \{e_1, e_2, \ldots, e_r\}| \) and

Lemma:

Let \(X \) be a good sampler for \(X' \) and let \(Y \) be a good sampler for \(Y' \). Then there are at most \(2 \cdot r + 2 \) elements of \(\text{merge}(X', Y') \) between \(r \) successive elements of \(\text{merge}(X, Y) \).

Proof: W.l.o.g. let \(e_1 \in X \). If: \(e_r \in Y \)

- Add \(e_0 \in Y \) with \(e_0 < e_1 \) to the good sampler.
- Add \(e_{r+1} \in X \) with \(e_r < e_{r+1} \) to the good sampler.
- The elements from \(X' \) between \((e_1, e_2, \ldots, e_r) \) are between \(x + 1 \) elements from \(X \).
- The elements from \(Y' \) between \((e_1, e_2, \ldots, e_r) \) are between \(y + 1 \) elements from \(Y \).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2 \).

Example \(x = 2 \) and \(y = 2 \):

\[
\begin{align*}
e_0 & \in Y \\
e_1 & \in X \\
e_2 & \in Y \\
e_3 & \in X \\
e_4 & \in Y \\
e_5 & \in X
\end{align*}
\]
Properties of good sampler

At most \(2 \cdot r + 2\) elements of \(\text{merge}(X', Y')\) between \(r\) successive elements of \(\text{merge}(X, Y)\)

Definition

Let \(\text{reduce}(X)\) be the operation, which chooses from \(X\) every forth element.

Lemma:

If \(X\) is a good sampler for \(X'\) and \(Y\) is a good sampler for \(Y'\), then \(\text{reduce(merge}(X, Y))\) is a good sampler for \(\text{reduce(merge}(X', Y'))\).

Proof:

- Consider \(k + 1\) successive elements \((e_1, e_2, \cdots, e_{k+1})\) of \(\text{reduce(merge}(X, Y))\).
- At most \(4k + 1\) elements of \(\text{merge}(X, Y)\) are between \(e_1, e_2, \cdots, e_{k+1}\) including \(e_1, e_{k+1}\).
- At most \(8k + 4\) elements of \(\text{merge}(X', Y')\) are between these \(4k + 1\) elements.
- At most \(2k + 1\) elements of \(\text{reduce(merge}(X', Y'))\) are between \((e_1, e_2, \cdots, e_{k+1})\).
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes v “cares” about as many elements as the number of leaves below v.
- A node v receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node v receives sequences X_1, X_2, \cdots, X_r and Y_1, Y_2, \cdots, Y_r.
- Node v sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node v updates an interior help-sequence val_v.
- It holds: $\vert X_1 \vert = \vert Y_1 \vert = \vert Z_1 \vert = 1$.
- It holds: $\vert X_i \vert = 2 \cdot \vert X_{i-1} \vert$, $\vert Y_i \vert = 2 \cdot \vert Y_{i-1} \vert$ and $\vert Z_i \vert = 2 \cdot \vert Z_{i-1} \vert$.
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: reduce(val_v) till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
Basic operation of a interior Node \(v \)

- Receives from its sons the two sequences \(X \) and \(Y \).
- Computes: \(val_v = \text{merge_with_help}(X, Y, val_v) \).
- Sends to its father: \(\text{reduce}(val_v) \) till \(v \) has sorted all received sequences.
- Sends to its father each second element from \(val_v \), if \(v \) is done with sorting.
- Sends to its father \(val_v \), if \(v \) finishes sorting two steps before.
- Thus we get the following pattern:

\[
\begin{array}{cccccc}
X_1 & X_2 & X_3 & X_4 & \cdots & X_r \\
Z_1 & Z_2 & \cdots & Z_r & Z_{r+1} & Z_{r+2}
\end{array}
\]

- If a node \(x \) is finished after \(t \) steps, then will the father of \(x \) be finished after \(t + 3 \) steps.
- Thus we get a running time of \(3 \log n \).
Invariant

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1$.
Situation

- Running time is $O(\log n)$.
- The inner nodes v need $|val_v|$ many processors.
- We still have to proof that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- Important: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Computing the Ranks

- In each step will compute: \(\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)) \).
- Using the Lemma from above we have: \(\text{merge}(X_i, Y_i) \) is a good sampler of \(X_{i+1} \) and \(Y_{i+1} \).
- Let \(L = \text{merge}(X_i, Y_i) \), \(J = X_{i+1} \) and \(K = Y_{i+1} \).
- We have to compute: \(Rng_{L,J} \), \(Rng_{L,K} \), \(Rng_{J,L} \) and \(Rng_{K,L} \).

Invariant:

- Let \(S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \(v \).
- Then node \(c \) also knows: \(Rng_{S_{i+1}, S_i} \) for \(1 \leq i < p \).
- Furthermore for each sequence \(S \) is known: \(Rng_{S,S} \).
Computing the Ranks

Lemma:

Let \(S = (b_1, b_2, \ldots, b_k) \) be a sorted sequence, then we may compute the rank of \(a \in S \) in time \(O(1) \) using \(k \) processors.

Proof:

- **Programm: rng1(a,S)
 for all \(P_i \) where \(1 \leq i \leq k \) do in parallel
 if \(b_i < a \leq b_{i+1} \) then return \(i \)

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:

Let S_1, S_2, S be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute Rnk_{S_1, S_2} and Rnk_{S_2, S_1} in time $O(1)$ using $O(|S|)$ processors.

Proof:

- We do know $\text{Rnk}_{S, S}$, Rnk_{S_1, S_1} and Rnk_{S_2, S_2}.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

Lemma:

Let X be a good sampler of X'.
Let Y be a good sampler of Y'.
Let $U = \text{merge}(X, Y)$.
Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.

Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.

Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

we have $\text{rnk}(a,S)$ and Rnk_{S_1,S_2} and Rnk_{S_2,S_1}
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let \(w.l.o.g.\) \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_{k}, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

Programm: \(\text{Rnk}_{X', U}\)

\[
\text{for all } i \text{ where } 1 \leq i \leq k + 1 \text{ do in parallel}
\]

\[
\text{for all } x \in X'_i \text{ do}
\]

\[
\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)
\]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((Rnk_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.
Computing the Ranks ($\text{Rnk}_{U,X'}$)

- Note: $\text{Rnk}_{U,X'}$ consists of $\text{Rnk} X, X'$ and $\text{Rnk} Y, X'$.
- $\text{Rnk} X, X'$ is already known.
- Still to compute: $\text{Rnk} Y, X'$.
- $\text{Rnk} Y, X$ may be computed using the previous lemma.
- We compute $\text{rnk}(a, X')$ using $\text{rnk}(a, X)$ and $\text{Rnk}_{X,X'}$.
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$.

we have $\text{rnk}(a, S)$ and Rnk_{S_1, S_2} and Rnk_{S_2, S_1}
Computing the Ranks

- Consider the step
 \[\text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \]

- Using the invariant we know: \(\text{Rnk}_{J, X_i} \) and \(\text{Rnk}_{K, Y_i} \).

- Using the above considerations we may compute: \(\text{Rnk}_{L, J} \), \(\text{Rnk}_{L, K} \), \(\text{Rnk}_{J, L} \) and \(\text{Rnk}_{K, L} \).

- Still to be computed: \(\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i)))} \)

- Known: \(\text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \(\text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \(\text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and
 \(\text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \(\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Algorithmn of Cole

Theorem:
We may sort n values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:
We may sort n values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
we have \(\text{rnk}(a, S) \) and \(\text{rnk}_{S_1, S_2} \) and \(\text{rnk}_{S_2, S_1} \)
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Legende

■ : Nicht relevant
■ : Grundlagen, die implizit genutzt werden
■ : Idee des Beweises oder des Vorgehens
■ : Struktur des Beweises oder des Vorgehens
■ ■ : Vollständiges Wissen