Inhalt 1

1. **Sorting**
 - Simple Sorting Algorithm
 - Improved Algorithm

2. **Introduction to optimal Sorting**

3. **Algorithmn of Cole**
 - Lower Bound
 - Batchers Sorting Algorithm
 - Sorting
 - Idea
Very simple Algorithm (Idea)

22	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	12		
33	0	1	1	0	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	0	7	14	
41	1	1	1	0	1	0	0	1	0	0	0	0	1	0	1	1	1	1	1	1	1	9	22
26	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	5	23	
59	1	1	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	1	1	1	14	26	
57	1	1	1	1	1	0	1	1	0	1	0	0	1	1	1	1	1	1	1	13	27		
52	1	1	1	0	1	0	1	1	0	0	0	0	1	1	1	1	1	1	1	11	33		
61	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	15	34		
27	0	1	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	1	6	41		
49	1	1	1	0	1	0	0	1	0	0	0	0	0	1	1	1	1	1	1	10	49		
67	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	16	52		
23	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	56		
56	1	1	1	0	1	0	1	1	0	1	0	0	1	1	1	1	1	1	1	12	57		
14	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	59		
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	61		
34	0	1	1	0	1	0	0	1	0	0	0	0	0	1	0	1	1	1	1	8	67		

| 34 | 12 | 14 | 56 | 23 | 67 | 49 | 27 | 61 | 52 | 57 | 59 | 26 | 41 | 33 | 22 |
Very simple Sorting Algorithm

- **Idea:** Compute the position for each element.
- **Compare** pairwise all elements and count the number of smaller elements.
- **Use** n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \ldots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

if $s_i > s_j$ **then** $P_{i,j}(1) \rightarrow R_{i,j}$ **else** $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel

for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel

Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.

$P_i(s_i) \rightarrow R_{q_i+1}$.

- **Complexity:** $T(n) = O(\log n)$ and $P(n) = n^2$.
- **Efficiency:** $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.
- **Model:** CREW.
Improved Algorithm for CREW

- Work with \(P(n) \) processors (\(P(n) \leq n \)).
- Split the input in blocks of size \(O(n/P(n)) \). \(O(1) \)
- Sort parallel each block. \(O(n/P(n) \cdot \log(n/P(n))) \)
- Merge the blocks pairwise and parallel. \(O(n/P(n) + \log n) \cdot O(\log P(n)) \)

Complexity: \(T(n) = O(n/P(n) \cdot \log n + \log^2 n) \).

Efficiency: \(Eff(n) = \)

\[
\frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}
\]

- Is \(O(1) \) for \(P(n) \leq n/\log n \).
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging(EREW)}}(n) = \text{lSO}(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$.
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$.
- Efficiency:

\[
\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}
\]

- Is $O(1)$ if $P(n) < n/\log^2 n$.
Lower Bound

Theorem:

For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega\left(\log(n)\right).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is \(s_1, \ldots, s_n \).
- **Programm:** `compare_exchange(i, j)`

 `if s_i > s_j then exchange s_i \leftrightarrow s_j`

- **Symbolic view (Batcher):**

 \[
 \begin{array}{c}
 x \quad \min(x, y) \\
 \hline
 \end{array}
 \begin{array}{c}
 y \quad \max(x, y) \\
 \hline
 \end{array}
 \]

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Odd-even Merge (Definition)

- Input: Sequence \(S = (s_1, s_2, \cdots, s_n) \). (O.E.d.A. \(n \) even)
- Let \(\text{Odd}(S) [\text{Even}(S)] \) be the elements of \(S \) with odd [even] index.
- Let \(S' = (s'_1, s'_2, \cdots, s'_n) \) be a second sequence.
- Then we define: \(\text{interleave}(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n) \).

\[
\begin{array}{cccccccccc}
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
\downarrow & \downarrow \\
\begin{array}{cccccccccc}
s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 & s'_1 & s'_2 & s'_3 & s'_4 & s'_5 & s'_6 & s'_7 & s'_8 \\
r_1 & r_2 & r_3 & r_4 & r_5 & r_6 & r_7 & r_8 & r_9 & r_{10} & r_{11} & r_{12} & r_{13} & r_{14} & r_{15} & r_{16}
\end{array}
\end{array}
\]

- \(T_{\text{interleave}}(n) = O(1) \) mit \(P_{\text{interleave}}(n) = O(n) \)
Odd-even Merge (Definition)

- **Programm: odd_even(S)**

  ```
  for all i where 1 < i < n and i even do in parallel
  compare_exchange(i, i + 1).
  ```

- $T_{\text{compare_exchange}}(n) = O(1)$ mit $P_{\text{compare_exchange}}(n) = O(n)$
Odd-even Merge (Definition)

Programm: join1(S, S')

\(\text{odd_even}(\text{interleave}(S, S'))\)

\[T_{\text{join1}}(n) = O(1) \text{ mit } P_{\text{join1}}(n) = O(n)\]
Sorting with Merging

- Programm: odd_even_merge(S, S')

 if $|S| = |S'| = 1$ then merge with compare_exchange.

 $S_{odd} = odd_even_merge(odd(S), odd(S'))$.

 $S_{even} = odd_even_merge(even(S), even(S'))$.

 return join1(S_{odd}, S_{even}).

- $T_{odd_even_merge}(n) = O(\log n)$ mit $P_{odd_even_merge}(n) = O(n)$

Theorem:

The algorithm odd_even_merge sorts two already sorted sequences into one.

Proof follows.
Sorting Networks

Theorem:
There exists a sorting algorithm with \(T(n) = O(\log^2 n) \) and \(P(n) = n \).

Proof: use divide and conquer, and merging of depth \(O(\log n) \).

Theorem:
There exists a sorting network of size \(O(n \log^2 n) \).

Proof: All calls to \texttt{compare exchange} operation are independent from the input (oblivious algorithm).
The 0-1 Principle

Theorem:
If a sorting network \(X \), resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let \(f(x) \) be non-decreasing function: \(f(s_i) \leq f(s_j) \iff s_i \leq s_j \).
- If \(X \) sorts the sequence \((a_1, a_2, \cdots, a_n) \) to \((b_1, b_2, \cdots, b_n) \), then if \(X \) gets \((f(a_1), f(a_2), \cdots, f(a_n)) \) then the output \((f(b_1), f(b_2), \cdots, f(b_n)) \) is also sorted.
- Assume \(b_i > b_{i+1} \) and \(f(b_i) \neq f(b_{i+1}) \), then we have \(f(b_i) > f(b_{i+1}) \) in the “sorted” sequence \((f(b_1), f(b_2), \cdots, f(b_n)) \). I.e errors may be kept under the function \(f \).
- Choose now \(f: f(b_j) = 0 \) for \(b_j < b_i \) and \(f(b_j) = 1 \) otherwise.
- Thus the sequence \((f(b_1), f(b_2), \cdots, f(b_n)) \) is not sorted, because of \(f(b_i) = 1 \) and \(f(b_{i+1}) = 0 \).
- This is a contradiction.
Correctness of the Merging

Theorem:
The algorithm `odd_even_merge` sorts two sorted sequences into a single one.

Proof:

- S has the form: $S = 0^p 1^{m-p}$ for some p with $0 \leq p \leq m$.
- S' has the form: $S' = 0^q 1^{m'-q}$ for some q with $0 \leq q \leq m'$.
- Thus the sequence S_{odd} has the form $0^\left\lfloor p/2 \right\rfloor + \left\lfloor q/2 \right\rfloor 1^*$.
- And S_{even} has the form $0^\left\lceil p/2 \right\rceil + \left\lceil q/2 \right\rceil 1^*$.
- Define: $d = \left\lfloor p/2 \right\rfloor + \left\lceil q/2 \right\rceil - \left(\left\lfloor p/2 \right\rfloor + \left\lfloor q/2 \right\rfloor\right)$
- Depending on d we consider three cases: $d = 0$, $d = 1$ and $d = 2$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.
- The interleave step of $\text{join}1$ has the form:
 $$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\frac{p+q}{2}} 1^{m+m'-p-q}$$
- The resulting sequences is already sorted.
- The compare_exchange step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.
- The interleave step of $\text{join}1$ has the form:
 $$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor\frac{p+q}{2}\rfloor} 01^{m+m'-p-q}$$
- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.
- The interleave step of $\text{join}1$ has the form:
 $$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor\frac{p+q}{2}\rfloor} 101^{m+m'-p-q}$$
- The compare_exchange step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Testing the Correctness of a Network

Corollary:
The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p1^{m-p}, 0^q1^{m'-q})$.

Theorem:
The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- i.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
The Merging-Tree, a View
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- i.e. these sub-sequences are used as a kind of "preview".
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
The Merging-Tree, a View

Each Processor starts with 256 elements

↑ each ↑
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between A and B.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Good Sampler

\[\text{rng}(e, S) = |\{x \in S | x < e\}| \quad \text{and} \quad R_{A,B} : A \mapsto \mathbb{N}^{\mid A\mid} \quad \text{with} \quad R_{A,B}(e) = \text{rng}(e, B) \]

Definition:
We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:
- Let \(S \) be a sorted sequence
- Let \(S_1 \) be the sequence consisting of each forth element of \(S \).
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- Example \((k = 1)\): 1, 2, 3, 4.
- Example \((k = 3)\): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Merging using a Good Sampler

\[
\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B)
\]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).
- Program: \text{merge_with_help}(J, K, L)

 \begin{aligned}
 &\text{for all } i \text{ where } 1 \leq i \leq s \text{ do in parallel} \\
 &\quad \text{Assign } J_i = \{x \in J \mid l_{i-1} < x \leq l_i\}.
 \\
 &\quad \text{Assign } K_i = \{x \in K \mid l_{i-1} < x \leq l_i\}.
 \\
 &\quad \text{Assign } \text{res}_i = \text{merge}(J_i, K_i).
 \\
 \end{aligned}

\text{return} \ (\text{res}_1, \text{res}_2, \cdots, \text{res}_s).

- Situation:

\[
\begin{array}{cccccccc}
L_1 & L_2 & L_3 & L_4 & L_5 & L_6 & L_7 & L_8 & L_9 \\
\hline
l_1 & l_2 & l_3 & l_4 & l_5 & l_6 & l_7 & l_8 \\
K_1 & K_2 & K_3 & K_4 & K_5 & K_6 & K_7 & K_8 & K_9
\end{array}
\]
Merging using a Good Sampler (Example)

\[
\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{\lvert A \rvert} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B)
\]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20)\)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21)\)
- \(L = (5, 10, 12, 17)\)

Then we have:

<table>
<thead>
<tr>
<th>i</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>merge((K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>(\emptyset)</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:
If \(L \) is a good sampler for \(K \) and \(J \).
If \(\text{Rng}_{L,J}, \text{Rng}_{L,K}, \text{Rng}_{K,L} \) and \(\text{Rng}_{J,L} \) is known, then we have:
\[T_{\text{merge_with_help}(J,K,L)} = O(1) \text{ with } P_{\text{merge_with_help}(J,K,L)} = O(|J| + |K|). \]

Proof:
- The same way as in the merging introduced in the last chapter.
- Each processor uses \(\text{Rng}_{L,J} \) resp. \(\text{Rng}_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(\text{Rng}_{J,L} \) and \(\text{Rng}_{K,L} \) to know the area to write its output sequence.
Properties of Good Samplers

\[
\text{rng}(e, S) = |\{x \in S | x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B)
\]

Lemma:

If \(X\) is a good sampler for \(X'\) and \(Y\) is a good sampler for \(Y'\), then \(\text{merge}(X, Y)\) is a good sampler for \(X'\) [resp. \(Y'\)].

Proof:

- Consider \(X\) as a good sampler for \(X'\).
- Any additional element make the good sampler just "better".

Note:

\(\text{merge}(X, Y)\) is not necessary a sampler for \(\text{merge}(X', Y')\).

- \(X = (2, 7)\) and \(X' = (2, 5, 6, 7)\).
- \(Y = (1, 8)\) and \(Y' = (1, 3, 4, 8)\).
- \(\text{merge}(X, Y) = (1, 2, 7, 8)\) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8)\).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[
\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B)
\]

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof:

- W.l.o.g. contain \(X\) and \(Y\) elements \(-\infty\) and \(+\infty\).
- Let \((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\).
- W.l.o.g. let \(e_1 \in X\).
- Consider now two cases: \(e_r \in X\) and \(e_r \in Y\).
- Let in the following be

\[
\begin{align*}
 x &= |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \\
 y &= |Y \cap \{e_1, e_2, \cdots, e_r\}|.
\end{align*}
\]
Properties of Good Samplers

\((e_1, e_2, \ldots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \ldots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \ldots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\).

If: \(e_r \in X\)

- Between \(e_1\) and \(e_r\) are at most \(2(x - 1) + 1\) elements of \(X'\).
- Between \(e_1\) and \(e_r\) are at most \(2(y + 1) + 1\) elements of \(Y'\), because they are between \(y + 2\) elements of \(Y\).
- Thus we get: \(2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2\).

Example \(x = 3\) and \(y = 2\):

\[
\begin{align*}
a & \in Y \\
e_1 & \in X \\
e_2 & \in Y \\
e_3 & \in X \\
e_4 & \in Y \\
e_5 & \in X \\
b & \in Y
\end{align*}
\]
Properties of Good Samplers

(e₁, e₂, ..., eᵣ) successive elements of merge(X, Y) and x = |X ∩ {e₁, e₂, ..., eᵣ}| and y = |Y ∩ {e₁, e₂, ..., eᵣ}| and

Lemma:

Let X be a good sampler for X′ and let Y be a good sampler for Y′. Then there are at most 2 · r + 2 elements of merge(X′, Y′) between r successive elements of merge(X, Y).

Proof: W.l.o.g. let e₁ ∈ X. If: eᵣ ∈ Y

- Add e₀ ∈ Y with e₀ < e₁ to the good sampler.
- Add eᵣ₊₁ ∈ X with eᵣ < eᵣ₊₁ to the good sampler.
- The elements from X′ between (e₁, e₂, ..., eᵣ) are between x + 1 elements from X.
- The elements from Y′ between (e₁, e₂, ..., eᵣ) are between y + 1 elements from Y.
- Thus we get: 2x + 1 + 2y + 1 = 2r + 2.

Example x = 2 and y = 2:

e₀ ∈ Y e₁ ∈ X e₂ ∈ Y e₃ ∈ X e₄ ∈ Y e₅ ∈ X
Properties of good sampler

At most \(2 \cdot r + 2\) elements of \(\text{merge}(X', Y')\) between \(r\) successive elements of \(\text{merge}(X, Y)\)

Definition

Let \(\text{reduce}(X)\) be the operation, which chooses from \(X\) every forth element.

Lemma:

If \(X\) is a good sampler for \(X'\) and \(Y\) is a good sampler for \(Y'\), then \(\text{reduce}(\text{merge}(X, Y))\) is a good sampler for \(\text{reduce}(\text{merge}(X', Y'))\).

Proof:

- Consider \(k + 1\) successive elements \((e_1, e_2, \cdots, e_{k+1})\) of \(\text{reduce}(\text{merge}(X, Y))\).
- At most \(4k + 1\) elements of \(\text{merge}(X, Y)\) are between \(e_1, e_2, \cdots, e_{k+1}\) including \(e_1, e_{k+1}\).
- At most \(8k + 4\) elements of \(\text{merge}(X', Y')\) are between these \(4k + 1\) elements.
- At most \(2k + 1\) elements of \(\text{reduce}(\text{merge}(X', Y'))\) are between \((e_1, e_2, \cdots, e_{k+1})\).
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes \(v \) “cares” about as many elements as the number of leaves below \(v \).
- A node \(v \) receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node \(v \) receives sequences \(X_1, X_2, \ldots, X_r \) and \(Y_1, Y_2, \ldots, Y_r \).
- Node \(v \) sends to his father sequences \(Z_1, Z_2, \ldots, Z_r, Z_{r+1} \).
- Node \(v \) updates an interior help-sequence \(\text{val}_v \).
- It holds: \(|X_1| = |Y_1| = |Z_1| = 1 \).
- It holds: \(|X_i| = 2 \cdot |X_{i-1}|, \ |Y_i| = 2 \cdot |Y_{i-1}| \) and \(|Z_i| = 2 \cdot |Z_{i-1}| \).
One basic Operation of an interior Node \(v \)

- Receives from its sons the two sequences \(X \) and \(Y \).
- Computes: \(val_v = merge_with_help(X, Y, val_v) \).
- Sends to its father: \(reduce(val_v) \) till \(v \) has sorted all received sequences.
- Sends to its father each second element from \(val_v \), if \(v \) is done with sorting.
- Sends to its father \(val_v \), if \(v \) finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>(val_v)</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
Basic operation of a interior Node \(v \)

- Receives from its sons the two sequences \(X \) and \(Y \).
- Computes: \(val_v = \text{merge}_{\text{with}_\text{help}}(X, Y, val_v) \).
- Sends to its father: \(\text{reduce}(val_v) \) till \(v \) has sorted all received sequences.
- Sends to its father each second element from \(val_v \), if \(v \) is done with sorting.
- Sends to its father \(val_v \), if \(v \) finishes sorting two steps before.
- Thus we get the following pattern:

\[
\begin{array}{cccccccc}
X_1 & X_2 & X_3 & X_4 & \cdots & X_r \\
Z_1 & Z_2 & \cdots & Z_r & Z_{r+1} & Z_{r+2}
\end{array}
\]

- If a node \(x \) is finished after \(t \) steps, then will the father of \(x \) be finished after \(t + 3 \) steps.
- Thus we get a running time of \(3\log n \).
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1$.

| X_1 | Y_1 | Z_1 |
Situation

- Running time is $O(\log n)$.
- The inner nodes v need $|val_v|$ many processors.
- We still have to prove that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- Important: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Computing the Ranks

- In each step will compute: $\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i))$.
- Using the Lemma from above we have: $\text{merge}(X_i, Y_i)$ is a good sampler of X_{i+1} and Y_{i+1}.
- Let $L = \text{merge}(X_i, Y_i)$, $J = X_{i+1}$ and $K = Y_{i+1}$.
- We have to compute: Rng_L, J, Rng_L, K, Rng_J, L and Rng_K, L.

Invariant:

- Let S_1, S_2, \ldots, S_p be a sequence of sequences at node v.
- Then node c also knows: Rng_{S_{i+1}, S_i} for $1 \leq i < p$.
- Furthermore for each sequence S is known: $Rng_{S, S}$.
Computing the Ranks

Lemma:

Let \(S = (b_1, b_2, \ldots, b_k) \) be a sorted sequence, then we may compute the rank of \(a \in S \) in time \(O(1) \) using \(k \) processors.

Proof:

- **Programm: rng1(a,S)**

 for all \(P_i \) where \(1 \leq i \leq k \) do in parallel

 if \(b_i < a \leq b_{i+1} \) then return \(i \)

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let S_1, S_2, S be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute Rnk_{S_1,S_2} and Rnk_{S_2,S_1} in time $O(1)$ using $O(|S|)$ processors.

Proof:
- We do know $\text{Rnk}_{S,S}$, Rnk_{S_1,S_1} and Rnk_{S_2,S_2}.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

we have $\text{rnk}(a, S)$ and Rnk_{S_1,S_2} and Rnk_{S_2,S_1}
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 Programm: \(\text{Rnk}_{X', U}\)
 for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel
 for all \(x \in X'_i\) do
 \(\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)\)

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((Rnk_X, X')\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.

we have \(rnk(a, S)\) and \(Rnk_{S_1, S_2}\) and \(Rnk_{S_2, S_1}\)
Computing the Ranks ($\text{Rnk}_{U,X'}$)

- Note: $\text{Rnk}_{U,X'}$ consists of $\text{Rnk} X, X'$ and $\text{Rnk} Y, X'$.
- $\text{Rnk} X, X'$ is already known.
- Still to compute: $\text{Rnk} Y, X'$.
- $\text{Rnk} Y, X$ may be computed using the previous lemma.
- We compute $\text{rnk}(a, X')$ using $\text{rnk}(a, X)$ and $\text{Rnk}_{X,X'}$.
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$.

we have $\text{rnk}(a, S)$ and Rnk_{S_1,S_2} and Rnk_{S_2,S_1}
Computing the Ranks

Consider the step
\[\text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \]

Using the invariant we know: \(\text{Rnk}_{J, X_i} \) and \(\text{Rnk}_{K, Y_i} \).

Using the above considerations we may compute: \(\text{Rnk}_{L, J} \), \(\text{Rnk}_{L, K} \), \(\text{Rnk}_{J, L} \) and \(\text{Rnk}_{K, L} \).

Still to be computed: \(\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

Known: \(\text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \(\text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

It is now easy to compute: \(\text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \(\text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

Also easy to compute: \(\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Theorem:

We may sort n values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:

We may sort n values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:

There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
Literature:

we have \(\text{rnk}(a, S) \) and \(\text{Rnk}_{S_1S_2} \) and \(\text{Rnk}_{S_2S_1} \).
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Legende

■ : Nicht relevant
■ : Grundlagen, die implizit genutzt werden
■ : Idee des Beweises oder des Vorgehens
■ : Struktur des Beweises oder des Vorgehens
■ : Vollständiges Wissen