Theory of Parallel and Distributed Systems (WS2016/17)
Kapitel 2
Sorting with a PRAM

Walter Unger
Lehrstuhl für Informatik 1

Inhalt I

1. Sorting
 - Simple Sorting Algorithm
 - Improved Algorithm

2. Introduction to optimal Sorting

3. Algorithm of Cole
 - Lower Bound
 - Batchers Sorting Algorithm
 - Sorting
 - Idea
Very simple Algorithm (Idea)

22	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	12
33	0	1	1	0	1	0	0	1	0	0	0	0	0	1	0	0	1	7	14							
41	1	1	1	0	1	0	0	1	0	0	0	0	0	1	0	1	1	9	22							
26	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	5	23							
59	1	1	1	1	1	0	1	1	0	1	1	0	1	1	1	1	14	26								
57	1	1	1	1	1	0	1	1	0	1	0	0	1	1	1	1	13	27								
52	1	1	1	0	1	0	1	1	0	0	0	0	0	1	1	1	11	33								
61	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	15	34									
27	0	1	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	6	41						
49	1	1	1	0	1	0	0	1	0	0	0	0	0	1	1	1	10	49								
67	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	16	52									
23	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	56							
56	1	1	1	0	1	0	1	1	0	1	0	0	1	1	1	12	57									
14	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	59							
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	61							
34	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	1	8	67								

Numbers in the table:
- The left side contains the input numbers.
- The right side contains the output numbers, indicating the steps of the algorithm.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \ldots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

 if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel

 for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel

 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R{i,l}$.
 $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.

- Model: CREW.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel. $O(n/P(n) + \log n) \cdot O(\log P(n))$

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.
Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/ \log n$.
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}(\text{EREW})}(n) = \Omega(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

$$Eff(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}$$

- Is $O(1)$ if $P(n) < n/\log^2 n$.
Lower Bound

Theorem:

For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \cdots, s_n.
- Programm: `compare_exchange(i, j)`

  ```
  if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
  ```

- Symbolic view (Batcher):

  ```
  x \longrightarrow \min(x, y) \\
  y \longrightarrow \max(x, y)
  ```

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Odd-even Merge (Definition)

- Input: Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. n even)
- Let $Odd(S)$ [$Even(S)$] be the elements of S with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $interleave(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

$$T_{interleave}(n) = O(1) \text{ mit } P_{interleave}(n) = O(n)$$
Odd-even Merge (Definition)

- **Programm: odd_even(S)**

 for all i where $1 < i < n$ and i even do in parallel

 \[\text{compare_exchange}(i, i + 1).\]

\[
\begin{array}{cccccccccccc}
S_1 & S_2 & S_3 & S_4 & S_5 & S_6 & S_7 & S_8 & S_9 & S_{10} & S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\
\hline
r_1 & r_2 & r_3 & r_4 & r_5 & r_6 & r_7 & r_8 & r_9 & r_{10} & r_{11} & r_{12} & r_{13} & r_{14} & r_{15} & r_{16}
\end{array}
\]

- $T_{\text{compare_exchange}}(n) = O(1)$ mit $P_{\text{compare_exchange}}(n) = O(n)$
Odd-even Merge (Definition)

- Program: \(\text{join1}(S, S') \)

 \(\text{odd} _ \text{even}(\text{interleave}(S, S')) \)

\[
\begin{align*}
S_1 & \rightarrow r_1 \rightarrow S_2 \rightarrow r_2 \rightarrow S_3 \\
S_4 & \rightarrow r_3 \rightarrow S_5 & \rightarrow r_4 \rightarrow S_6 \\
S_7 & \rightarrow r_5 \rightarrow S_8 & \rightarrow r_6 \rightarrow S_9 \\
S_{10} & \rightarrow r_7 \rightarrow S_{11} & \rightarrow r_8 \rightarrow S_{12} \\
S_{13} & \rightarrow r_9 \rightarrow S_{14} & \rightarrow r_{10} \rightarrow S_{15} \\
S_{16} & \rightarrow r_{11} \rightarrow S_{17} & \rightarrow r_{12} \rightarrow S_{18} \\
S_{19} & \rightarrow r_{13} \rightarrow S_{20} & \rightarrow r_{14} \rightarrow S_{21} \\
S_{22} & \rightarrow r_{15} \rightarrow S_{23} & \rightarrow r_{16} \rightarrow S_{24}
\end{align*}
\]

- \(T_{\text{join1}}(n) = O(1) \) mit \(P_{\text{join1}}(n) = O(n) \)
Sorting with Merging

- **Programm: odd_even_merge(S, S')**

 if $|S| = |S'| = 1$ then merge with `compare_exchange`.

 $S_{odd} = odd_even_merge(odd(S), odd(S'))$.

 $S_{even} = odd_even_merge(even(S), even(S'))$.

 return `join1(S_{odd}, S_{even})`.

- $T_{odd_even_merge}(n) = O(\log n)$ mit $P_{odd_even_merge}(n) = O(n)$

Theorem:

The algorithm `odd_even_merge` sorts two already sorted sequences into one.

Proof follows.
Sorting Networks

Theorem:
There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

Theorem:
There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to `compare_exchange` operation are independent from the input (oblivious algorithm).
The 0-1 Principle

Theorem:

If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \ldots, a_n) to (b_1, b_2, \ldots, b_n), then if X gets $(f(a_1), f(a_2), \ldots, f(a_n))$ then the output $(f(b_1), f(b_2), \ldots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \ldots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \ldots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
Correctness of the Merging

Theorem:
The algorithm \textit{odd_even_merge} sorts two sorted sequences into a single one.

Proof:

- \(S \) has the form: \(S = 0^p 1^{m-p} \) for some \(p \) with \(0 \leq p \leq m \).
- \(S' \) has the form: \(S' = 0^q 1^{m'-q} \) for some \(q \) with \(0 \leq q \leq m' \).
- Thus the sequence \(S_{\text{odd}} \) has the form \(0^\lfloor p/2 \rfloor + \lceil q/2 \rceil \) \(1^* \).
- And \(S_{\text{even}} \) has the form \(0^\lceil p/2 \rceil + \lfloor q/2 \rfloor \) \(1^* \).
- Define: \(d = \lfloor p/2 \rfloor + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor) \).
- Depending on \(d \) we consider three cases: \(d = 0 \), \(d = 1 \) and \(d = 2 \).
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.

- The `interleave` step of `join1` has the form:

$$\text{interleave}(S_{odd}, S_{even}) = (00)^{(p+q)/2}1^{m+m'-p-q}$$

- The resulting sequences is already sorted.
- The `compare_exchange` step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.

- The `interleave` step of `join1` has the form:

$$\text{interleave}(S_{odd}, S_{even}) = (00)^{\lfloor(p+q)/2\rfloor}01^{m+m'-p-q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.

- The `interleave` step of `join1` has the form:

$$\text{interleave}(S_{odd}, S_{even}) = (00)^{\lfloor(p+q)/2\rfloor}101^{m+m'-p-q}$$

- The `compare_exchange` step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Testing the Correctness of a Network

Corollary:

The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p1^{m-p}, 0^q1^{m'-q})$.

Theorem:

The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
The Merging-Tree, a View
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each \(k \)-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final mergeing.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in \(O(1) \) time.
- Total running time will be \(O(\log n) \).
- The additional effort should be at most \(O(1) \).
The Merging-Tree, a View

Each processor starts with 256 elements.
Definition

- Let \(J \) and \(K \) be two sorted sequences.
- Note: without additional information we could not merge \(J \) and \(K \) in \(O(1) \) time with \(O(n) \) processors.
- Let \(L \) be a third sequence, which will be called in the following good sampler for \(J \) and \(K \).
- Informal: \(|L| < |J|\) and the elements of \(L \) are evenly spread in \(J \).
- Let \(a < b \), \(c \) is between \(a \) and \(b \) iff \(a < c \leq b \).
- The rank of \(e \) in \(S \) is \(\text{rng}(e, S) = |\{x \in S \mid x < e\}| \).
- Notation: \(\text{Rng}_{A,B} \) is the function \(\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \) with \(\text{Rng}_{A,B}(e) = \text{rng}(e, B) \) for all \(e \in A \).
- \(\text{Rng}_{A,B} \) is called the rank between \(A \) and \(B \).
- Depending on the context \(\text{Rng}_{A,B} \) could also be an array with \(|A|\) elements.
Good Sampler

Definition:

We call L a good sampler of J, iff:
- L and J are sorted.
- Between any $k + 1$ succeeding elements of $\{-\infty\} \cup L \cup \{+\infty\}$ are at most $2 \cdot k + 1$ many elements in J.

Example:
- Let S be a sorted sequence
- Let S_1 be the sequence consisting of each fourth element of S.
- Then S_1 is a good sampler of S.
- Let S_2 be the sequence consisting of each second element of S.
- Then S_1 is a good sampler of S_2.
- Example ($k = 1$): $1, 2, 3, 4$.
- Example ($k = 3$): $1, 2, 3, 4, 5, 6, 7, 8, 9, 10$.

\[
\text{rng}(e, S) = \left| \{x \in S \mid x < e\} \right| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B)
\]
Merging using a Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).
- Program: merge_with_help(\(J, K, L \))
 - for all \(i \) where \(1 \leq i \leq s \) do in parallel
 - Assign \(J_i = \{x \in J \mid l_{i-1} < x \leq l_i\} \).
 - Assign \(K_i = \{x \in K \mid l_{i-1} < x \leq l_i\} \).
 - Assign \(res_i = \text{merge}(J_i, K_i) \).
 - return \((res_1, res_2, \cdots, res_s)\).

Situation:

<table>
<thead>
<tr>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
<th>(L_4)</th>
<th>(L_5)</th>
<th>(L_6)</th>
<th>(L_7)</th>
<th>(L_8)</th>
<th>(L_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_1)</td>
<td>(l_2)</td>
<td>(l_3)</td>
<td>(l_4)</td>
<td>(l_5)</td>
<td>(l_6)</td>
<td>(l_7)</td>
<td>(l_8)</td>
<td></td>
</tr>
<tr>
<td>(K_1)</td>
<td>(K_2)</td>
<td>(K_3)</td>
<td>(K_4)</td>
<td>(K_5)</td>
<td>(K_6)</td>
<td>(K_7)</td>
<td>(K_8)</td>
<td>(K_9)</td>
</tr>
</tbody>
</table>
Merging using a Good Sampler (Example)

\[
\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad Rng_{A, B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad Rng_{A, B}(e) = \text{rng}(e, B)
\]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)
- Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>merge((K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4) (\quad) (2, 3)</td>
<td>(\quad) (1, 2, 3, 4)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(6, 9) (\quad) (7, 8, 10)</td>
<td>(\quad) (6, 7, 8, 9, 10)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(11, 12) (\quad) (\emptyset)</td>
<td>(\quad) (11, 12)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(13, 16) (\quad) (14, 15, 17)</td>
<td>(\quad) (13, 14, 15, 16, 17)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(19, 20) (\quad) (18, 21)</td>
<td>(\quad) (18, 19, 20, 21)</td>
<td></td>
</tr>
</tbody>
</table>

- Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) \)
Merging with good sampler (running time)

\[rng(e, S) = |\{ x \in S \mid x < e \}| \quad \text{and} \quad Rng_{A,B} : A \mapsto \mathbb{N}^{\lvert A \rvert} \quad \text{with} \quad Rng_{A,B}(e) = rng(e, B) \]

Lemma:

If \(L \) is a good sampler for \(K \) and \(J \).
If \(Rng_L,J, Rng_L,K, Rng_K,L \) and \(Rng_J,L \) is known, then we have:
\[T_{\text{merge with help}(J,K,L)} = O(1) \quad \text{with} \quad P_{\text{merge with help}(J,K,L)} = O(|J| + |K|). \]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \(Rng_{L,J} \) resp. \(Rng_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(Rng_{J,L} \) and \(Rng_{K,L} \) to know the area to write its output sequence.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(X \) is a good sampler for \(X' \) and \(Y \) is a good sampler for \(Y' \), then
\(\text{merge}(X, Y) \) is a good sampler for \(X' \) [resp. \(Y' \)].

Proof:

- Consider \(X \) as a good sampler for \(X' \).
- Any additional element make the good sampler just “better”.

Note:

\(\text{merge}(X, Y) \) is not necessary a sampler for \(\text{merge}(X', Y') \).
- \(X = (2, 7) \) and \(X' = (2, 5, 6, 7) \).
- \(Y = (1, 8) \) and \(Y' = (1, 3, 4, 8) \).
- \(\text{merge}(X, Y) = (1, 2, 7, 8) \) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

Lemma:

Let X be a good sampler for X' and let Y be a good sampler for Y'.
Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$.

Proof:

- W.l.o.g. contain X and Y elements $-\infty$ and $+\infty$.
- Let (e_1, e_2, \cdots, e_r) successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be

$$x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad y = |Y \cap \{e_1, e_2, \cdots, e_r\}|.$$
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\).

If: \(e_r \in X\)

- Between \(e_1\) and \(e_r\) are at most \(2(x - 1) + 1\) elements of \(X'\).
- Between \(e_1\) and \(e_r\) are at most \(2(y + 1) + 1\) elements of \(Y'\), because they are between \(y + 2\) elements of \(Y\).
- Thus we get: \(2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2\).

Example \(x = 3\) and \(y = 2\):

\[a \in Y \quad e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X \quad b \in Y \]
Properties of Good Samplers

\((e_1, e_2, \ldots, e_r)\) successive elements of \(\text{merge}(X, Y)\) and \(x = |X \cap \{e_1, e_2, \ldots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \ldots, e_r\}|\)

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of \(\text{merge}(X', Y')\) between \(r\) successive elements of \(\text{merge}(X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \ldots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \ldots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\[e_0 \in Y \quad e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X\]
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let reduce(X) be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes v “cares” about as many elements as the number of leaves below v.
- A node v receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node v receives sequences X_1, X_2, \cdots, X_r and Y_1, Y_2, \cdots, Y_r.
- Node v sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node v updates a interior help-sequence val_v.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$.
One basic Operation of an interior Node \(v \)

- Receives from its sons the two sequences \(X \) and \(Y \).
- Computes: \(val_v = \text{merge}_\text{with}_\text{help}(X, Y, val_v) \).
- Sends to its father: reduce(\(val_v \)) till \(v \) has sorted all received sequences.
- Sends to its father each second element from \(val_v \), if \(v \) is done with sorting.
- Sends to its father \(val_v \), if \(v \) finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>(val_v)</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
Basic operation of a interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Thus we get the following pattern:

$$
\begin{array}{cccccccc}
X_1 & X_2 & X_3 & X_4 & \cdots & X_r \\
Z_1 & Z_2 & \cdots & Z_r & Z_{r+1} & Z_{r+2}
\end{array}
$$

- If a node x is finished after t steps, then will the father of x be finished after $t + 3$ steps.
- Thus we get a running time of $3\log n$.
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1$.
Running time is $O(\log n)$.

The inner nodes v need $|val_v|$ many processors.

We still have to proof that the number of processors is in $O(n)$.

PRAM Model has to be verified.

Important: The computation of the values $Rng_{X,Y}$ has to be shown.

These values will be in the following also transmitted and updated.
Computing the Ranks

In each step will compute: \(\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)) \).

Using the Lemma from above we have: \(\text{merge}(X_i, Y_i) \) is a good sampler of \(X_{i+1} \) and \(Y_{i+1} \).

Let \(L = \text{merge}(X_i, Y_i) \), \(J = X_{i+1} \) and \(K = Y_{i+1} \).

We have to compute: \(\text{Rng}_{L,J} \), \(\text{Rng}_{L,K} \), \(\text{Rng}_{J,L} \) and \(\text{Rng}_{K,L} \).

Invariant:

- Let \(S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \(v \).
- Then node \(c \) also knows: \(\text{Rng}_{S_{i+1}, S_i} \) for \(1 \leq i < p \).
- Furthermore for each sequence \(S \) is known: \(\text{Rng}_{S,S} \).
Computing the Ranks

Lemma:
Let \(S = (b_1, b_2, \cdots, b_k) \) be a sorted sequence, then we may compute the rank of \(a \in S \) in time \(O(1) \) using \(k \) processors.

Proof:

- **Programm: rng1(a,S)**
 - for all \(P_i \) where \(1 \leq i \leq k \) do in parallel
 - if \(b_i < a \leq b_{i+1} \) then return \(i \)

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:

Let S_1, S_2, S be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute Rnk_{S_1,S_2} and Rnk_{S_2,S_1} in time $O(1)$ using $O(|S|)$ processors.

Proof:

- We do know $\text{Rnk}_{S,S}$, Rnk_{S_1,S_1} and Rnk_{S_2,S_2}.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

we have $\text{rnk}(a, S)$ and Rnk_{S_1, S_2} and Rnk_{S_2, S_1}.
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X_1', X_2', \cdots, X_k', X_{k+1}'\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 \[
 \text{Programm: Rnk}_{X', U} \\
 \text{for all } i \text{ where } 1 \leq i \leq k + 1 \text{ do in parallel} \\
 \quad \text{for all } x \in X_i' \text{ do} \\
 \quad \quad \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)
 \]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.
Computing the Ranks \((\text{Rnk}_{U,X'}) \)

- Note: \(\text{Rnk}_{U,X'} \) consists of \(\text{Rnk} \ X, X' \) and \(\text{Rnk} \ Y, X' \).
- \(\text{Rnk} \ X, X' \) is already known.
- Still to compute: \(\text{Rnk} \ Y, X' \).
- \(\text{Rnk} \ Y, X \) may be computed using the previous lemma.
- We compute \(\text{rnk}(a, X') \) using \(\text{rnk}(a, X) \) and \(\text{Rnk}_{X,X'} \).
- Thus we compute \(\text{Rnk}_{U,X'} \) with \(O(|U|) \) processors and time \(O(1) \).
Computing the Ranks

Consider the step

\[
\text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)):
\]

- Using the invariant we know: \(\text{Rnk}_J, X_i \) and \(\text{Rnk}_K, Y_i \).
- Using the above considerations we may compute: \(\text{Rnk}_{L,J} \), \(\text{Rnk}_{L,K} \), \(\text{Rnk}_{J,L} \) and \(\text{Rnk}_{K,L} \).
- Still to be computed: \(\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)
- Known: \(\text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \(\text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).
- It is now easy to compute: \(\text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \(\text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).
- Also easy to compute: \(\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Algorithmn of Cole

Theorem:
We may sort n values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:
We may sort n values on an EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
we have $\text{rnk}(a, S)$ and Rnk_{S_1, S_2} and Rnk_{S_2, S_1}

Literatur:

Chapter 5.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Legende

- : Nicht relevant
- : Grundlagen, die implizit genutzt werden
- : Idee des Beweises oder des Vorgehens
- : Struktur des Beweises oder des Vorgehens
- : Vollständiges Wissen