Contents I

1. Sorting
 - Simple Sorting Algorithm
 - Improved Algorithm

2. Introduction to optimal Sorting

3. Algorithmn of Cole
 - Idea

- Lower Bound
- Batchers Sorting Algorithm
- Sorting
Very simple Algorithm (Idea)
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>14</td>
<td>56</td>
<td>23</td>
<td>67</td>
<td>49</td>
<td>27</td>
<td>61</td>
<td>52</td>
<td>57</td>
<td>59</td>
<td>26</td>
<td>41</td>
<td>33</td>
</tr>
</tbody>
</table>
Very simple Algorithm (Idea)

22	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3					
33																							
41																							
26																							
59																							
57																							
52																							
61																							
27																							
49																							
67																							
23																							
56																							
14																							
12																							
34																							
34	12	14	56	23	67	49	27	61	52	57	59	26	41	33	22								
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th></th>
<th>22</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th>22</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>14</td>
<td>56</td>
<td>23</td>
<td>67</td>
<td>49</td>
<td>27</td>
<td>61</td>
<td>52</td>
<td>57</td>
<td>59</td>
<td>26</td>
<td>41</td>
<td>33</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
Very simple Algorithm (Idea)
Very simple Algorithm (Idea)

```
22 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1
41 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1
26 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
59 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1
57 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1
52 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1
61 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1
27 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1
49 1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1
67 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
23 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
56 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1
14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1
```

```
Very simple Sorting Algorithm

- **Idea:** Compute the position for each element.

- Compare pairwise all elements and count the number of smaller elements.

- Use $n^2$ processors.

- Program: SimpleSort
  Eingabe: $s_1, \ldots, s_n$.
  for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
    if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$
  for all $i$ where $1 \leq i \leq n$ do in parallel
    for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel
      Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.
      $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.

- Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.

- Model: CREW.
Very simple Sorting Algorithm

- **Idea:** Compute the position for each element.
- **Compare pairwise all elements and count the number of smaller elements.**
- **Use** \( n^2 \) processors.
- **Programm:** SimpleSort
  
  **Eingabe:** \( s_1, \ldots, s_n \).
  
  for all \( P_{i,j} \) where \( 1 \leq i, j \leq n \) do in parallel
  
  if \( s_i > s_j \) then \( P_{i,j}(1) \rightarrow R_{i,j} \) else \( P_{i,j}(0) \rightarrow R_{i,j} \)
  
  for all \( i \) where \( 1 \leq i \leq n \) do in parallel
  
  for all \( P_{i,j} \) where \( 1 \leq j \leq n \) do in parallel
  
  Processors \( P_{i,j} \) bestimmen \( q_i = \sum_{l=1}^{n} R_{l,i} \).
  
  \( P_i(s_i) \rightarrow R_{q_i+1} \).

- **Complexity:** \( T(n) = O(\log n) \) and \( P(n) = n^2 \).

- **Efficiency:** \( \frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right) \).

- **Model:** CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use $n^2$ processors.

Programm: SimpleSort

Eingabe: $s_1, \ldots, s_n$.
for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
  if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$
for all $i$ where $1 \leq i \leq n$ do in parallel
  for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel
    Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.
    $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.
- Model: CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use $n^2$ processors.

Programm: SimpleSort

Eingabe: $s_1, \ldots, s_n$.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
  if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all $i$ where $1 \leq i \leq n$ do in parallel
  for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel
    Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.
    $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.
- Model: CREW.
Very simple Sorting Algorithm

• Idea: Compute the position for each element.
• Compare pairwise all elements and count the number of smaller elements.
• Use \( n^2 \) processors.

• Programm: SimpleSort
  Eingabe: \( s_1, \ldots, s_n \).
  for all \( P_{i,j} \) where \( 1 \leq i, j \leq n \) do in parallel
  if \( s_i > s_j \) then \( P_{i,j}(1) \rightarrow R_{i,j} \) else \( P_{i,j}(0) \rightarrow R_{i,j} \)
  for all \( i \) where \( 1 \leq i \leq n \) do in parallel
  for all \( P_{i,j} \) where \( 1 \leq j \leq n \) do in parallel
  Processors \( P_{i,j} \) bestimmen \( q_i = \sum_{l=1}^{n} R_{i,l} \).
  \( P_i(s_i) \rightarrow R_{q_i+1} \).

• Complexity: \( T(n) = O(\log n) \) and \( P(n) = n^2 \).
• Efficiency: \( \frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right) \).
• Model: CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use $n^2$ processors.

Programm: SimpleSort

Eingabe: $s_1, \ldots, s_n$.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

    if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all $i$ where $1 \leq i \leq n$ do in parallel

    for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel

        Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.

        $P_i(s_i) \rightarrow R_{q_i+1}$.

Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.

Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.

Model: CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use $n^2$ processors.

Programm: SimpleSort

Eingabe: $s_1, \ldots, s_n$.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
  if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all $i$ where $1 \leq i \leq n$ do in parallel
  for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel
    Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.
    $P_i(s_i) \rightarrow R_{q_i+1}$.

Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.

Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.

Model: CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use $n^2$ processors.

Programm: SimpleSort

Eingabe: $s_1, \ldots, s_n$.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
  if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all $i$ where $1 \leq i \leq n$ do in parallel
  for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel
    Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.
    $P_i(s_i) \rightarrow R_{q_i+1}$.

Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.

Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O(\frac{1}{n})$.

Model: CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use \( n^2 \) processors.

Programm: SimpleSort

Eingabe: \( s_1, \ldots, s_n \).

for all \( P_{i,j} \) where \( 1 \leq i, j \leq n \) do in parallel
- if \( s_i > s_j \) then \( P_{i,j}(1) \rightarrow R_{i,j} \) else \( P_{i,j}(0) \rightarrow R_{i,j} \)

for all \( i \) where \( 1 \leq i \leq n \) do in parallel
- for all \( P_{i,j} \) where \( 1 \leq j \leq n \) do in parallel
  - Processors \( P_{i,j} \) bestimmen \( q_i = \sum_{l=1}^{n} R_{i,l} \).
  - \( P_i(s_i) \rightarrow R_{q_i+1} \).

Complexity: \( T(n) = O(\log n) \) and \( P(n) = n^2 \).

Efficiency: \( \frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right) \).

Model: CREW.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$.
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

- Is $O(1)$ for $P(n) \leq n/\log n$. 
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$.
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$. 
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$.
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.
Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$. 

Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$.
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

- Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.
- Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

- Is $O(1)$ for $P(n) \leq n / \log n$. 
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) =$

$$\frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$$

- Is $O(1)$ for $P(n) \leq n/\log n$. 
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel.

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$. 
Improved Algorithm for CREW

- Work with \( P(n) \) processors (\( P(n) \leq n \)).
- Split the input in blocks of size \( O(n/P(n)) \). \( O(1) \)
- Sort parallel each block. \( O(n/P(n) \cdot \log(n/P(n))) \)
- Merge the blocks pairwise and parallel. \( O(n/P(n) + \log n) \cdot O(\log P(n)) \)

- Complexity: \( T(n) = O(n/P(n) \cdot \log n + \log^2 n) \).
- Efficiency: \( \text{Eff}(n) = \)

\[
\frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}
\]

- Is \( O(1) \) for \( P(n) \leq n/\log n \).
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel. $O(n/P(n) + \log n) \cdot O(\log P(n))$

**Complexity:** $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

**Efficiency:** $\text{Eff}(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$. 
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. \(\mathcal{O}(1)\)
- Sort parallel each block. \(O(n/P(n) \cdot \log(n/P(n)))\)
- Merge the blocks pairwise and parallel. \(O(n/P(n) + \log n) \cdot O(\log P(n))\)

Complexity: \(T(n) = O(n/P(n) \cdot \log n + \log^2 n)\).

Efficiency: \(\text{Eff}(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}\)

Is \(O(1)\) for \(P(n) \leq n/ \log n\).
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel. $O(n/P(n) + \log n) \cdot O(\log P(n))$

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.
Efficiency: $\text{Eff}(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$. 
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}}(\text{EREW})(n) = \Theta(n/P(n) + \log n \cdot \log P(n))$. 
- $T(n) = O(n/P(n) \cdot \log(n/P(n))) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

$$Eff(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}$$

- Is $O(1)$ if $P(n) < n/\log^2 n$. 

Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}(\text{EREW})}(n) = \text{IsO}(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

$$Eff(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}$$

- Is $O(1)$ if $P(n) < n/\log^2 n$. 
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging(EREW)}}(n) = \text{lsO}(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n))) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

$$\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}$$

- Is $O(1)$ if $P(n) < n/\log^2 n$. 

Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}(\text{EREW})}(n) = \text{lsO}(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:
  
  $$\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}$$

- Is $O(1)$ if $P(n) < n/\log^2 n$. 
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall \( T_{\text{Merging(EREW)}}(n) = \text{lsO}(n/P(n) + \log n \cdot \log P(n)) \).
- \( T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n)) \)
- \( T(n) = O((n/P(n) + \log^2 n) \cdot \log n) \)
- Efficiency:

\[
\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}
\]

- Is \( O(1) \) if \( P(n) < n/\log^2 n \).
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}(EREW)}(n) = \text{lsO}(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

$$
\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}
$$

- Is $O(1)$ if $P(n) < n/\log^2 n$. 

Lower Bound

Theorem:

For any parallel sorting algorithm $Srt$ with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$. 
Lower Bound

**Theorem:**

For any parallel sorting algorithm $Srt$ with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

**Proof:**

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

**Situation at this point:**

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$. 
Theorem:

For any parallel sorting algorithm $Srt$ with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible
- Thus with less steps we have a contradiction to the lower bound for sequential

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$. 
Lower Bound

Theorem:
For any parallel sorting algorithm \( Srt \) with \( P_{Srt}(n) = O(n) \) hold:
\[
T_{Srt}(n) = \Omega(\log(n)).
\]

Proof:
- Lower bound for sequential is \( \Theta(n \log n) \).
- One needs \( O(n \log n) \) comparisons.
- In each parallel step are at most \( o(n) \) comparisons possible
- Thus with less steps we have a contradiction to the lower bound for sequential

Situation at this point:
- Inefficient algorithms with: \( T(n) = O(\log n) \) and \( P(n) = n^2 \).
- Nearly efficient algorithm with: \( T(n) = O(\log^2 n) \) and \( P(n) = o(n) \).
Lower Bound

**Theorem:**

For any parallel sorting algorithm $Srt$ with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

**Proof:**

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

**Situation at this point:**

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$. 
Lower Bound

Theorem:
For any parallel sorting algorithm \( Srt \) with \( P_{Srt}(n) = O(n) \) hold:

\[
T_{Srt}(n) = \Omega(\log(n)).
\]

Proof:
- Lower bound for sequential is \( \Theta(n \log n) \).
- One needs \( O(n \log n) \) comparisons.
- In each parallel step are at most \( o(n) \) comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:
- Inefficient algorithms with: \( T(n) = O(\log n) \) and \( P(n) = n^2 \).
- Nearly efficient algorithm with: \( T(n) = O(\log^2 n) \) and \( P(n) = o(n) \).
Basic Operation for Sorting

- **Identify basic operation for sorting.**
- **Assume:** sorting key is \( s_1, \cdots, s_n \).
- **Program:** `compare_exchange(i, j)`
  
  if \( s_i > s_j \) then exchange \( s_i \leftrightarrow s_j \)

- **Symbolic view (Batcher):**
  
  \[
  \begin{align*}
  y & \quad \cdots \quad \max(x, y) \\
  \quad \cdots \quad & \ \\
  \min(x, y) & \quad \cdots \quad x
  \end{align*}
  \]

- **Basic building block for sorting networks.**
- **Base for Odd-Even merge**
- **Form this we build the optimal algorithm by Cole**
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is $s_1, \cdots, s_n$.
- Program: \texttt{compare\_exchange}(i,j)
  
  \begin{verbatim}
  if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
  \end{verbatim}

- Symbolic view (Batcher):
  
  $y \underbrace{}_{\text{max}(x, y)}$

  $x \underbrace{}_{\text{min}(x, y)}$

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is $s_1, \cdots, s_n$.
- Program: \texttt{compare\_exchange}(i,j)
  \begin{verbatim}
  if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
  \end{verbatim}
- Symbolic view (Batcher):
  \[
  \begin{array}{c}
  \text{max}(x, y) \\
  \hline \\
  \text{min}(x, y)
  \end{array}
  \begin{array}{c}
  y \\
  \hline \\
  x
  \end{array}
  \]
- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is $s_1, \ldots, s_n$.
- **Programm:** `compare_exchange(i,j)
  
  if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$

- Symbolic view (Batcher):
  
  \[
  \begin{array}{c}
  \text{y} \\
  \hline
  \max(x, y)
  \end{array}
  \begin{array}{c}
  \text{x} \\
  \hline
  \min(x, y)
  \end{array}
  \]

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is $s_1, \cdots, s_n$.
- Program: \texttt{compare\_exchange(i,j)}
  - \texttt{if} $s_i > s_j$ \texttt{then} exchange $s_i \leftrightarrow s_j$
- Symbolic view (Batcher):
  \[
  \begin{array}{c}
  y \\
  \hline
  x \\
  \end{array}
  \begin{array}{c}
  \text{max}(x, y) \\
  \hline
  \text{min}(x, y)
  \end{array}
  \]
- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is $s_1, \ldots, s_n$.
- Program: compare_exchange(i,j)
  
  \[
  \text{if } s_i > s_j \text{ then exchange } s_i \leftrightarrow s_j
  \]
- Symbolic view (Batcher):
  
  \[
  \begin{array}{c}
  y \\
  \hline
  \text{max}(x, y)
  \end{array}
  \]
  
  \[
  \begin{array}{c}
  x \\
  \hline
  \text{min}(x, y)
  \end{array}
  \]
- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is \( s_1, \ldots, s_n \).
- **Programm**: compare\_exchange(i,j)
  
  \[ \text{if } s_i > s_j \text{ then exchange } s_i \leftrightarrow s_j \]

- Symbolic view (Batcher):
  
  \[
  \begin{array}{c}
  \text{max}(x, y) \\
  \hline
  \text{min}(x, y)
  \end{array}
  \]

- Basic building block for sorting networks.
- **Base for Odd-Even merge**
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is $s_1, \cdots, s_n$.
- **Programm:** `compare_exchange(i,j)`
  - if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
- **Symbolic view (Batcher):**
  - $y$ \hspace{2cm} $\max(x, y)$
  - $x$ \hspace{2cm} $\min(x, y)$

- Basic building block for sorting networks.
- Base for Odd-Even merge
- **Form this we build the optimal algorithm by Cole**
Odd-even Merge (Definition)

- **Input:** Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. $n$ even)
- Let $Odd(S)$ [$Even(S)$] be the elements of $S$ with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $interleave(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

\[ T_{interleave}(n) = O(1) \text{ mit } P_{interleave}(n) = O(n) \]
Odd-even Merge (Definition)

- **Input:** Sequence \( S = (s_1, s_2, \cdots, s_n) \). (O.E.d.A. \( n \) even)
- Let \( Odd(S) \) [\( Even(S) \)] be the elements of \( S \) with odd [even] index.
- Let \( S' = (s'_1, s'_2, \cdots, s'_n) \) be a second sequence.
- Then we define: \( \text{interleave}(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n) \).

\[
\begin{align*}
\text{s}_1 & \quad \text{s}_2 & \quad \text{s}_3 & \quad \text{s}_4 & \quad \text{s}_5 & \quad \text{s}_6 & \quad \text{s}_7 & \quad \text{s}_8 & \quad \text{s}'_1 & \quad \text{s}'_2 & \quad \text{s}'_3 & \quad \text{s}'_4 & \quad \text{s}'_5 & \quad \text{s}'_6 & \quad \text{s}'_7 & \quad \text{s}'_8 \\
\text{r}_1 & \quad \text{r}_2 & \quad \text{r}_3 & \quad \text{r}_4 & \quad \text{r}_5 & \quad \text{r}_6 & \quad \text{r}_7 & \quad \text{r}_8 & \quad \text{r}_9 & \quad \text{r}_{10} & \quad \text{r}_{11} & \quad \text{r}_{12} & \quad \text{r}_{13} & \quad \text{r}_{14} & \quad \text{r}_{15} & \quad \text{r}_{16}
\end{align*}
\]

- \( T_{\text{interleave}}(n) = O(1) \) mit \( P_{\text{interleave}}(n) = O(n) \)
### Odd-even Merge (Definition)

- **Input:** Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. $n$ even)
- Let $Odd(S)$ [$Even(S)$] be the elements of $S$ with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $\text{interleave}(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

![Diagram of interleave operation](image)

- $T_{\text{interleave}}(n) = O(1)$ mit $P_{\text{interleave}}(n) = O(n)$
Odd-even Merge (Definition)

- Input: Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. $n$ even)
- Let $Odd(S)$ [$Even(S)$] be the elements of $S$ with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $interleave(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

$$T_{interleave}(n) = O(1) \text{ mit } P_{interleave}(n) = O(n)$$
Odd-even Merge (Definition)

- Input: Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. $n$ even)
- Let $Odd(S)$ [$Even(S)$] be the elements of $S$ with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $\text{interleave}(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

$T_{\text{interleave}}(n) = O(1)$ mit $P_{\text{interleave}}(n) = O(n)$
Odd-even Merge (Definition)

- Program: `odd_even(S)`
  
  for all `i` where `1 < i < n` and `i` even do in parallel
  
  `compare_exchange(i, i + 1).`

- `T_{compare\_exchange}(n) = O(1)` mit `P_{compare\_exchange}(n) = O(n)`
Odd-even Merge (Definition)

Programm: odd_even(S)

for all \( i \) where \( 1 < i < n \) and \( i \) even do in parallel

\[ \text{compare\_exchange}(i, i + 1). \]

\[ T_{\text{compare\_exchange}}(n) = O(1) \text{ mit } P_{\text{compare\_exchange}}(n) = O(n) \]
Programm: odd\_even(S)

for all $i$ where $1 < i < n$ and $i$ even do in parallel

\textit{compare\_exchange}(i, i + 1).

![Diagram](image)

$T_{\text{compare\_exchange}}(n) = O(1)$ mit $P_{\text{compare\_exchange}}(n) = O(n)$
Odd-even Merge (Definition)

- Programm: $\text{join}_1(S, S')$
  
  $\text{odd\_even(\text{interleave}(S, S'))}$

- $T_{\text{join}_1}(n) = O(1)$ mit $P_{\text{join}_1}(n) = O(n)$
Odd-even Merge (Definition)

- Programm: \( \text{join}1(S, S') \)
  \( \text{odd \_ even}(\text{interleave}(S, S')) \)

- \( T_{\text{join}1}(n) = O(1) \) mit \( P_{\text{join}1}(n) = O(n) \)
Odd-even Merge (Definition)

- Programm: join1\((S, S')\)
  
  \(\text{odd\_even}(\text{interleave}(S, S'))\)

- \(T_{\text{join1}}(n) = O(1)\) mit \(P_{\text{join1}}(n) = O(n)\)
Sorting with Merging

- Programm: `odd_even_merge(S, S')`
  
  ```
 if |S| = |S'| = 1 then merge with `compare_exchange`.
 S_{odd} = odd_even_merge(odd(S), odd(S')).
 S_{even} = odd_even_merge(even(S), even(S')).
 return `join1`(S_{odd}, S_{even}).
  ```

- \( T_{odd\_even\_merge}(n) = O(\log n) \) mit \( P_{odd\_even\_merge}(n) = O(n) \)

**Theorem:**

The algorithm `odd_even_merge` sorts two already sorted sequences into one.

Proof follows.
Sorting with Merging

- **Programm**: `odd_even_merge(S, S')`
  
  \[
  \text{if } |S| = |S'| = 1 \text{ then merge with } \text{compare\_exchange}. \\
  S_{odd} = odd\_even\_merge(odd(S), odd(S')). \\
  S_{even} = odd\_even\_merge(even(S), even(S')). \\
  \text{return join}(S_{odd}, S_{even}).
  \]

- \[T_{odd\_even\_merge}(n) = O(\log n) \text{ mit } P_{odd\_even\_merge}(n) = O(n)\]

**Theorem:**

The algorithm `odd\_even\_merge` sorts two already sorted sequences into one.

Proof follows.
Sorting with Merging

- **Programm:** `odd_even_merge(S, S')`
  
  ```
 if |S| = |S'| = 1 then merge with compare_exchange.

 S_{odd} = odd_even_merge(odd(S), odd(S')).

 S_{even} = odd_even_merge(even(S), even(S')).

 return join1(S_{odd}, S_{even}).
  ```

- $T_{odd\_even\_merge}(n) = O(\log n)$ mit $P_{odd\_even\_merge}(n) = O(n)$

**Theorem:**

The algorithm `odd_even_merge` sorts two already sorted sequences into one.

Proof follows.
Sorting with Merging

- **Programm:** `odd_even_merge(S, S')`
  - if $|S| = |S'| = 1$ then merge with `compare_exchange`
  - $S_{odd} = odd\_even\_merge(odd(S), odd(S'))$
  - $S_{even} = odd\_even\_merge(even(S), even(S'))$
  - `return join1(S_{odd}, S_{even})`

- $T_{odd\_even\_merge}(n) = O(\log n)$ mit $P_{odd\_even\_merge}(n) = O(n)$

**Theorem:**

The algorithm `odd\_even\_merge` sorts two already sorted sequences into one.

**Proof follows.**
Sorting with Merging

- **Programm**: `odd_even_merge(S, S')`
  
  \[
  \text{if } |S| = |S'| = 1 \text{ then merge with } \text{compare}_\text{exchange}.
  \]

  \[
  S_{\text{odd}} = \text{odd}_\text{even}_\text{merge}(\text{odd}(S), \text{odd}(S')).
  \]

  \[
  S_{\text{even}} = \text{odd}_\text{even}_\text{merge}(\text{even}(S), \text{even}(S')).
  \]

  \[
  \text{return } \text{join}_1(S_{\text{odd}}, S_{\text{even}}).
  \]

- \[
  T_{\text{odd}_\text{even}_\text{merge}}(n) = O(\log n) \text{ mit } P_{\text{odd}_\text{even}_\text{merge}}(n) = O(n)
  \]

**Theorem:**

The algorithm `odd_even_merge` sorts two already sorted sequences into one.

Proof follows.
Sorting Networks

**Theorem:**
There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

**Theorem:**
There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to `compare_exchange` operation are independent from the input (oblivious algorithm).
Theorem:
There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

Theorem:
There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to `compare_exchange` operation are independent from the input (oblivious algorithm).
Sorting Networks

Theorem:

There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

Theorem:

There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to compare Exchange operation are independent from the input (oblivious algorithm).
Sorting Networks

**Theorem:**
There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

**Theorem:**
There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to *compare_exchange* operation are independent form the input (oblivious algorithm).
The 0-1 Principle

**Theorem:**

If a sorting network $X$, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

**Proof (by contradiction):**

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If $X$ sorts the sequence $(a_1, a_2, \cdots, a_n)$ to $(b_1, b_2, \cdots, b_n)$, then if $X$ gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function $f$.
- Choose now $f$: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

Theorem:
If a sorting network $X$, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If $X$ sorts the sequence $(a_1, a_2, \cdots, a_n)$ to $(b_1, b_2, \cdots, b_n)$, then if $X$ gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function $f$.
- Choose now $f$: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

**Theorem:**
If a sorting network $X$, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

**Proof (by contradiction):**

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If $X$ sorts the sequence $(a_1, a_2, \cdots, a_n)$ to $(b_1, b_2, \cdots, b_n)$, then if $X$ gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function $f$.
- Choose now $f$: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

Theorem:
If a sorting network $X$, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \Leftrightarrow s_i \leq s_j$.
- If $X$ sorts the sequence $(a_1, a_2, \cdots, a_n)$ to $(b_1, b_2, \cdots, b_n)$, then if $X$ gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function $f$.
- Choose now $f$: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

Theorem:
If a sorting network $X$, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If $X$ sorts the sequence $(a_1, a_2, \cdots, a_n)$ to $(b_1, b_2, \cdots, b_n)$, then if $X$ gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function $f$.
- Choose now $f$: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

Theorem:
If a sorting network $X$, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If $X$ sorts the sequence $(a_1, a_2, \cdots, a_n)$ to $(b_1, b_2, \cdots, b_n)$, then if $X$ gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. i.e errors may be kept under the function $f$.
- Choose now $f$: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
Correctness of the Merging

Theorem:
The algorithm `odd_even_merge` sorts two sorted sequences into a single one.

Proof:

- \( S \) has the form: \( S = 0^p1^{m-p} \) for some \( p \) with \( 0 \leq p \leq m \).
- \( S' \) has the form: \( S' = 0^q1^{m'-q} \) for some \( q \) with \( 0 \leq q \leq m' \).
- Thus the sequence \( S_{odd} \) has the form \( 0^{\lceil p/2 \rceil + \lceil q/2 \rceil}1^* \).
- And \( S_{even} \) has the form \( 0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor}1^* \).
- Define: \( d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor) \)
- Depending on \( d \) we consider three cases: \( d = 0 \), \( d = 1 \) and \( d = 2 \).
Correctness of the Merging

Theorem:
The algorithm `odd_even_merge` sorts two sorted sequences into a single one.

Proof:

- $S$ has the form: $S = 0^p1^{m-p}$ for some $p$ with $0 \leq p \leq m$.
- $S'$ has the form: $S' = 0^q1^{m' - q}$ for some $q$ with $0 \leq q \leq m'$.
- Thus the sequence $S_{odd}$ has the form $0^{\lceil p/2 \rceil + \lceil q/2 \rceil}1^*$
- And $S_{even}$ has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor}1^*$.
- Define: $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$
- Depending on $d$ we consider three cases: $d = 0$, $d = 1$ and $d = 2$. 
Correctness of the Merging

Theorem:
The algorithm `odd_even_merge` sorts two sorted sequences into a single one.

Proof:

- $S$ has the form: $S = 0^p 1^{m-p}$ for some $p$ with $0 \leq p \leq m$.
- $S'$ has the form: $S' = 0^q 1^{m'-q}$ for some $q$ with $0 \leq q \leq m'$.
- Thus the sequence $S_{odd}$ has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor} 1^*$.
- And $S_{even}$ has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor} 1^*$.
- Define: $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$
- Depending on $d$ we consider three cases: $d = 0$, $d = 1$ and $d = 2$. 


Correctness of the Merging

Theorem:
The algorithm `odd_even_merge` sorts two sorted sequences into a single one.

Proof:

- $S$ has the form: $S = 0^p 1^{m-p}$ for some $p$ with $0 \leq p \leq m$.
- $S'$ has the form: $S' = 0^q 1^{m'-q}$ for some $q$ with $0 \leq q \leq m'$.
- Thus the sequence $S_{odd}$ has the form $0^{\lceil p/2 \rceil + \lceil q/2 \rceil} 1^*$.
- And $S_{even}$ has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor} 1^*$.
- Define: $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$
- Depending on $d$ we consider three cases: $d = 0$, $d = 1$ and $d = 2$. 


Correctness of the Merging

**Theorem:**

The algorithm *odd_even_merge* sorts two sorted sequences into a single one.

**Proof:**

- \( S \) has the form: \( S = 0^p 1^{m-p} \) for some \( p \) with \( 0 \leq p \leq m \).
- \( S' \) has the form: \( S' = 0^q 1^{m'-q} \) for some \( q \) with \( 0 \leq q \leq m' \).
- Thus the sequence \( S_{odd} \) has the form \( 0^\lceil p/2 \rceil + \lceil q/2 \rceil 1^* \).
- And \( S_{even} \) has the form \( 0^\lfloor p/2 \rfloor + \lfloor q/2 \rfloor 1^* \).
- Define: \( d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor) \).
- Depending on \( d \) we consider three cases: \( d = 0, d = 1 \) and \( d = 2 \).
Correctness of the Merging

Theorem:
The algorithm *odd_even_merge* sorts two sorted sequences into a single one.

Proof:

- $S$ has the form: $S = 0^p1^{m-p}$ for some $p$ with $0 \leq p \leq m$.
- $S'$ has the form: $S' = 0^q1^{m'-q}$ for some $q$ with $0 \leq q \leq m'$.
- Thus the sequence $S_{odd}$ has the form $0^{\lceil p/2 \rceil + \lceil q/2 \rceil}1^*$.
- And $S_{even}$ has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor}1^*$.
- Definiere: $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$
- Depending on $d$ we consider three cases: $d = 0$, $d = 1$ and $d = 2$. 
Correctness of the Merging

If \( d = 0 \): Then we have: \( p \) and \( q \) are even.

- The \textit{interleave} step of \textit{join1} has the form:

\[
\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'-p-q}
\]

- The resulting sequences is already sorted.
- The \textit{compare\_exchange} step keeps the order.

If \( d = 1 \): Then we have: \( p \) is odd and \( q \) is even.

- The \textit{interleave} step of \textit{join1} has the form:

\[
\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\left\lfloor (p+q)/2 \right\rfloor}01^{m+m'-p-q}
\]

- The resulting sequences is already sorted.

If \( d = 2 \): Then we have: \( p \) and \( q \) are odd.

- The \textit{interleave} step of \textit{join1} has the form:

\[
\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\left\lfloor (p+q)/2 \right\rfloor}101^{m+m'-p-q}
\]

- The \textit{compare\_exchange} step will exchange the 1 on position \( 2r \) with the 0 on position \( 2r + 1 \).
Correctness of the Merging

If $d = 0$: Then we have: $p$ and $q$ are even.
- The *interleave* step of *join1* has the form:
  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 1^{m+m' - p - q}
  \]
- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: $p$ is odd and $q$ is even.
- The *interleave* step of *join1* has the form:
  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor} 10^{m+m' - p - q}
  \]
- The resulting sequences is already sorted.

If $d = 2$: Then we have: $p$ and $q$ are odd.
- The *interleave* step of *join1* has the form:
  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor} 101^{m+m' - p - q}
  \]
- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$. 
Correctness of the Merging

If $d = 0$: Then we have: $p$ and $q$ are even.

- The _interleave_ step of _join1_ has the form:

  $$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'-p-q}$$

- The resulting sequences is already sorted.
- The _compare_exchange_ step keeps the order.

If $d = 1$: Then we have: $p$ is odd and $q$ is even.

- The _interleave_ step of _join1_ has the form:

  $$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}01^{m+m'-p-q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: $p$ and $q$ are odd.

- The _interleave_ step of _join1_ has the form:

  $$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}10^{1^{m+m'-p-q}}$$

- The _compare_exchange_ step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$. 
Correctness of the Merging

If $d = 0$: Then we have: $p$ and $q$ are even.

- The *interleave* step of $join1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}1^{m+m'-p-q}$$

- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: $p$ is odd and $q$ is even.

- The *interleave* step of $join1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}01^{m+m'-p-q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: $p$ and $q$ are odd.

- The *interleave* step of $join1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}101^{m+m'-p-q}$$

- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$. 
Correctness of the Merging

If $d = 0$: Then we have: $p$ and $q$ are even.

- The *interleave* step of $join1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}1^{m+m'-p-q}$$

- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: $p$ is odd and $q$ is even.

- The *interleave* step of $join1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}01^{m+m'-p-q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: $p$ and $q$ are odd.

- The *interleave* step of $join1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}101^{m+m'-p-q}$$

- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$. 
Correctness of the Merging

If $d = 0$: Then we have: $p$ and $q$ are even.

- The *interleave* step of *join1* has the form:

  $$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'-p-q}$$

- The resulting sequences is alread sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: $p$ is odd and $q$ is even.

- The *interleave* step of *join1* has the form:

  $$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor (p+q)/2 \rfloor}01^{m+m'-p-q}$$

- The resulting sequences is alread sorted.

If $d = 2$: Then we have: $p$ and $q$ are odd.

- The *interleave* step of *join1* has the form:

  $$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor (p+q)/2 \rfloor}101^{m+m'-p-q}$$

- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$. 
Correctness of the Merging

If $d = 0$: Then we have: $p$ and $q$ are even.

- The *interleave* step of *join1* has the form:

  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'-p-q}
  \]

- The resulting sequences is already sorted.

- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: $p$ is odd and $q$ is even.

- The *interleave* step of *join1* has the form:

  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}01^{m+m'-p-q}
  \]

- The resulting sequences is already sorted.

If $d = 2$: Then we have: $p$ and $q$ are odd.

- The *interleave* step of *join1* has the form:

  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}101^{m+m'-p-q}
  \]

- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$. 
Correctness of the Merging

If $d = 0$: Then we have: $p$ and $q$ are even.
- The *interleave* step of *join1* has the form:

  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'-p-q}
  \]
- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: $p$ is odd and $q$ is even.
- The *interleave* step of *join1* has the form:

  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}01^{m+m'-p-q}
  \]
- The resulting sequences is already sorted.

If $d = 2$: Then we have: $p$ and $q$ are odd.
- The *interleave* step of *join1* has the form:

  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}101^{m+m'-p-q}
  \]
- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$. 
Correctness of the Merging

If $d = 0$: Then we have: $p$ and $q$ are even.
- The `interleave` step of `join1` has the form:
  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'\text{'}-p-q}
  \]
- The resulting sequences is alread sorted.
- The `compare_exchange` step keeps the order.

If $d = 1$: Then we have: $p$ is odd and $q$ is even.
- The `interleave` step of `join1` has the form:
  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lceil(p+q)/2\rceil}01^{m+m'\text{'}-p-q}
  \]
- The resulting sequences is alread sorted.

If $d = 2$: Then we have: $p$ and $q$ are odd.
- The `interleave` step of `join1` has the form:
  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lceil(p+q)/2\rceil}101^{m+m'\text{'}-p-q}
  \]
- The `compare_exchange` step will exchange the 1 on position $2r$ with the 0 on position $2r + 1.$
Correctness of the Merging

If $d = 0$: Then we have: $p$ and $q$ are even.

- The $\text{interleave}$ step of $\text{join1}$ has the form:
  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 1^{m+m'-p-q}
  \]

- The resulting sequences is already sorted.
- The $\text{compare\_exchange}$ step keeps the order.

If $d = 1$: Then we have: $p$ is odd and $q$ is even.

- The $\text{interleave}$ step of $\text{join1}$ has the form:
  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{[(p+q)/2]} 01^{m+m'-p-q}
  \]

- The resulting sequences is already sorted.

If $d = 2$: Then we have: $p$ and $q$ are odd.

- The $\text{interleave}$ step of $\text{join1}$ has the form:
  \[
  \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{[(p+q)/2]} 101^{m+m'-p-q}
  \]

- The $\text{compare\_exchange}$ step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$. 
Testing the Correctness of a Network

**Correlar:**

The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p1^{m-p}, 0^q1^{m'-q})$.

**Theorem:**

The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Testing the Correctness of a Network

Corollary:

The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p1^{m-p}, 0^q1^{m'-q})$.

Theorem:

The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Testing the Correctness of a Network

Corollary:

The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p 1^{m-p}, 0^q 1^{m-q})$.

Theorem:

The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Situation

- **Aim:** Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
Aim: Fast optimal algorithm.

So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.

So far: Two loop for merging and sorting.

Idea: make one loop faster, i.e. the merging in $O(1)$.

Problem: With no further information we need $\Theta(\log n)$ steps.

Idea: compute this additional information during the sorting.

Choose as additional information nice splitting points for merging.

I.e. choose positions which split the blocks to be merged of constants size.

Problem: How to compute these points?

Solution is the base for the algorithm of Cole.
Situation

- **Aim:** Fast optimal algorithm.

- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.

- So far: Two loop for merging and sorting.

- Idea: make one loop faster, i.e. the merging in $O(1)$.

- Problem: With no further information we need $\Theta(\log n)$ steps.

- Idea: compute this additional information during the sorting.

- Choose as additional information nice splitting points for merging.

- I.e choose positions which split the blocks to be merged of constants size.

- Problem: How to compute these points?

- Solution is the base for the algorithm of Cole.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
Situation

- **Aim**: Fast optimal algorithm.
- **So far** \( T(n) = \log^2 n \) bei \( P(n) = O(n) \).
- **So far**: Two loop for merging and sorting.
- **Idea**: make one loop faster, i.e. the merging in \( O(1) \).
- **Problem**: With no further information we need \( \Theta(\log n) \) steps.
- **Idea**: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- **Problem**: How to compute these points?
- **Solution** is the base for the algorithm of Cole.
Situation

- **Aim:** Fast optimal algorithm.
- **So far** $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- **So far:** Two loop for merging and sorting.
- **Idea:** make one loop faster, i.e. the merging in $O(1)$.
- **Problem:** With no further information we need $\Theta(\log n)$ steps.
- **Idea:** compute this additional information during the sorting.

Choose as additional information nice splitting points for merging.

I.e choose positions which split the blocks to be merged of constants size.

**Problem:** How to compute these points?

**Solution** is the base for the algorithm of Cole.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
Situation

- **Aim:** Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loops for merging and sorting.
- **Idea:** make one loop faster, i.e. the merging in $O(1)$.
- **Problem:** With no further information we need $\Theta(\log n)$ steps.
- **Idea:** compute this additional information during the sorting.
- **Choose as additional information nice splitting points for merging.**
- i.e choose positions which split the blocks to be merged of constants size.
- **Problem:** How to compute these points?
- **Solution** is the base for the algorithm of Cole.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loops for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- i.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
Situation

- **Aim**: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- **Idea**: make one loop faster, i.e. the merging in $O(1)$.
- **Problem**: With no further information we need $\Theta(\log n)$ steps.
- **Idea**: compute this additional information during the sorting.
- **Choose as additional information nice splitting points for merging**.
  - i.e choose positions which split the blocks to be merged of constants size.
- **Problem**: How to compute these points?
- **Solution is the base for the algorithm of Cole.**
The Merging-Tree, a View
Before merging two sequences we will merge two sub-sequences.

Choose as sub-sequence each $k$-th element of the original sequence.

These sub-sequences will be used as crutch/support to do the final merging.

I.e. these sub-sequences are used as a kind of “preview”.

Using these crutch points we will be able to do the merging in $O(1)$ time.

Total running time will be $O(\log n)$.

The additional effort should be at most $O(1)$. 
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each $k$-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$. 
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each $k$-th element of the original sequence.
  - These sub-sequences will be used as crutch/support to do the final mergeing.
  - I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$. 
Before merging two sequences we will merge two sub-sequences.
Choose as sub-sequence each $k$-th element of the original sequence.
These sub-sequences will be used as crutch/support to do the final merging.
I.e. these sub-sequences are used as a kind of “preview”.
Using these crutch points we will be able to do the merging in $O(1)$ time.
Total running time will be $O(\log n)$.
The additional effort should be at most $O(1)$. 
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each $k$-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each $k$-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- **Total running time will be $O(\log n)$**.
- The additional effort should be at most $O(1)$.
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each \( k \)-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in \( O(1) \) time.
- Total running time will be \( O(\log n) \).
- The additional effort should be at most \( O(1) \).
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Prozessor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each processor starts with 256 elements
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each Processor starts with 256 elements

- has 4 →
- sends 16 →
- has 16 →
- sends 64 →
- has 64 →
- sends 256 →
- has 256 →
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Prozessor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements

↑ each ↑
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Prozessor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements
Let $J$ and $K$ be two sorted sequences.

Note: without additional information we could not merge $J$ and $K$ in $O(1)$ time with $O(n)$ processors.

Let $L$ be a third sequence, which will be called in the following good sampler for $J$ and $K$.

Informal: $|L| < |J|$ and the elements of $L$ are evenly spread in $J$.

Let $a < b$, $c$ is between $a$ and $b$ iff $a < c \leq b$.

The rank of $e$ in $S$ is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.

Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.

$\text{Rng}_{A,B}$ is called the rank between $A$ and $B$.

Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let $J$ and $K$ be two sorted sequences.
- **Note:** without additional information we could not merge $J$ and $K$ in $O(1)$ time with $O(n)$ processors.
- Let $L$ be a third sequence, which will be called in the following **good** sampler for $J$ and $K$.
- Informal: $|L| < |J|$ and the elements of $L$ are evenly spread in $J$.
- Let $a < b$, $c$ is between $a$ and $b$ iff $a < c \leq b$.
- The rank of $e$ in $S$ is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- **Notation:** $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between $A$ and $B$.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Let $J$ and $K$ be two sorted sequences.

Note: without additional information we could not merge $J$ and $K$ in $O(1)$ time with $O(n)$ processors.

Let $L$ be a third sequence, which will be called in the following good sampler for $J$ and $K$.

Informal: $|L| < |J|$ and the elements of $L$ are evenly spread in $J$.

Let $a < b$, $c$ is between $a$ and $b$ iff $a < c \leq b$.

The rank of $e$ in $S$ is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.

Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.

$\text{Rng}_{A,B}$ is called the rank between $A$ and $B$.

Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let $J$ and $K$ be two sorted sequences.
- Note: without additional information we could not merge $J$ and $K$ in $O(1)$ time with $O(n)$ processors.
- Let $L$ be a third sequence, which will be called in the following good sampler for $J$ and $K$.
- Informal: $|L| < |J|$ and the elements of $L$ are evenly spread in $J$.
- Let $a < b$, $c$ is between $a$ and $b$ iff $a < c \leq b$.
- The rank of $e$ in $S$ is $rng(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $Rng_{A,B}$ is the function $Rng_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $Rng_{A,B}(e) = rng(e, B)$ for all $e \in A$.
- $Rng_{A,B}$ is called the rank between $A$ and $B$.
- Depending on the context $Rng_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let $J$ and $K$ be two sorted sequences.
- Note: without additional information we could not merge $J$ and $K$ in $O(1)$ time with $O(n)$ processors.
- Let $L$ be a third sequence, which will be called in the following good sampler for $J$ and $K$.
- Informal: $|L| < |J|$ and the elements of $L$ are evenly spread in $J$.
- Let $a < b$, $c$ is between $a$ and $b$ iff $a < c \leq b$.
- The rank of $e$ in $S$ is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between $A$ and $B$.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
**Definition**

- Let $J$ and $K$ be two sorted sequences.
- Note: without additional information we could not merge $J$ and $K$ in $O(1)$ time with $O(n)$ processors.
- Let $L$ be a third sequence, which will be called in the following good sampler for $J$ and $K$.
- Informal: $|L| < |J|$ and the elements of $L$ are evenly spread in $J$.
- Let $a < b$, $c$ is between $a$ and $b$ iff $a < c \leq b$.
- The rank of $e$ in $S$ is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between $A$ and $B$.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
**Definition**

- Let $J$ and $K$ be two sorted sequences.
- Note: without additional information we could not merge $J$ and $K$ in $O(1)$ time with $O(n)$ processors.
- Let $L$ be a third sequence, which will be called in the following *good sampler* for $J$ and $K$.
- Informal: $|L| < |J|$ and the elements of $L$ are evenly spread in $J$.
- Let $a < b$, $c$ is between $a$ and $b$ iff $a < c \leq b$.
- The rank of $e$ in $S$ is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- **Notation:** $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between $A$ and $B$.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let \( J \) and \( K \) be two sorted sequences.
- Note: without additional information we could not merge \( J \) and \( K \) in \( O(1) \) time with \( O(n) \) processors.
- Let \( L \) be a third sequence, which will be called in the following good sampler for \( J \) and \( K \).
- Informal: \(|L| < |J|\) and the elements of \( L \) are evenly spread in \( J \).
- Let \( a < b \), \( c \) is between \( a \) and \( b \) iff \( a < c \leq b \).
- The rank of \( e \) in \( S \) is \( \text{rng}(e, S) = |\{x \in S \mid x < e\}| \).
- Notation: \( Rng_{A,B} \) is the function \( Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \) with \( Rng_{A,B}(e) = \text{rng}(e, B) \) for all \( e \in A \).
- \( Rng_{A,B} \) is called the rank between \( A \) and \( B \).
- Depending on the context \( Rng_{A,B} \) could also be an array with \(|A|\) elements.
Definition

- Let $J$ and $K$ be two sorted sequences.
- Note: without additional information we could not merge $J$ and $K$ in $O(1)$ time with $O(n)$ processors.
- Let $L$ be a third sequence, which will be called in the following **good sampler** for $J$ and $K$.
- Informal: $|L| < |J|$ and the elements of $L$ are evenly spread in $J$.
- Let $a < b$, $c$ is between $a$ and $b$ iff $a < c \leq b$.
- The rank of $e$ in $S$ is $\text{rng}(e, S) = |\{ x \in S \mid x < e \}|$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between $A$ and $B$.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Good Sampler

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad R_{A,B} : A \rightarrow \mathbb{N}^{|A|} \] with \[ R_{A,B}(e) = \text{rng}(e, B) \]

**Definition:**

We call \( L \) a good sampler of \( J \), iff:

- \( L \) and \( J \) are sorted.
- Between any \( k + 1 \) succeeding elements of \( \{-\infty\} \cup L \cup \{+\infty\} \) are at most \( 2 \cdot k + 1 \) many elements in \( J \).

**Example:**

- Let \( S \) be a sorted sequence
- Let \( S_1 \) be the sequence consisting of each fourth element of \( S \).
- Then \( S_1 \) is a good sampler of \( S \).
- Let \( S_2 \) be the sequence consisting of each second element of \( S \).
- Then \( S_1 \) is a good sampler of \( S_2 \).
- Example \((k = 1)\): \(1, 2, 3, 4\).
- Example \((k = 3)\): \(1, 2, 3, 4, 5, 6, 7, 8, 9, 10\).
Good Sampler

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

**Definition:**

We call \( L \) a good sampler of \( J \), iff:

- \( L \) and \( J \) are sorted.
- Between any \( k + 1 \) succeeding elements of \( \{-\infty\} \cup L \cup \{+\infty\} \) are at most \( 2 \cdot k + 1 \) many elements in \( J \).

**Example:**

- Let \( S \) be a sorted sequence
- Let \( S_1 \) be the sequence consisting of each forth element of \( S \).
- Then \( S_1 \) is a good sampler of \( S \).
- Let \( S_2 \) be the sequence consisting of each second element of \( S \).
- Then \( S_1 \) is a good sampler of \( S_2 \).
- Example \((k = 1)\): 1, 2, 3, 4.
- Example \((k = 3)\): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Good Sampler

\[ \text{rng}(e, S) = \left| \{ x \in S \mid x < e \} \right| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{\left| A \right|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

**Definition:**

We call \( L \) a good sampler of \( J \), iff:

- \( L \) and \( J \) are sorted.
- Between any \( k + 1 \) succeeding elements of \( \{-\infty\} \cup L \cup \{+\infty\} \) are at most \( 2 \cdot k + 1 \) many elements in \( J \).

**Example:**

- Let \( S \) be a sorted sequence
- Let \( S_1 \) be the sequence consisting of each forth element of \( S \).
- Then \( S_1 \) is a good sampler of \( S \).
- Let \( S_2 \) be the sequence consisting of each second element of \( S \).
- Then \( S_1 \) is a good sampler of \( S_2 \).
- Example (\( k = 1 \)): \( 1, 2, 3, 4 \).
- Example (\( k = 3 \)): \( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \).
Good Sampler

Definition:

We call $L$ a good sampler of $J$, iff:

- $L$ and $J$ are sorted.
- Between any $k + 1$ succeeding elements of $\{-\infty\} \cup L \cup \{+\infty\}$ are at most $2 \cdot k + 1$ many elements in $J$.

Example:

- Let $S$ be a sorted sequence
- Let $S_1$ be the sequence consisting of each fourth element of $S$.
- Then $S_1$ is a good sampler of $S$.
- Let $S_2$ be the sequence consisting of each second element of $S$.
- Then $S_1$ is a good sampler of $S_2$.
- Example ($k = 1$): $1, 2, 3, 4$.
- Example ($k = 3$): $1, 2, 3, 4, 5, 6, 7, 8, 9, 10$. 

$$rng(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A, B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A, B}(e) = rng(e, B)$$
Good Sampler

\[ rng(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = rng(e, B) \]

Definition:

We call \( L \) a good sampler of \( J \), iff:

- \( L \) and \( J \) are sorted.
- Between any \( k + 1 \) succeeding elements of \( \{-\infty\} \cup L \cup \{+\infty\} \) are at most \( 2 \cdot k + 1 \) many elements in \( J \).

Example:

- Let \( S \) be a sorted sequence
- Let \( S_1 \) be the sequence consisting of each forth element of \( S \).
- Then \( S_1 \) is a good sampler of \( S \).
- Let \( S_2 \) be the sequence consisting of each second element of \( S \).
- Then \( S_1 \) is a good sampler of \( S_2 \).
- Example \((k = 1)\): \( 1, 2, 3, 4 \).
- Example \((k = 3)\): \( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \).
Good Sampler

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad R_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad R_{A,B}(e) = \text{rng}(e, B) \]

**Definition:**
We call \( L \) a good sampler of \( J \), iff:
- \( L \) and \( J \) are sorted.
- Between any \( k + 1 \) succeeding elements of \( \{-\infty\} \cup L \cup \{+\infty\} \) are at most \( 2 \cdot k + 1 \) many elements in \( J \).

**Example:**
- Let \( S \) be a sorted sequence
- Let \( S_1 \) be the sequence consisting of each forth element of \( S \).
- Then \( S_1 \) is a good sampler of \( S \).
- Let \( S_2 \) be the sequence consisting of each second element of \( S \).
- Then \( S_1 \) is a good sampler of \( S_2 \).
- Example (\( k = 1 \)): 1, 2, 3, 4.
- Example (\( k = 3 \)): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Good Sampler

Definition:
We call $L$ a good sampler of $J$, iff:

- $L$ and $J$ are sorted.
- Between any $k + 1$ succeeding elements of $\{-\infty\} \cup L \cup \{+\infty\}$ are at most $2 \cdot k + 1$ many elements in $J$.

Example:

- Let $S$ be a sorted sequence
- Let $S_1$ be the sequence consisting of each forth element of $S$.
- Then $S_1$ is a good sampler of $S$.
- Let $S_2$ be the sequence consisting of each second element of $S$.
- Then $S_1$ is a good sampler of $S_2$.
- Example ($k = 1$): 1, 2, 3, 4.
- Example ($k = 3$): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
**Good Sampler**

\[
\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad Rng_{A,B} : A \mapsto \mathbb{N}^{\left|A\right|} \quad \text{with} \quad Rng_{A,B}(e) = \text{rng}(e, B)
\]

**Definition:**

We call \( L \) a good sampler of \( J \), iff:

- \( L \) and \( J \) are sorted.
- Between any \( k + 1 \) succeeding elements of \( \{-\infty\} \cup L \cup \{+\infty\} \) are at most \( 2 \cdot k + 1 \) many elements in \( J \).

**Example:**

- Let \( S \) be a sorted sequence
- Let \( S_1 \) be the sequence consisting of each forth element of \( S \).
  - Then \( S_1 \) is a good sampler of \( S \).
- Let \( S_2 \) be the sequence consisting of each second element of \( S \).
  - Then \( S_1 \) is a good sampler of \( S_2 \).
- Example \((k = 1)\): 1, 2, 3, 4.
- Example \((k = 3)\): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Good Sampler

Definition:

We call \( L \) a good sampler of \( J \), iff:

- \( L \) and \( J \) are sorted.
- Between any \( k + 1 \) succeeding elements of \( \{-\infty\} \cup L \cup \{+\infty\} \) are at most \( 2 \cdot k + 1 \) many elements in \( J \).

Example:

- Let \( S \) be a sorted sequence
- Let \( S_1 \) be the sequence consisting of each forth element of \( S \).
- Then \( S_1 \) is a good sampler of \( S \).
- Let \( S_2 \) be the sequence consisting of each second element of \( S \).
- Then \( S_1 \) is a good sampler of \( S_2 \).
- Example (\( k = 1 \)): \( 1, 2, 3, 4 \).
- Example (\( k = 3 \)): \( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \).

\[
\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B)
\]
Good Sampler

$\text{rng}(e, S) = |\{x \in S \mid x < e\}|$ \hspace{1em} and $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{\left|A\right|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$

**Definition:**

We call $L$ a good sampler of $J$, iff:

- $L$ and $J$ are sorted.
- Between any $k + 1$ succeeding elements of $\{-\infty\} \cup L \cup \{+\infty\}$ are at most $2 \cdot k + 1$ many elements in $J$.

**Example:**

- Let $S$ be a sorted sequence
- Let $S_1$ be the sequence consisting of each forth element of $S$.
  - Then $S_1$ is a good sampler of $S$.
- Let $S_2$ be the sequence consisting of each second element of $S$.
  - Then $S_1$ is a good sampler of $S_2$.
- Example ($k = 1$): $1, 2, 3, 4$.
- Example ($k = 3$): $1, 2, 3, 4, 5, 6, 7, 8, 9, 10$. 
Merging using a Good Sampler

\[ \text{rng}(e, S) = \lvert \{ x \in S \mid x < e \} \rvert \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{\lvert A \rvert} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

- Let \( J, K \) and \( L \) be sorted sequences.
- Let \( L \) be a good sampler of both \( J \) and \( K \).
- Let \( L = (l_1, l_2, \ldots, l_s) \).
- Programm: merge_with_help(\( J, K, L \))
  
  for all \( i \) where \( 1 \leq i \leq s \) do in parallel
  
  Assign \( J_i = \{ x \in J \mid l_{i-1} < x \leq l_i \} \).
  
  Assign \( K_i = \{ x \in K \mid l_{i-1} < x \leq l_i \} \).
  
  Assign \( res_i = \text{merge}(J_i, K_i) \).

  return \( (res_1, res_2, \ldots, res_s) \).

- Situation:

\[ \begin{array}{cccccccccc}
L_1 & L_2 & L_3 & L_4 & L_5 & L_6 & L_7 & L_8 & L_9 \\
\hline
l_1 & l_2 & l_3 & l_4 & l_5 & l_6 & l_7 & l_8 & \\
K_1 & K_2 & K_3 & K_4 & K_5 & K_6 & K_7 & K_8 & K_9
\end{array} \]
Merging using a Good Sampler

rng(e, S) = |{x ∈ S | x < e}| and Rng_{A,B} : A ↦ N^{|A|} with Rng_{A,B}(e) = rng(e, B)

- Let J, K and L be sorted sequences.
- Let L be a good sampler of both J and K.
- Let L = (l_1, l_2, ⋅⋅⋅, l_s).
- Program: merge_with_help(J, K, L)
  for all i where 1 ≤ i ≤ s do in parallel
    Assign J_i = {x ∈ J | l_{i-1} < x ≤ l_i}.  
    Assign K_i = {x ∈ K | l_{i-1} < x ≤ l_i}. 
    Assign res_i = merge(J_i, K_i).
  return (res_1, res_2, ⋅⋅⋅, res_s).

Situation:

<table>
<thead>
<tr>
<th></th>
<th>L_1</th>
<th>L_2</th>
<th>L_3</th>
<th>L_4</th>
<th>L_5</th>
<th>L_6</th>
<th>L_7</th>
<th>L_8</th>
<th>L_9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l_1</td>
<td>l_2</td>
<td>l_3</td>
<td>l_4</td>
<td>l_5</td>
<td>l_6</td>
<td>l_7</td>
<td>l_8</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>K_1</td>
<td>K_2</td>
<td>K_3</td>
<td>K_4</td>
<td>K_5</td>
<td>K_6</td>
<td>K_7</td>
<td>K_8</td>
<td>K_9</td>
<td></td>
</tr>
</tbody>
</table>
Merging using a Good Sampler

\[ \text{rng}(e, S) = \lvert \{x \in S \mid x < e\} \rvert \] \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

- Let \( J, K \) and \( L \) be sorted sequences.
- Let \( L \) be a good sampler of both \( J \) and \( K \).
- Let \( L = (l_1, l_2, \ldots, l_s) \).

Programm: merge_with_help\((J, K, L)\)
\[
\text{for all } i \text{ where } 1 \leq i \leq s \text{ do in parallel }
\]
- Assign \( J_i = \{x \in J \mid l_{i-1} < x \leq l_i\} \).
- Assign \( K_i = \{x \in K \mid l_{i-1} < x \leq l_i\} \).
- Assign \( \text{res}_i = \text{merge}(J_i, K_i) \).

return \((\text{res}_1, \text{res}_2, \ldots, \text{res}_s)\).

Situation:

\[
\begin{array}{cccccccc}
L_1 & L_2 & L_3 & L_4 & L_5 & L_6 & L_7 & L_8 & L_9 \\
\hline
l_1 & l_2 & l_3 & l_4 & l_5 & l_6 & l_7 & l_8 \\
K_1 & K_2 & K_3 & K_4 & K_5 & K_6 & K_7 & K_8 & K_9 \\
\end{array}
\]
Merging using a Good Sampler

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- Let \( J, K \) and \( L \) be sorted sequences.
- Let \( L \) be a good sampler of both \( J \) and \( K \).
- Let \( L = (l_1, l_2, \cdots, l_s) \).
- Programm: \( \text{merge} \_\text{with} \_\text{help}(J, K, L) \)
  
  \[ \begin{array}{cccccccccc}
  \text{for all} \ i \ \text{where} \ 1 \leq i \leq s \ \text{do in parallel} \\
  \text{Assign} \ J_i = \{x \in J \mid l_{i-1} < x \leq l_i\}. \\
  \text{Assign} \ K_i = \{x \in K \mid l_{i-1} < x \leq l_i\}. \\
  \text{Assign} \ \text{res}_i = \text{merge}(J_i, K_i). \\
  \text{return} \ (\text{res}_1, \text{res}_2, \cdots, \text{res}_s). \\
  \end{array} \]

- Situation:

<table>
<thead>
<tr>
<th>( L_1 )</th>
<th>( L_2 )</th>
<th>( L_3 )</th>
<th>( L_4 )</th>
<th>( L_5 )</th>
<th>( L_6 )</th>
<th>( L_7 )</th>
<th>( L_8 )</th>
<th>( L_9 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( l_1 )</td>
<td>( l_2 )</td>
<td>( l_3 )</td>
<td>( l_4 )</td>
<td>( l_5 )</td>
<td>( l_6 )</td>
<td>( l_7 )</td>
<td>( l_8 )</td>
<td></td>
</tr>
<tr>
<td>( K_1 )</td>
<td>( K_2 )</td>
<td>( K_3 )</td>
<td>( K_4 )</td>
<td>( K_5 )</td>
<td>( K_6 )</td>
<td>( K_7 )</td>
<td>( K_8 )</td>
<td>( K_9 )</td>
</tr>
</tbody>
</table>
Merging using a Good Sampler

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- Let \( J, K \) and \( L \) be sorted sequences.
- Let \( L \) be a good sampler of both \( J \) and \( K \).
- Let \( L = (l_1, l_2, \ldots, l_s) \).

Programm: \text{merge\_with\_help}(J, K, L)

\begin{align*}
\text{for all } i \text{ where } 1 \leq i \leq s \text{ do in parallel} \\
\text{ Assign } J_i &= \{x \in J \mid l_{i-1} < x \leq l_i\}. \\
\text{ Assign } K_i &= \{x \in K \mid l_{i-1} < x \leq l_i\}. \\
\text{ Assign } res_i &= \text{merge}(J_i, K_i). \\
\text{return } (res_1, res_2, \ldots, res_s). \\
\end{align*}

Situation:

<table>
<thead>
<tr>
<th>( L_1 )</th>
<th>( L_2 )</th>
<th>( L_3 )</th>
<th>( L_4 )</th>
<th>( L_5 )</th>
<th>( L_6 )</th>
<th>( L_7 )</th>
<th>( L_8 )</th>
<th>( L_9 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( l_1 )</td>
<td>( l_2 )</td>
<td>( l_3 )</td>
<td>( l_4 )</td>
<td>( l_5 )</td>
<td>( l_6 )</td>
<td>( l_7 )</td>
<td>( l_8 )</td>
<td></td>
</tr>
<tr>
<td>( K_1 )</td>
<td>( K_2 )</td>
<td>( K_3 )</td>
<td>( K_4 )</td>
<td>( K_5 )</td>
<td>( K_6 )</td>
<td>( K_7 )</td>
<td>( K_8 )</td>
<td>( K_9 )</td>
</tr>
</tbody>
</table>
Merging using a Good Sampler

Let $J$, $K$ and $L$ be sorted sequences.

Let $L$ be a good sampler of both $J$ and $K$.

Let $L = (l_1, l_2, \cdots, l_s)$.

Programm: \text{merge\_with\_help}(J, K, L)

\begin{align*}
\text{for all } i \text{ where } 1 \leq i \leq s \text{ do in parallel} \\
\quad \text{Assign } J_i = \{x \in J \mid l_{i-1} < x \leq l_i\}. \\
\quad \text{Assign } K_i = \{x \in K \mid l_{i-1} < x \leq l_i\}. \\
\quad \text{Assign } res_i = \text{merge}(J_i, K_i). \\
\end{align*}
return $(res_1, res_2, \cdots, res_s)$.

Situation:

\begin{array}{cccccccc}
L_1 & L_2 & L_3 & L_4 & L_5 & L_6 & L_7 & L_8 & L_9 \\
\hline
l_1 & l_2 & l_3 & l_4 & l_5 & l_6 & l_7 & l_8 \\
K_1 & K_2 & K_3 & K_4 & K_5 & K_6 & K_7 & K_8 & K_9
\end{array}
Merging using a Good Sampler (Example)

\[ rng(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = rng(e, B) \]

- \( K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \( J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \( L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>( i )</th>
<th>( K_i )</th>
<th>( J_i )</th>
<th>( \text{merge}(K_i, J_i) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: \( (1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) \)
Merging using a Good Sampler (Example)

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- \( K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \( J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \( L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>( i )</th>
<th>( K_i )</th>
<th>( J_i )</th>
<th>merge(( K_i, J_i ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: (1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)
Merging using a Good Sampler (Example)

\[ \text{rng}(e, S) = \{|x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- \( K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \( J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \( L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>( i )</th>
<th>( K_i )</th>
<th>( J_i )</th>
<th>merge((K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

rng(e, S) = |{x ∈ S | x < e}| and Rng_{A,B} : A ↦→ N^{|A|} with Rng_{A,B}(e) = rng(e, B)

- K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20)
- J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21)
- L = (5, 10, 12, 17)

Then we have:

<table>
<thead>
<tr>
<th>i</th>
<th>K_i</th>
<th>J_i</th>
<th>merge(K_i, J_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: (1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)
Merging using a Good Sampler (Example)

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{\mid A\mid} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- \( K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \( J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \( L = (5, 10, 12, 17) \)
- Then we have:

<table>
<thead>
<tr>
<th>( i )</th>
<th>( K_i )</th>
<th>( J_i )</th>
<th>merge((K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

\[ \text{rng}(e, S) = |\{x \in S | x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- \( K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \( J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \( L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>( i )</th>
<th>( K_i )</th>
<th>( J_i )</th>
<th>merge((K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>( \emptyset )</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td></td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad Rng_{A,B}(e) = \text{rng}(e, B) \]

- \( K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \( J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \( L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>( i )</th>
<th>( K_i )</th>
<th>( J_i )</th>
<th>( \text{merge}(K_i, J_i) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>( \emptyset )</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

Result: (1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)
Merging using a Good Sampler (Example)

rng(e, S) = \{|x \in S \mid x < e\}| and Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} with Rng_{A,B}(e) = rng(e, B)

- \( K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \( J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \( L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>( i )</th>
<th>( K_i )</th>
<th>( J_i )</th>
<th>merge(( K_i, J_i ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>( \emptyset )</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

Result: \( (1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) \)
Merging using a Good Sampler (Example)

\[ \text{rng}(e, S) = |\{ x \in S \mid x < e \}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- \( K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \( J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \( L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>( i )</th>
<th>( K_i )</th>
<th>( J_i )</th>
<th>merge(( K_i ), ( J_i ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>( \emptyset )</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

Result: \( (1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) \)
Merging with good sampler (running time)

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \( L \) is a good sampler for \( K \) and \( J \).
If \( Rng_{L,J}, Rng_{L,K}, Rng_{K,L} \) and \( Rng_{J,L} \) is known, then we have:
\[ T_{\text{merge\_with\_help}(J,K,L)} = O(1) \text{ with } P_{\text{merge\_with\_help}(J,K,L)} = O(|J| + |K|). \]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \( Rng_{L,J} \) resp. \( Rng_{L,K} \) to know the area to read its input sequences.
- Each processor uses \( Rng_{J,L} \) and \( Rng_{K,L} \) to know the area to write its output sequence.
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B)\]

**Lemma:**

If \(L\) is a good sampler for \(K\) and \(J\).
If \(\text{Rng}_{L,J}, \text{Rng}_{L,K}, \text{Rng}_{K,L}\) and \(\text{Rng}_{J,L}\) is known, then we have:

\[T_{merge \_with \_help}(J,K,L) = O(1) \text{ with } P_{merge \_with \_help}(J,K,L) = O(|J| + |K|)\]

**Proof:**

- The same way as in the merging introduced in the last chapter.
- Each processor uses \(\text{Rng}_{L,J}\) resp. \(\text{Rng}_{L,K}\) to know the area to read its input sequences.
- Each processor uses \(\text{Rng}_{J,L}\) and \(\text{Rng}_{K,L}\) to know the area to write its output sequence.
Merging with good sampler (running time)

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad R_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad R_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \( L \) is a good sampler for \( K \) and \( J \).
If \( R_{L,J}, R_{L,K}, R_{K,L} \) and \( R_{J,L} \) is known, then we have:
\[
T_{\text{merge\_with\_help}(J,K,L)} = \mathcal{O}(1) \quad \text{with} \quad P_{\text{merge\_with\_help}(J,K,L)} = \mathcal{O}(|J| + |K|).
\]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \( R_{L,J} \) resp. \( R_{L,K} \) to know the area to read its input sequences.
- Each processor uses \( R_{J,L} \) and \( R_{K,L} \) to know the area to write its output sequence.
Merging with good sampler (running time)

\[ \text{rng}(e, S) = \left| \{ x \in S \mid x < e \} \right| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \( L \) is a good sampler for \( K \) and \( J \).

If \( \text{Rng}_{L,J}, \text{Rng}_{L,K}, \text{Rng}_{K,L} \) and \( \text{Rng}_{J,L} \) is known, then we have:

\[ T_{\text{merge \_ with \_ help}(J,K,L)} = O(1) \quad \text{with} \quad P_{\text{merge \_ with \_ help}(J,K,L)} = O(|J| + |K|). \]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \( \text{Rng}_{L,J} \) resp. \( \text{Rng}_{L,K} \) to know the area to read its input sequences.
- Each processor uses \( \text{Rng}_{J,L} \) and \( \text{Rng}_{K,L} \) to know the area to write its output sequence.
Properties of Good Samplers

Lemma:
If $X$ is a good sampler for $X'$ and $Y$ is a good sampler for $Y'$, then
$\text{merge}(X, Y)$ is a good sampler for $X'$ [resp. $Y'$].

Proof:
- Consider $X$ as a good sampler for $X'$.
- Any additional element make the good sampler just "better".

Note:
$\text{merge}(X, Y)$ is not necessary a sampler for $\text{merge}(X', Y')$.
- $X = (2, 7)$ and $X' = (2, 5, 6, 7)$.
- $Y = (1, 8)$ and $Y' = (1, 3, 4, 8)$.
- $\text{merge}(X, Y) = (1, 2, 7, 8)$ and $\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8)$.
- There are 5 elements between 2 and 7.
Properties of Good Samplers

Lemma:

If $X$ is a good sampler for $X'$ and $Y$ is a good sampler for $Y'$, then merge($X, Y$) is a good sampler for $X'$ [resp. $Y'$].

Proof:

- Consider $X$ as a good sampler for $X'$.
- Any additional element make the good sampler just "better".

Note:

merge($X, Y$) is not necessary a sampler for merge($X', Y'$).

- $X = (2, 7)$ and $X' = (2, 5, 6, 7)$.
- $Y = (1, 8)$ and $Y' = (1, 3, 4, 8)$.
- merge($X, Y$) = (1, 2, 7, 8) and merge($X', Y'$) = (1, 2, 3, 4, 5, 6, 7, 8).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

**Lemma:**

If \( X \) is a good sampler for \( X' \) and 
\( Y \) is a good sampler for \( Y' \), then 
merge\((X, Y)\) is a good sampler for \( X' \) [resp. \( Y' \)].

**Proof:**

- Consider \( X \) as a good sampler for \( X' \).
- Any additional element make the good sampler just "better".

**Note:**

merge\((X, Y)\) is not necessary a sampler for merge\((X', Y')\).
- \( X = (2, 7) \) and \( X' = (2, 5, 6, 7) \).
- \( Y = (1, 8) \) and \( Y' = (1, 3, 4, 8) \).
- merge\((X, Y) = (1, 2, 7, 8) \) and merge\((X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[ \text{rng}(e, S) = |\{ x \in S \mid x < e \}| \text{ and } R_{g_{A,B}} : A \mapsto \mathbb{N}^{|A|} \text{ with } R_{g_{A,B}}(e) = \text{rng}(e, B) \]

Lemma:

If \( X \) is a good sampler for \( X' \) and \( Y \) is a good sampler for \( Y' \), then \( \text{merge}(X, Y) \) is a good sampler for \( X' \) [resp. \( Y' \)].

Proof:

- Consider \( X \) as a good sampler for \( X' \).
- Any additional element make the good sampler just "better".

Note:

\( \text{merge}(X, Y) \) is not necessary a sampler for \( \text{merge}(X', Y') \).

- \( X = (2, 7) \) and \( X' = (2, 5, 6, 7) \).
- \( Y = (1, 8) \) and \( Y' = (1, 3, 4, 8) \).
- \( \text{merge}(X, Y) = (1, 2, 7, 8) \) and \( \text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \( X \) is a good sampler for \( X' \) and \( Y \) is a good sampler for \( Y' \), then \( \text{merge}(X, Y) \) is a good sampler for \( X' \) [resp. \( Y' \)].

Proof:

- Consider \( X \) as a good sampler for \( X' \).
- Any additional element make the good sampler just "better".

Note:

\( \text{merge}(X, Y) \) is not necessary a sampler for \( \text{merge}(X', Y') \).

- \( X = (2, 7) \) and \( X' = (2, 5, 6, 7) \).
- \( Y = (1, 8) \) and \( Y' = (1, 3, 4, 8) \).
- \( \text{merge}(X, Y) = (1, 2, 7, 8) \) and \( \text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[ \text{rng}(e, S) = \{|x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

**Lemma:**

If \( X \) is a good sampler for \( X' \) and \( Y \) is a good sampler for \( Y' \), then \( \text{merge}(X, Y) \) is a good sampler for \( X' \) [resp. \( Y' \)].

**Proof:**

- Consider \( X \) as a good sampler for \( X' \).
- Any additional element makes the good sampler just “better”.

**Note:**

\( \text{merge}(X, Y) \) is not necessary a sampler for \( \text{merge}(X', Y') \).

- \( X = (2, 7) \) and \( X' = (2, 5, 6, 7) \).
- \( Y = (1, 8) \) and \( Y' = (1, 3, 4, 8) \).
- \( \text{merge}(X, Y) = (1, 2, 7, 8) \) and \( \text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

**Lemma:**

If \( X \) is a good sampler for \( X' \) and \( Y \) is a good sampler for \( Y' \), then \( \text{merge}(X, Y) \) is a good sampler for \( X' \) [resp. \( Y' \)].

**Proof:**

- Consider \( X \) as a good sampler for \( X' \).
- Any additional element make the good sampler just "better".

**Note:**

\( \text{merge}(X, Y) \) is not necessary a sampler for \( \text{merge}(X', Y') \).

- \( X = (2, 7) \) and \( X' = (2, 5, 6, 7) \).
- \( Y = (1, 8) \) and \( Y' = (1, 3, 4, 8) \).
- \( \text{merge}(X, Y) = (1, 2, 7, 8) \) and \( \text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A, B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A, B}(e) = \text{rng}(e, B) \]

**Lemma:**

If \( X \) is a good sampler for \( X' \) and \( Y \) is a good sampler for \( Y' \), then \( \text{merge}(X, Y) \) is a good sampler for \( X' \) [resp. \( Y' \)].

**Proof:**

- Consider \( X \) as a good sampler for \( X' \).
- Any additional element make the good sampler just “better.”

**Note:**

\( \text{merge}(X, Y) \) is not necessary a sampler for \( \text{merge}(X', Y') \).

- \( X = (2, 7) \) and \( X' = (2, 5, 6, 7) \).
- \( Y = (1, 8) \) and \( Y' = (1, 3, 4, 8) \).
- \( \text{merge}(X, Y) = (1, 2, 7, 8) \) and \( \text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[ \text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad R_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad R_{A,B}(e) = \text{rng}(e, B) \]

**Lemma:**

Let \( X \) be a good sampler for \( X' \) and let \( Y \) be a good sampler for \( Y' \).

Then there are at most \( 2 \cdot r + 2 \) elements of merge\((X', Y')\) between \( r \) successive elements of merge\((X, Y)\).

**Proof:**

- W.l.o.g. contain \( X \) and \( Y \) elements \(-\infty\) and \(+\infty\).
- Let \((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\).
- W.l.o.g. let \( e_1 \in X \).
- Consider now two cases: \( e_r \in X \) and \( e_r \in Y \).
- Let in the following be

\[
x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad y = |Y \cap \{e_1, e_2, \cdots, e_r\}|.
\]
Properties of Good Samplers

Lemma:
Let $X$ be a good sampler for $X'$ and let $Y$ be a good sampler for $Y'$. Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between $r$ successive elements of $\text{merge}(X, Y)$.

Proof:
- W.l.o.g. contain $X$ and $Y$ elements $-\infty$ and $+\infty$.
- Let $(e_1, e_2, \cdots, e_r)$ successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be
  \[
  x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad y = |Y \cap \{e_1, e_2, \cdots, e_r\}|.
  \]
Properties of Good Samplers

\[ \text{rng}(e, S) = |\{ x \in S \mid x < e \}| \quad \text{and} \quad Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

Let \( X \) be a good sampler for \( X' \) and let \( Y \) be a good sampler for \( Y' \).
Then there are at most \( 2 \cdot r + 2 \) elements of \( \text{merge}(X', Y') \) between \( r \) successive elements of \( \text{merge}(X, Y) \).

Proof:

- W.l.o.g. contain \( X \) and \( Y \) elements \( -\infty \) and \( +\infty \).
- Let \( (e_1, e_2, \cdots, e_r) \) successive elements of \( \text{merge}(X, Y) \).
- W.l.o.g. let \( e_1 \in X \).
- Consider now two cases: \( e_r \in X \) and \( e_r \in Y \).
- Let in the following be

\[
\begin{align*}
x &= |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \\
y &= |Y \cap \{e_1, e_2, \cdots, e_r\}|.
\end{align*}
\]
Properties of Good Samplers

Lemma:

Let $X$ be a good sampler for $X'$ and let $Y$ be a good sampler for $Y'$. Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between $r$ successive elements of $\text{merge}(X, Y)$.

Proof:

- W.l.o.g. contain $X$ and $Y$ elements $-\infty$ and $+\infty$.
- Let $(e_1, e_2, \cdots, e_r)$ successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be

$$
x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad y = |Y \cap \{e_1, e_2, \cdots, e_r\}|.
$$
Properties of Good Samplers

Lemma:
Let $X$ be a good sampler for $X'$ and let $Y$ be a good sampler for $Y'$. Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between $r$ successive elements of $\text{merge}(X, Y)$.

Proof:
- W.l.o.g. contain $X$ and $Y$ elements $-\infty$ and $+\infty$.
- Let $(e_1, e_2, \cdots, e_r)$ successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be

  \[ x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad y = |Y \cap \{e_1, e_2, \cdots, e_r\}|. \]
Properties of Good Samplers

Lemma:

Let \( X \) be a good sampler for \( X' \) and let \( Y \) be a good sampler for \( Y' \).
Then there are at most \( 2 \cdot r + 2 \) elements of \( \text{merge}(X', Y') \) between \( r \) successive elements of \( \text{merge}(X, Y) \).

Proof:

- W.l.o.g. contain \( X \) and \( Y \) elements \(-\infty\) and \(+\infty\).
- Let \((e_1, e_2, \cdots, e_r)\) successive elements of \( \text{merge}(X, Y) \).
- W.l.o.g. let \( e_1 \in X \).
- Consider now two cases: \( e_r \in X \) and \( e_r \in Y \).
- Let in the following be

\[
\begin{align*}
x &= |X \cap \{e_1, e_2, \cdots, e_r\}| & \text{and} \\
y &= |Y \cap \{e_1, e_2, \cdots, e_r\}|.
\end{align*}
\]
Properties of Good Samplers

\((e_1, e_2, \ldots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \ldots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \ldots, e_r\}|\) and

**Lemma:**

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\).
If \(e_r \in X\)

- Between \(e_1\) and \(e_r\) are at most \(2(x - 1) + 1\) elements of \(X'\).
- Between \(e_1\) and \(e_r\) are at most \(2(y + 1) + 1\) elements of \(Y'\), because they are between \(y + 2\) elements of \(Y\).
- Thus we get: \(2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2\).

Example \(x = 3\) and \(y = 2\):

\[ e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X \]
Properties of Good Samplers

Lemma:
Let $X$ be a good sampler for $X'$ and let $Y$ be a good sampler for $Y'$. Then there are at most $2 \cdot r + 2$ elements of merge($X'$, $Y'$) between $r$ successive elements of merge($X$, $Y$).

Proof: W.l.o.g. let $e_1 \in X$.
If: $e_r \in X$

- Between $e_1$ and $e_r$ are at most $2(x - 1) + 1$ elements of $X'$.
- Between $e_1$ and $e_r$ are at most $2(y + 1) + 1$ elements of $Y'$, because they are between $y + 2$ elements of $Y$.

Thus we get: $2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2$.

Example $x = 3$ and $y = 2$:

$$e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X$$
Properties of Good Samplers

\((e_1, e_2, \ldots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \ldots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \ldots, e_r\}|\) and

**Lemma:**

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

**Proof:** W.l.o.g. let \(e_1 \in X\).

If: \(e_r \in X\)

- Between \(e_1\) and \(e_r\) are at most \(2(x - 1) + 1\) elements of \(X'\).
- Between \(e_1\) and \(e_r\) are at most \(2(y + 1) + 1\) elements of \(Y'\), because they are between \(y + 2\) elements of \(Y\).

Thus we get: \(2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2\).

Example \(x = 3\) and \(y = 2\):

\[
\begin{align*}
a & \in Y \\
e_1 & \in X \\
e_2 & \in Y \\
e_3 & \in X \\
e_4 & \in Y \\
e_5 & \in X \\
b & \in Y
\end{align*}
\]
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of \(\text{merge}(X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

**Lemma:**

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of \(\text{merge}(X', Y')\) between \(r\) successive elements of \(\text{merge}(X, Y)\).

**Proof:** W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \cdots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \cdots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\[e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y\]
Properties of Good Samplers

\((e_1, e_2, \ldots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \ldots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \ldots, e_r\}|\) and

**Lemma:**

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

**Proof:** W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \ldots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \ldots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

**Example** \(x = 2\) and \(y = 2\):

\[\begin{align*}
e_0 & \in Y \\
e_1 & \in X \\
e_2 & \in Y \\
e_3 & \in X \\
e_4 & \in Y
\end{align*}\]
Properties of Good Samplers

Let \((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and \(e_1 \in X\).

**Lemma:**

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

**Proof:** W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \cdots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \cdots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

**Example** \(x = 2\) and \(y = 2\):

\[\begin{align*}
e_0 & \in Y \\
e_1 & \in X \\
e_2 & \in Y \\
e_3 & \in X \\
e_4 & \in Y \\
e_5 & \in X
\end{align*}\]
Properties of Good Samplers

Let \((e_1, e_2, \cdots, e_r)\) successive elements of \(\text{merge}(X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and \(r \geq 1\).

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of \(\text{merge}(X', Y')\) between \(r\) successive elements of \(\text{merge}(X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \cdots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \cdots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\[e_0 \in Y, \quad e_1 \in X, \quad e_2 \in Y, \quad e_3 \in X, \quad e_4 \in Y, \quad e_5 \in X\]
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

**Lemma:**

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

**Proof:** W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \cdots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \cdots, e_r)\) are between \(y + 1\) elements from \(Y\).
- **Thus we get:** \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\[
\begin{align*}
& e_0 \in Y & & e_1 \in X & & e_2 \in Y & & e_3 \in X & & e_4 \in Y & & e_5 \in X
\end{align*}
\]
Properties of good sampler

Let reduce(\(X\)) be the operation, which chooses from \(X\) every forth element.

Lemma:

If \(X\) is a good sampler for \(X'\) and \(Y\) is a good sampler for \(Y'\), then reduce(merge(\(X, Y\))) is a good sampler for reduce(merge(\(X', Y'\))).

Proof:

- Consider \(k + 1\) successive elements \((e_1, e_2, \ldots, e_{k+1})\) of reduce(merge(\(X, Y\))).
- At most \(4k + 1\) elements of merge(\(X, Y\)) are between \(e_1, e_2, \ldots, e_{k+1}\) including \(e_1, e_{k+1}\).
- At most \(8k + 4\) elements of merge(\(X', Y'\)) are between these \(4k + 1\) elements.
- At most \(2k + 1\) elements of reduce(merge(\(X', Y'\))) are between \((e_1, e_2, \ldots, e_{k+1})\).
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between $r$ successive elements of $\text{merge}(X, Y)$

Definition
Let $\text{reduce}(X)$ be the operation, which chooses from $X$ every forth element.

Lemma:
If $X$ is a good sampler for $X'$ and $Y$ is a good sampler for $Y'$, then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:
- Consider $k + 1$ successive elements $(e_1, e_2, \ldots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \ldots, e_{k+1}$ including $e_1, e_{k+1}$.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \ldots, e_{k+1})$. 
Properties of good sampler

At most $2 \cdot r + 2$ elements of merge($X'$, $Y'$) between $r$ successive elements of merge($X$, $Y$)

Definition

Let reduce($X$) be the operation, which chooses from $X$ every forth element.

Lemma:

If $X$ is a good sampler for $X'$ and $Y$ is a good sampler for $Y'$, then reduce(merge($X$, $Y$)) is a good sampler for reduce(merge($X'$, $Y'$)).

Proof:

- Consider $k + 1$ successive elements ($e_1, e_2, \cdots, e_{k+1}$) of reduce(merge($X$, $Y$)).
- At most $4k + 1$ elements of merge($X$, $Y$) are between $e_1, e_2, \cdots, e_{k+1}$ including $e_1, e_{k+1}$.
- At most $8k + 4$ elements of merge($X'$, $Y'$) are between these $4k + 1$ elements.
- At most $2k + 1$ elements of reduce(merge($X'$, $Y'$)) are between ($e_1, e_2, \cdots, e_{k+1}$).
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between $r$ successive elements of $\text{merge}(X, Y)$

**Definition**

Let reduce($X$) be the operation, which chooses from $X$ every forth element.

**Lemma:**

If $X$ is a good sampler for $X'$ and $Y$ is a good sampler for $Y'$, then reduce($\text{merge}(X, Y)$) is a good sampler for reduce($\text{merge}(X', Y')$).

**Proof:**

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of reduce($\text{merge}(X, Y)$).
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including $e_1, e_{k+1}$.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of reduce($\text{merge}(X', Y')$) are between $(e_1, e_2, \cdots, e_{k+1})$. 
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between $r$ successive elements of $\text{merge}(X, Y)$

**Definition**

Let $\text{reduce}(X)$ be the operation, which chooses from $X$ every forth element.

**Lemma:**

If $X$ is a good sampler for $X'$ and $Y$ is a good sampler for $Y'$, then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

**Proof:**

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including $e_1, e_{k+1}$.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$. 
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between $r$ successive elements of $\text{merge}(X, Y)$

Definition

Let $\text{reduce}(X)$ be the operation, which chooses from $X$ every forth element.

Lemma:

If $X$ is a good sampler for $X'$ and $Y$ is a good sampler for $Y'$, then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including $e_1, e_{k+1}$.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes $v$ "cares" about as many elements as the number of leaves below $v$.
- A node $v$ receives from its sons sequences of already sorted sequences.
- The "length" of the sequences doubles each time.
- Node $v$ receives sequences $X_1, X_2, \cdots, X_r$ and $Y_1, Y_2, \cdots, Y_r$.
- Node $v$ sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node $v$ updates an interior help-sequence $val_v$.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$. 
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes $v$ “cares” about as many elements as the number of leaves below $v$.
- A node $v$ receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node $v$ receives sequences $X_1, X_2, \cdots, X_r$ and $Y_1, Y_2, \cdots, Y_r$.
- Node $v$ sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node $v$ updates a interior help-sequence $val_v$.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$. 
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes $v$ “cares” about as many elements as the number of leaves below $v$.
- A node $v$ receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node $v$ receives sequences $X_1, X_2, \cdots, X_r$ and $Y_1, Y_2, \cdots, Y_r$.
- Node $v$ sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node $v$ updates an interior help-sequence $val_v$.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$. 
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes $v$ “cares” about as many elements as the number of leaves below $v$.
- A node $v$ receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node $v$ receives sequences $X_1, X_2, \cdots, X_r$ and $Y_1, Y_2, \cdots, Y_r$.
- Node $v$ sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node $v$ updates an interior help-sequence $val_v$.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$. 
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes $v$ “cares” about as many elements as the number of leaves below $v$.
- A node $v$ receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node $v$ receives sequences $X_1, X_2, \cdots, X_r$ and $Y_1, Y_2, \cdots, Y_r$.
- Node $v$ sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node $v$ updates a interior help-sequence $val_v$.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$. 
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes $v$ “cares” about as many elements as the number of leaves below $v$.
- A node $v$ receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node $v$ receives sequences $X_1, X_2, \ldots, X_r$ and $Y_1, Y_2, \ldots, Y_r$.
- Node $v$ sends to his father sequences $Z_1, Z_2, \ldots, Z_r, Z_{r+1}$.
- Node $v$ updates a interior help-sequence value $val_v$.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$. 
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes \( v \) “cares” about as many elements as the number of leaves below \( v \).
- A node \( v \) receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node \( v \) receives sequences \( X_1, X_2, \ldots, X_r \) and \( Y_1, Y_2, \ldots, Y_r \).
- Node \( v \) sends to his father sequences \( Z_1, Z_2, \ldots, Z_r, Z_{r+1} \).
- Node \( v \) updates a interior help-sequence \( \text{val}_v \).
- It holds: \( |X_1| = |Y_1| = |Z_1| = 1 \).
- It holds: \( |X_i| = 2 \cdot |X_{i-1}|, |Y_i| = 2 \cdot |Y_{i-1}| \) and \( |Z_i| = 2 \cdot |Z_{i-1}| \).
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leave contain the elements to be sorted.
- Interior nodes $v$ “cares” about as many elements as the number of leaves below $v$.
- A node $v$ receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node $v$ receives sequences $X_1, X_2, \cdots, X_r$ and $Y_1, Y_2, \cdots, Y_r$.
- Node $v$ sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node $v$ updates a interior help-sequence we $val_{v}$.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$. 
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes $v$ “cares” about as many elements as the number of leaves below $v$.
- A node $v$ receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node $v$ receives sequences $X_1, X_2, \cdots, X_r$ and $Y_1, Y_2, \cdots, Y_r$.
- Node $v$ sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node $v$ updates an interior help-sequence $val_v$.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$. 
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes $v$ "cares" about as many elements as the number of leaves below $v$.
- A node $v$ receives from its sons sequences of already sorted sequences.
- The "length" of the sequences doubles each time.
- Node $v$ receives sequences $X_1, X_2, \cdots, X_r$ and $Y_1, Y_2, \cdots, Y_r$.
- Node $v$ sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node $v$ updates a interior help-sequence $\text{val}_v$.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$. 
One basic Operation of an interior Node \( v \)

- Receives from its sons the two sequences \( X \) and \( Y \).
- Computes: \( \text{val}_v = \text{merge\_with\_help}(X, Y, \text{val}_v) \).
- Sends to its father: \( \text{reduce} (\text{val}_v) \) till \( v \) has sorted all received sequences.
- Sends to its father each second element from \( \text{val}_v \), if \( v \) is done with sorting.
- Sends to its father \( \text{val}_v \), if \( v \) finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>( \text{val}_v )</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = \text{merge\_with\_help}(X, Y, val_v)$.
- Sends to its father: reduce($val_v$) till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>$val_v$</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = \text{merge\_with\_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>$val_v$</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node \( v \)

- Receives from its sons the two sequences \( X \) and \( Y \).
- Computes: \( val_v = \text{merge\_with\_help}(X, Y, val_v) \).
- Sends to its father: \( \text{reduce}(val_v) \) till \( v \) has sorted all received sequences.
- Sends to its father each second element from \( val_v \), if \( v \) is done with sorting.
- Sends to its father \( val_v \), if \( v \) finishes sorting two steps before.

**Example:**

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>( val_v )</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>⌀</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = merge\_with\_help(X, Y, val_v)$.
- Sends to its father: $reduce(val_v)$ till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>$val_v$</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>$\emptyset$</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node \( v \)

- Receives from its sons the two sequences \( X \) and \( Y \).
- Computes: \( val_v = \text{merge\_with\_help}(X, Y, val_v) \).
- Sends to its father: \( \text{reduce}(val_v) \) till \( v \) has sorted all received sequences.
- Sends to its father each second element from \( val_v \), if \( v \) is done with sorting.
- Sends to its father \( val_v \), if \( v \) finishes sorting two steps before.

**Example:**

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>( val_v )</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = \text{merge\_with\_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>$val_v$</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>$\emptyset$</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = \text{merge\_with\_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>$val_v$</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = \text{merge\_with\_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>$val_v$</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>⌀</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = merge\_with\_help(X, Y, val_v)$.
- Sends to its father: $reduce(val_v)$ till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>$val_v$</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>$\emptyset$</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = \text{merge\_with\_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>$val_v$</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>$\emptyset$</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
Basic operation of a interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = merge\_with\_help(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.
- Thus we get the following pattern:

\[
\begin{array}{cccccc}
X_1 & X_2 & X_3 & X_4 & \ldots & X_r \\
Z_1 & Z_2 & \ldots & Z_r & Z_{r+1} & Z_{r+2}
\end{array}
\]

- If a node $x$ is finished after $t$ steps, then will the father of $x$ be finished after $t + 3$ steps.
- Thus we get a running time of $3\log n$. 
Basic operation of a interior Node $v$

- Receives from its sons the two sequences $X$ and $Y$.
- Computes: $val_v = \text{merge\_with\_help}(X, Y, val_v)$.
- Sends to its father: reduce($val_v$) till $v$ has sorted all received sequences.
- Sends to its father each second element from $val_v$, if $v$ is done with sorting.
- Sends to its father $val_v$, if $v$ finishes sorting two steps before.
- Thus we get the following pattern:

\[
\begin{align*}
X_1 & \quad X_2 & \quad X_3 & \quad X_4 & \cdots & \quad X_r \\
Z_1 & \quad Z_2 & \quad \cdots & \quad Z_r & \quad Z_{r+1} & \quad Z_{r+2}
\end{align*}
\]

- If a node $x$ is finished after $t$ steps, then will the father of $x$ be finished after $t + 3$ steps.
- Thus we get a running time of $3 \log n$. 
Basic operation of a interior Node \( v \)

- Receives from its sons the two sequences \( X \) and \( Y \).
- Computes: \( val_v = \text{merge\_with\_help}(X, Y, val_v) \).
- Sends to its father: \( \text{reduce}(val_v) \) till \( v \) has sorted all received sequences.
- Sends to its father each second element from \( val_v \), if \( v \) is done with sorting.
- Sends to its father \( val_v \), if \( v \) finishes sorting two steps before.
- Thus we get the following pattern:

\[
X_1 \quad X_2 \quad X_3 \quad X_4 \quad \cdots \quad X_r \\
Z_1 \quad Z_2 \quad \cdots \quad Z_r \quad Z_{r+1} \quad Z_{r+2}
\]

- If a node \( x \) is finished after \( t \) steps, then will the father of \( x \) be finished after \( t + 3 \) steps.
- Thus we get a running time of \( 3 \log n \).
Invariant:

- Each $X_i$ is a good sampler of $X_{i+1}$.
- Each $Y_i$ is a good sampler of $Y_{i+1}$.
- Each $Z_i$ is a good sampler of $Z_{i+1}$.
- Each $X_i$ is half as big as $X_{i+1}$.
- Each $Y_i$ is half as big as $Y_{i+1}$.
- Each $Z_i$ is half as big as $Z_{i+1}$.
- $|X_1| = |Y_1| = |Z_1| = 1$. 
Invariant

- Each $X_i$ is a good sampler of $X_{i+1}$.
- Each $Y_i$ is a good sampler of $Y_{i+1}$.
- Each $Z_i$ is a good sampler of $Z_{i+1}$.
- Each $X_i$ is half as big as $X_{i+1}$.
- Each $Y_i$ is half as big as $Y_{i+1}$.
- Each $Z_i$ is half as big as $Z_{i+1}$.
- $|X_1| = |Y_1| = |Z_1| = 1$. 
Invariant:

- Each $X_i$ is a good sampler of $X_{i+1}$.
- Each $Y_i$ is a good sampler of $Y_{i+1}$.
- Each $Z_i$ is a good sampler of $Z_{i+1}$.
- Each $X_i$ is half as big as $X_{i+1}$.
- Each $Y_i$ is half as big as $Y_{i+1}$.
- Each $Z_i$ is half as big as $Z_{i+1}$.
- $|X_1| = |Y_1| = |Z_1| = 1$. 
Invariant:

- Each $X_i$ is a good sampler of $X_{i+1}$.
- Each $Y_i$ is a good sampler of $Y_{i+1}$.
- Each $Z_i$ is a good sampler of $Z_{i+1}$.
- Each $X_i$ is half as big as $X_{i+1}$.
- Each $Y_i$ is half as big as $Y_{i+1}$.
- Each $Z_i$ is half as big as $Z_{i+1}$.
- $|X_1| = |Y_1| = |Z_1| = 1.$
Invariant:

- Each $X_i$ is a good sampler of $X_{i+1}$.
- Each $Y_i$ is a good sampler of $Y_{i+1}$.
- Each $Z_i$ is a good sampler of $Z_{i+1}$.
- Each $X_i$ is half as big as $X_{i+1}$.
- Each $Y_i$ is half as big as $Y_{i+1}$.
- Each $Z_i$ is half as big as $Z_{i+1}$.
- $|X_1| = |Y_1| = |Z_1| = 1$. 
Invariant:

- Each $X_i$ is a good sampler of $X_{i+1}$.
- Each $Y_i$ is a good sampler of $Y_{i+1}$.
- Each $Z_i$ is a good sampler of $Z_{i+1}$.
- Each $X_i$ is half as big as $X_{i+1}$.
- Each $Y_i$ is half as big as $Y_{i+1}$.
- Each $Z_i$ is half as big as $Z_{i+1}$.
- $|X_1| = |Y_1| = |Z_1| = 1$. 
**Invariant**

- Each $X_i$ is a good sampler of $X_{i+1}$.
- Each $Y_i$ is a good sampler of $Y_{i+1}$.
- Each $Z_i$ is a good sampler of $Z_{i+1}$.
- Each $X_i$ is half as big as $X_{i+1}$.
- Each $Y_i$ is half as big as $Y_{i+1}$.
- Each $Z_i$ is half as big as $Z_{i+1}$.
- $|X_1| = |Y_1| = |Z_1| = 1$. 
 Situation

- Running time is $O(\log n)$.
- The inner nodes $v$ need $|val_v|$ many processors.
- We still have to proof that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- Important: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Running time is $O(\log n)$.

The inner nodes $v$ need $|val_v|$ many processors.

We still have to proof that the number of processors is in $O(n)$.

PRAM Model has to be verified.

Important: The computation of the values $Rng_{X,Y}$ has to be shown.

These values will be in the following also transmitted and updated.
Situation

- Running time is $O(\log n)$.
- The inner nodes $v$ need $|val_v|$ many processors.
- We still have to proof that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- Important: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Running time is $O(\log n)$.

The inner nodes $v$ need $|val_v|$ many processors.

We still have to proof that the number of processors is in $O(n)$.

PRAM Model has to be verified.

Important: The computation of the values $Rng_{X,Y}$ has to be shown.

These values will be in the following also transmitted and updated.
Situation

- Running time is $O(\log n)$.
- The inner nodes $v$ need $|val_v|$ many processors.
- We still have to proof that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- **Important**: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Situation

- Running time is $O(\log n)$.
- The inner nodes $v$ need $|val_v|$ many processors.
- We still have to prove that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- Important: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Computing the Ranks

- In each step will compute: \textit{merge\_with\_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_{i}, Y_{i}))
- Using the Lemma from above we have: \text{merge}(X_{i}, Y_{i}) is a good sampler of \(X_{i+1}\) and \(Y_{i+1}\).
- Let \(L = \text{merge}(X_{i}, Y_{i})\), \(J = X_{i+1}\) and \(K = Y_{i+1}\).
- We have to compute: \(\text{Rng}_{L,J}\), \(\text{Rng}_{L,K}\), \(\text{Rng}_{J,L}\) and \(\text{Rng}_{K,L}\).

\textbf{Invariant:}

- Let \(S_1, S_2, \cdots, S_p\) be a sequence of sequences at node \(v\).
- Then node \(c\) also knows: \(\text{Rng}_{S_{i+1}, S_{i}}\) for \(1 \leq i < p\).
- Furthermore for each sequence \(S\) is known: \(\text{Rng}_{S, S}\).
Computing the Ranks

- In each step will compute: \( \text{merge	extunderscore with	extunderscore help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)) \).
- Using the Lemma from above we have: \( \text{merge}(X_i, Y_i) \) is a good sampler of \( X_{i+1} \) and \( Y_{i+1} \).
- Let \( L = \text{merge}(X_i, Y_i) \), \( J = X_{i+1} \) and \( K = Y_{i+1} \).
- We have to compute: \( \text{Rng}_{L,J} \), \( \text{Rng}_{L,K} \), \( \text{Rng}_{J,L} \) and \( \text{Rng}_{K,L} \).

**Invariant:**

- Let \( S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \( v \).
- Then node \( c \) also knows: \( \text{Rng}_{S_{i+1}, S_i} \) for \( 1 \leq i < p \).
- Furthermore for each sequence \( S \) is known: \( \text{Rng}_{S, S} \).
Computing the Ranks

- In each step will compute: $\text{merge\_with\_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i))$.
- Using the Lemma from above we have: $\text{merge}(X_i, Y_i)$ is a good sampler of $X_{i+1}$ and $Y_{i+1}$.
- Let $L = \text{merge}(X_i, Y_i)$, $J = X_{i+1}$ and $K = Y_{i+1}$.
- We have to compute: $\text{Rng}_{L,J}$, $\text{Rng}_{L,K}$, $\text{Rng}_{J,L}$ and $\text{Rng}_{K,L}$.

Invariant:

- Let $S_1, S_2, \ldots, S_p$ be a sequence of sequences at node $v$.
- Then node $c$ also knows: $\text{Rng}_{S_{i+1}, S_i}$ for $1 \leq i < p$.
- Furthermore for each sequence $S$ is known: $\text{Rng}_{S,S}$. 
Computing the Ranks

- In each step will compute: $\text{merge\_with\_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i))$.
- Using the Lemma from above we have: $\text{merge}(X_i, Y_i)$ is a good sampler of $X_{i+1}$ and $Y_{i+1}$.
- Let $L = \text{merge}(X_i, Y_i)$, $J = X_{i+1}$ and $K = Y_{i+1}$.
- We have to compute: $\text{Rng}_L, J$, $\text{Rng}_L, K$, $\text{Rng}_J, L$ and $\text{Rng}_K, L$.

Invariant:

- Let $S_1, S_2, \ldots, S_p$ be a sequence of sequences at node $v$.
- Then node $c$ also knows: $\text{Rng}_{S_{i+1}}, S_i$ for $1 \leq i < p$.
- Furthermore for each sequence $S$ is known: $\text{Rng}_S, S$. 
Computing the Ranks

- In each step will compute: \( \text{merge\_with\_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)) \).
- Using the Lemma from above we have: \( \text{merge}(X_i, Y_i) \) is a good sampler of \( X_{i+1} \) and \( Y_{i+1} \).
- Let \( L = \text{merge}(X_i, Y_i) \), \( J = X_{i+1} \) and \( K = Y_{i+1} \).
- We have to compute: \( \text{Rng}_{L,J} \), \( \text{Rng}_{L,K} \), \( \text{Rng}_{J,L} \) and \( \text{Rng}_{K,L} \).

**Invariant:**

- Let \( S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \( v \).
- Then node \( c \) also knows: \( \text{Rng}_{S_{i+1}, S_i} \) for \( 1 \leq i < p \).
- Furthermore for each sequence \( S \) is known: \( \text{Rng}_{S,S} \).
Computing the Ranks

- In each step will compute: \( \text{merge\_with\_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)) \).
- Using the Lemma from above we have: \( \text{merge}(X_i, Y_i) \) is a good sampler of \( X_{i+1} \) and \( Y_{i+1} \).
- Let \( L = \text{merge}(X_i, Y_i) \), \( J = X_{i+1} \) and \( K = Y_{i+1} \).
- We have to compute: \( \text{Rng}_{L,J} \), \( \text{Rng}_{L,K} \), \( \text{Rng}_{J,L} \) and \( \text{Rng}_{K,L} \).

**Invariant:**

- Let \( S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \( v \).
- Then node \( c \) also knows: \( \text{Rng}_{S_{i+1},S_i} \) for \( 1 \leq i < p \).
- Furthermore for each sequence \( S \) is known: \( \text{Rng}_{S,S} \).
Computing the Ranks

- In each step will compute: \( \text{merge\_with\_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)) \).
- Using the Lemma from above we have: \( \text{merge}(X_i, Y_i) \) is a good sampler of \( X_{i+1} \) and \( Y_{i+1} \).
- Let \( L = \text{merge}(X_i, Y_i) \), \( J = X_{i+1} \) and \( K = Y_{i+1} \).
- We have to compute: \( \text{Rng}_{L,J} \), \( \text{Rng}_{L,K} \), \( \text{Rng}_{J,L} \) and \( \text{Rng}_{K,L} \).

**Invariant:**

- Let \( S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \( v \).
- Then node \( c \) also knows: \( \text{Rng}_{s_{i+1}, s_i} \) for \( 1 \leq i < p \).
- Furthermore for each sequence \( S \) is known: \( \text{Rng}_{S,S} \).
Computing the Ranks

- In each step will compute: \( \text{merge}\_\text{with}\_\text{help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)) \).
- Using the Lemma from above we have: \( \text{merge}(X_i, Y_i) \) is a good sampler of \( X_{i+1} \) and \( Y_{i+1} \).
- Let \( L = \text{merge}(X_i, Y_i) \), \( J = X_{i+1} \) and \( K = Y_{i+1} \).
- We have to compute: \( Rng_L, J \), \( Rng_L, K \), \( Rng_J, L \) and \( Rng_K, L \).

**Invariant:**

- Let \( S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \( v \).
- Then node \( c \) also knows: \( Rng_{S_{i+1}, S_i} \) for \( 1 \leq i < p \).
- Furthermore for each sequence \( S \) is known: \( Rng_{S, S} \).
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \ldots, b_k)$ be a sorted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using $k$ processors.

Proof:

- Program: \text{rng1}(a, S)
  
  for all $P_i$ where $1 \leq i \leq k$ do in parallel
  
  if $b_i < a \leq b_{i+1}$ then return $i$

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \ldots, b_k)$ be a sorted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using $k$ processors.

Proof:

- **Programm: rng1(a,S)**
  
  *for all* $P_i$ where $1 \leq i \leq k$ *do in parallel*
  
  *if* $b_i < a \leq b_{i+1}$ *then return* $i$

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:

Let \( S = (b_1, b_2, \ldots, b_k) \) be a sorted sequence, then we may compute the rank of \( a \in S \) in time \( O(1) \) using \( k \) processors.

Proof:

- **Programm:** \( \text{rng1}(a, S) \)
  - **for all** \( P_i \) where \( 1 \leq i \leq k \) **do in parallel**
    - **if** \( b_i < a \leq b_{i+1} \) **then return** \( i \)

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:

Let $S = (b_1, b_2, \cdots, b_k)$ be a sorted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using $k$ processors.

Proof:

- Program: rng1$(a,S)$
  for all $P_i$ where $1 \leq i \leq k$ do in parallel
    if $b_i < a \leq b_{i+1}$ then return $i$

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let \( S = (b_1, b_2, \cdots, b_k) \) be a sorted sequence, then we may compute the rank of \( a \in S \) in time \( O(1) \) using \( k \) processors.

Proof:
- **Programm:** \( \text{rng1}(a,S) \)
  
  for all \( P_i \) where \( 1 \leq i \leq k \) do in parallel
  
  if \( b_i < a \leq b_{i+1} \) then return \( i \)

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

**Lemma:**

Let $S_1, S_2, S$ be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute $\text{Rnk}_{S_1, S_2}$ and $\text{Rnk}_{S_2, S_1}$ in time $O(1)$ using $O(|S|)$ processors.

**Proof:**

- We do know $\text{Rnk}_{S, S}$, $\text{Rnk}_{S_1, S_1}$ and $\text{Rnk}_{S_2, S_2}$.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

**Lemma:**

Let $S_1, S_2, S$ be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute $\text{Rnk}_{S_1,S_2}$ and $\text{Rnk}_{S_2,S_1}$ in time $O(1)$ using $O(|S|)$ processors.

**Proof:**

- We do know $\text{Rnk}_{S,S}$, $\text{Rnk}_{S_1,S_1}$ and $\text{Rnk}_{S_2,S_2}$.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

**Lemma:**

Let $S_1, S_2, S$ be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute $\text{Rnk}_{S_1, S_2}$ and $\text{Rnk}_{S_2, S_1}$ in time $O(1)$ using $O(|S|)$ processors.

**Proof:**

- We do know $\text{Rnk}_{S, S}$, $\text{Rnk}_{S_1, S_1}$ and $\text{Rnk}_{S_2, S_2}$.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

Lemma:
Let $S_1, S_2, S$ be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute $\text{Rnk}_{S_1, S_2}$ and $\text{Rnk}_{S_2, S_1}$ in time $O(1)$ using $O(|S|)$ processors.

Proof:
- We do know $\text{Rnk}_{S, S}$, $\text{Rnk}_{S_1, S_1}$ and $\text{Rnk}_{S_2, S_2}$.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

Lemma:

- Let $X$ be a good sampler of $X'$.
- Let $Y$ be a good sampler of $Y'$.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_U,X'$ and $\text{Rnk}_U,Y'$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_U,X'$ and $\text{Rnk}_U,Y'$.
Computing the Ranks

**Lemma:**

- Let $X$ be a good sampler of $X'$.  
- Let $Y$ be a good sampler of $Y'$.  
- Let $U = \text{merge}(X, Y)$.  
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

**Proof:**

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.
Computing the Ranks

Lemma:

- Let $X$ be a good sampler of $X'$.
- Let $Y$ be a good sampler of $Y'$.
- Let $U = \text{merge}(X, Y)$.
- Assume $R_{n,k}^{X', X}$ and $R_{n,k}^{Y', Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $R_{n,k}^{X', U}$, $R_{n,k}^{Y', U}$, $R_{n,k}^{U, X'}$ and $R_{n,k}^{U, Y'}$.

Proof:

- First we compute $R_{n,k}^{X', U}$ and $R_{n,k}^{Y', U}$.
- Then we compute $R_{n,k}^{X, X'}$ and $R_{n,k}^{Y, Y'}$.
- Finally we compute $R_{n,k}^{U, X'}$ and $R_{n,k}^{U, Y'}$. 
Computing the Ranks

**Lemma:**

- Let $X$ be a good sampler of $X'$.
- Let $Y$ be a good sampler of $Y'$.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X', X}$ and $\text{Rnk}_{Y', Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X', U}$, $\text{Rnk}_{Y', U}$, $\text{Rnk}_{U, X'}$ and $\text{Rnk}_{U, Y'}$.

**Proof:**

- First we compute $\text{Rnk}_{X', U}$ and $\text{Rnk}_{Y', U}$.
- Then we compute $\text{Rnk}_{X, X'}$ and $\text{Rnk}_{Y, Y'}$.
- Finally we compute $\text{Rnk}_{U, X'}$ and $\text{Rnk}_{U, Y'}$. 
Computing the Ranks

Lemma:

- Let $X$ be a good sampler of $X'$.
- Let $Y$ be a good sampler of $Y'$.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$. 

we have $\text{rkn}(a, S)$ and $\text{Rnk}_{S_1, S_2}$ and $\text{Rnk}_{S_2, S_1}$
Computing the Ranks

Lemma:

- Let $X$ be a good sampler of $X'$.
- Let $Y$ be a good sampler of $Y'$.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$, and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$. 

we have $\text{rnk}(a, S)$ and $\text{Rnk}_{S_1,S_2}$ and $\text{Rnk}_{S_2,S_1}$.
Computing the Ranks

Lemma:

- Let $X$ be a good sampler of $X'$.
- Let $Y$ be a good sampler of $Y'$.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$. 

Computing the Ranks

**Lemma:**

- Let $X$ be a good sampler of $X'$.
- Let $Y$ be a good sampler of $Y'$.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{rk}_{X',X}$ and $\text{rk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{rk}_{X',U}$, $\text{rk}_{Y',U}$, $\text{rk}_{U,X'}$ and $\text{rk}_{U,Y'}$.

**Proof:**

- First we compute $\text{rk}_{X',U}$ and $\text{rk}_{Y',U}$.
- Then we compute $\text{rk}_{X,X'}$ and $\text{rk}_{Y,Y'}$.
- Finally we compute $\text{rk}_{U,X'}$ and $\text{rk}_{U,Y'}$.
Computing the Ranks

Lemma:

- Let $X$ be a good sampler of $X'$.
- Let $Y$ be a good sampler of $Y'$.
- Let $U = \text{merge}(X, Y)$.
- Assume $Rnk_{X',X}$ and $Rnk_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $Rnk_{X',U}$, $Rnk_{Y',U}$, $Rnk_{U,X'}$, and $Rnk_{U,Y'}$.

Proof:

- First we compute $Rnk_{X',U}$ and $Rnk_{Y',U}$.
- Then we compute $Rnk_{X,X'}$ and $Rnk_{Y,Y'}$.
- Finally we compute $Rnk_{U,X'}$ and $Rnk_{U,Y'}$. 

we have $rnk(a, S)$ and $Rnk_{S_1,S_2}$ and $Rnk_{S_2,S_1}$
Computing the Ranks ($\text{Rnk}_{X',U}$)

- Let $X = (a_1, a_2, \ldots, a_k)$.
- Let w.l.o.g. $a_0 = -\infty$ and $a_{k+1} = +\infty$.
- Using a good sampler $X$ we split $X'$ into $X'_1, X'_2, \ldots, X'_k, X'_{k+1}$.
- Note: $\text{Rnk}_{X',X}$ is known.
- Splitting may be done in time $O(1)$ using $O(|X|)$ processors.
- Let $U_i$ be the sequence of elements of $Y$ which are between $a_{i-1}$ and $a_i$.
- Thus we get:

Programm: $\text{Rnk}_{X',U}$

for all $i$ where $1 \leq i \leq k + 1$ do in parallel

for all $x \in X'_i$ do

$\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)$

- Running time $O(1)$ using $\sum_{i=1}^{k+1} |U_i|$ processors.
Computing the Ranks \((\text{Rnk}_{X'\cup U})\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X'\cup X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

Programm: \(\text{Rnk}_{X'\cup U}\)

for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel

for all \(x \in X'_i\) do

\(\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)\)

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks ($\text{Rnk}_{X', U}$)

- Let $X = (a_1, a_2, \cdots, a_k)$.
- Let w.l.o.g. $a_0 = -\infty$ and $a_{k+1} = +\infty$.
- Using a good sampler $X$ we split $X'$ into $X_1', X_2', \cdots, X_k', X_{k+1}'$.
- Note: $\text{Rnk}_{X', X}$ is known.
- Splitting may be done in time $O(1)$ using $O(|X|)$ processors.
- Let $U_i$ be the sequence of elements of $Y$ which are between $a_{i-1}$ and $a_i$.
- Thus we get:

Programm: $\text{Rnk}_{X', U}$

for all $i$ where $1 \leq i \leq k + 1$ do in parallel

for all $x \in X_i'$ do

\[ \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i) \]

- Running time $O(1)$ using $\sum_{i=1}^{k+1} |U_i|$ processors.
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

1. Let \(X = (a_1, a_2, \ldots, a_k)\).
2. Let \(w.l.o.g.\) \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
3. Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \ldots, X'_k, X'_{k+1}\).
4. Note: \(\text{Rnk}_{X', X}\) is known.
5. Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
6. Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
7. Thus we get:

Programm: \(\text{Rnk}_{X', U}\)

for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel

for all \(x \in X'_i\) do

\[ \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i) \]

• Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks ($\text{Rnk}_{X',U}$)

- Let $X = (a_1, a_2, \ldots, a_k)$.
- Let w.l.o.g. $a_0 = -\infty$ and $a_{k+1} = +\infty$.
- Using a good sampler $X$ we split $X'$ into $X'_1, X'_2, \ldots, X'_k, X'_{k+1}$.
- Note: $\text{Rnk}_{X',X}$ is known.
- Splitting may be done in time $O(1)$ using $O(|X|)$ processors.
- Let $U_i$ be the sequence of elements of $Y$ which are between $a_{i-1}$ and $a_i$.
- Thus we get:

  Programm: $\text{Rnk}_{X',U}$
  for all $i$ where $1 \leq i \leq k + 1$ do in parallel
    for all $x \in X'_i$ do
      $\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)$

- Running time $O(1)$ using $\sum_{i=1}^{k+1} |U_i|$ processors.
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

  Programm: \(\text{Rnk}_{X', U}\)
  for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel
  for all \(x \in X'_i\) do
    \[\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)\]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X',U})\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X',X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

  Programm: \(\text{Rnk}_{X',U}\)
  for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel
    for all \(x \in X'_{i}\) do
      \(\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)\)

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X'},U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X_1', X_2', \cdots, X_k', X_{k+1}'\).
- Note: \(\text{Rnk}_{X',X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

  \[
  \text{Programm: } \text{Rnk}_{X',U} \\
  \text{for all } i \text{ where } 1 \leq i \leq k + 1 \text{ do in parallel} \\
  \quad \text{for all } x \in X_i' \text{ do} \\
  \quad \quad \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i) \\
  \]
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

  **Programm:** \(\text{Rnk}_{X', U}\)

  for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel

  for all \(x \in X'_i\) do

  \[\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)\]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \( (\text{Rnk}_{X,X'}) \)

- Let \( a_i \in X \).
- Let \( a' \) minimal element in \( X'_{i+1} \).
- The rank of \( a_i \) in \( X' \) is the same as the rank of \( a' \) in \( X' \).
- This rank is already known.
- This may be computed in time \( O(1) \) using one processor.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X_{i+1}'\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.

we have \(\text{rnk}(a, S)\) and \(\text{Rnk}_{S_1, S_2}\) and \(\text{Rnk}_{S_2, S_1}\)
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.

we have \(\text{rnk}(a, S)\) and \(\text{Rnk}_{S_1,S_2}\) and \(\text{Rnk}_{S_2,S_1}\)
Computing the Ranks (Rnk\(_U,X'\))

- **Note:** Rnk\(_U,X'\) consists of Rnk \(X,X'\) and Rnk \(Y,X'\).
- Rnk \(X,X'\) is already known.
- Still to compute: Rnk \(Y,X'\).
- Rnk \(Y,X\) may be computed using the previous lemma.
- We compute rnk\((a,X')\) using rnk\((a,X)\) and Rnk\(_X,X'\).
- Thus we compute Rnk\(_U,X'\) with \(O(|U|)\) processors and time \(O(1)\).
Computing the Ranks ($\text{Rnk}_{U,X'}$)

- **Note:** $\text{Rnk}_{U,X'}$ consists of $\text{Rnk} \ X, X'$ and $\text{Rnk} \ Y, X'$.
- $\text{Rnk} \ X, X'$ is already known.
- Still to compute: $\text{Rnk} \ Y, X'$.
- $\text{Rnk} \ Y, X$ may be computed using the previous lemma.
- We compute $\text{rnk}(a, X')$ using $\text{rnk}(a, X)$ and $\text{Rnk}_{X,X'}$.
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$. 

we have $\text{rnk}(a, S)$ and $\text{Rnk}_{S_1,S_2}$ and $\text{Rnk}_{S_2,S_1}$
Computing the Ranks ($\text{Rnk}_{U,X'}$)

- Note: $\text{Rnk}_{U,X'}$ consists of $\text{Rnk} X, X'$ and $\text{Rnk} Y, X'$.
- $\text{Rnk} X, X'$ is already known.
- **Still to compute:** $\text{Rnk} Y, X'$.
- $\text{Rnk} Y, X$ may be computed using the previous lemma.
- We compute $\text{rnk}(a, X')$ using $\text{rnk}(a, X)$ and $\text{Rnk}_{X,X'}$.
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$. 

we have $\text{rnk}(a, S)$ and $\text{Rnk}_{S_1,S_2}$ and $\text{Rnk}_{S_2,S_1}$
Computing the Ranks ($\text{Rnk}_{U,X'}$)

- Note: $\text{Rnk}_{U,X'}$ consists of $\text{Rnk} X, X'$ and $\text{Rnk} Y, X'$.
- $\text{Rnk} X, X'$ is already known.
- Still to compute: $\text{Rnk} Y, X'$.
- $\text{Rnk} Y, X'$ may be computed using the previous lemma.
- We compute $\text{rnk}(a, X')$ using $\text{rnk}(a, X)$ and $\text{Rnk}_{X,X'}$.
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$.
Computing the Ranks ($\text{Rnk}_{U,X'}$)

- **Note**: $\text{Rnk}_{U,X'}$ consists of $\text{Rnk} X, X'$ and $\text{Rnk} Y, X'$.
- $\text{Rnk} X, X'$ is already known.
- Still to compute: $\text{Rnk} Y, X'$.
- $\text{Rnk} Y, X$ may be computed using the previous lemma.
- **We compute $\text{rnk}(a, X')$ using $\text{rnk}(a, X)$ and $\text{Rnk}_{X,X'}$.**
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$. 

we have $\text{rnk}(a, S)$ and $\text{Rnk}_{S_1,S_2}$ and $\text{Rnk}_{S_2,S_1}$
Computing the Ranks (Rnk_{U,X'})

- Note: Rnk_{U,X'} consists of Rnk X, X' and Rnk Y, X'.
- Rnk X, X' is already known.
- Still to compute: Rnk Y, X'.
- Rnk Y, X may be computed using the previous lemma.
- We compute rnk(a, X') using rnk(a, X) and Rnk_{X,X'}.
- Thus we compute Rnk_{U,X'} with O(|U|) processors and time O(1).
Computing the Ranks

- Consider the step
  \[ \text{merge\_with\_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \]

- Using the invariant we know: \( \text{Rnk}_{J, X_i} \) and \( \text{Rnk}_{K, Y_i} \).

- Using the above considerations we may compute: \( \text{Rnk}_{L, J} \), \( \text{Rnk}_{L, K} \), \( \text{Rnk}_{J, L} \) and \( \text{Rnk}_{K, L} \).

- Still to be computed: \( \text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

- Known: \( \text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \( \text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \( \text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \( \text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \( \text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Computing the Ranks

Consider the step
\[ \text{merge\_with\_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \]

Using the invariant we know: \( \text{Rnk}_{J,X_i} \) and \( \text{Rnk}_{K,Y_i} \).

Using the above considerations we may compute: \( \text{Rnk}_{L,J}, \text{Rnk}_{L,K}, \text{Rnk}_{J,L} \)
and \( \text{Rnk}_{K,L} \).

Still to be computed: \( \text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

Known: \( \text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \( \text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

It is now easy to compute: \( \text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \( \text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

Also easy to compute: \( \text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \)
Computing the Ranks

we have \( rnk(a, S) \) and \( Rnk_{S_1,S_2} \) and \( Rnk_{S_2,S_1} \)

- Consider the step
  \[ merge\_with\_help(J = X_{i+1}, K = Y_{i+1}, L = merge(X_i, Y_i)) \]

- Using the invariant we know: \( Rnk_{J,X_i} \) and \( Rnk_{K,Y_i} \).

- Using the above considerations we may compute: \( Rnk_{L,J} \), \( Rnk_{L,K} \), \( Rnk_{J,L} \)
  and \( Rnk_{K,L} \).

- Still to be computed: \( Rnk_{reduce(merge(X_{i+1}, Y_{i+1})), reduce(merge(X_i, Y_i))} \)

- Known: \( Rnk_{X_{i+1}, merge(X_i, Y_i)} \) and \( Rnk_{Y_{i+1}, merge(X_i, Y_i)} \).

- It is now easy to compute: \( Rnk_{X_{i+1}, reduce(merge(X_i, Y_i))} \) and
  \( Rnk_{Y_{i+1}, reduce(merge(X_i, Y_i))} \).

- Also easy to compute: \( Rnk_{merge(X_{i+1}, Y_{i+1}), reduce(merge(X_i, Y_i))} \).
Computing the Ranks

Consider the step
\[ \text{merge\_with\_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \]

Using the invariant we know: \( \text{Rnk}_{J,X_i} \) and \( \text{Rnk}_{K,Y_i} \).

Using the above considerations we may compute: \( \text{Rnk}_{L,J} \), \( \text{Rnk}_{L,K} \), \( \text{Rnk}_{J,L} \) and \( \text{Rnk}_{K,L} \).

Still to be computed: \( \text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

Known: \( \text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \( \text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

It is now easy to compute: \( \text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \( \text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

Also easy to compute: \( \text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Computing the Ranks

we have \( \text{rnk}(a, S) \) and \( \text{Rnk}_{S_1, S_2} \) and \( \text{Rnk}_{S_2, S_1} \)

- Consider the step
  \[ \text{merge\_with\_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \]

- Using the invariant we know: \( \text{Rnk}_{J, X_i} \) and \( \text{Rnk}_{K, Y_i} \).

- Using the above considerations we may compute: \( \text{Rnk}_{L, J} \), \( \text{Rnk}_{L, K} \), \( \text{Rnk}_{J, L} \) and \( \text{Rnk}_{K, L} \).

- Still to be computed: \( \text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

- Known: \( \text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \( \text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \( \text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \( \text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \( \text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Computing the Ranks

- Consider the step
  \( \text{merge}_\text{with\_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \):

- Using the invariant we know: \( Rnk_{J,X_i} \) and \( Rnk_{K,Y_i} \).

- Using the above considerations we may compute: \( Rnk_{L,J}, Rnk_{L,K}, Rnk_{J,L} \) and \( Rnk_{K,L} \).

- Still to be computed: \( Rnk_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Known: \( Rnk_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \( Rnk_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \( Rnk_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \( Rnk_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \( Rnk_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Computing the Ranks

we have $\text{rnk}(a, S)$ and $\text{Rnk}_{S_1, S_2}$ and $\text{Rnk}_{S_2, S_1}$

- Consider the step $\text{merge\_with\_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i))$:
  - Using the invariant we know: $\text{Rnk}_{J, X_i}$ and $\text{Rnk}_{K, Y_i}$.
  - Using the above considerations we may compute: $\text{Rnk}_{L, J}$, $\text{Rnk}_{L, K}$, $\text{Rnk}_{J, L}$ and $\text{Rnk}_{K, L}$.
  - Still to be computed: $\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))}$
  - Known: $\text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)}$ and $\text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)}$.
  - It is now easy to compute: $\text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))}$ and $\text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))}$.
  - Also easy to compute: $\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))}$. 
Theorem:

We may sort $n$ values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:

We may sort $n$ values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:

There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
**Algorithmn of Cole**

Theorem:
We may sort $n$ values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:
We may sort $n$ values on an EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
Algorithm of Cole

Theorem:

We may sort $n$ values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:

We may sort $n$ values on an EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:

There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
Algorithm of Cole

Theorem:
We may sort $n$ values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$. 

Proof: discussed before.

Theorem:
We may sort $n$ values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$. 

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$. 

Proof: see literature.
Theorem:
We may sort $n$ values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:
We may sort $n$ values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
Theorem:

We may sort $n$ values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:

We may sort $n$ values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:

There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
we have $\text{rnk}(a, S)$ and $\text{Rnk}_{S_1, S_2}$ and $\text{Rnk}_{S_2, S_1}$.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Legend

- ■: Not of relevance
- ▶️: implicitly used basics
- ◼️: idea of proof or algorithm
- ⬤: structure of proof or algorithm
- ■️: Full knowledge