Theory of Parallel and Distributed Systems (WS2016/17)
Chapter 2
Sorting with a PRAM

Walter Unger
Lehrstuhl für Informatik 1
8:51, November 28, 2016
Contents

1. Sorting
 - Simple Sorting Algorithm
 - Improved Algorithm

2. Introduction to optimal Sorting

3. Algorithmn of Cole
 - Lower Bound
 - Batchers Sorting Algorithm
 - Sorting
 - Idea
Very simple Algorithm (Idea)

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>12</td>
<td>14</td>
<td>56</td>
<td>23</td>
<td>67</td>
<td>49</td>
<td>27</td>
<td>61</td>
<td>52</td>
</tr>
</tbody>
</table>
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th>22</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th></th>
<th>22</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>14</td>
<td>56</td>
<td>23</td>
<td>67</td>
<td>49</td>
<td>27</td>
<td>61</td>
<td>52</td>
<td>57</td>
<td>59</td>
<td>26</td>
</tr>
</tbody>
</table>
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th>22</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

3

22
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th></th>
<th>22</th>
<th>33</th>
<th>41</th>
<th>26</th>
<th>59</th>
<th>57</th>
<th>52</th>
<th>61</th>
<th>27</th>
<th>49</th>
<th>67</th>
<th>23</th>
<th>56</th>
<th>14</th>
<th>12</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 1 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0 1 1 0 1 0 0 1 0 0 0 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1</td>
<td></td>
</tr>
</tbody>
</table>
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th>22</th>
<th>0 1 1 0 0 0 0 0 0 0 0 0 0</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1</td>
<td>7</td>
</tr>
<tr>
<td>41</td>
<td>1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1</td>
<td>9</td>
</tr>
<tr>
<td>26</td>
<td>0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0</td>
<td>5</td>
</tr>
<tr>
<td>59</td>
<td>1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1</td>
<td>14</td>
</tr>
<tr>
<td>57</td>
<td>1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1</td>
<td>13</td>
</tr>
<tr>
<td>52</td>
<td>1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1</td>
<td>11</td>
</tr>
<tr>
<td>61</td>
<td>1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1</td>
<td>15</td>
</tr>
<tr>
<td>27</td>
<td>0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1</td>
<td>6</td>
</tr>
<tr>
<td>49</td>
<td>1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1</td>
<td>10</td>
</tr>
<tr>
<td>67</td>
<td>1 1 1 1 1 0 1 1 1 1 1 1 1 1</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1</td>
<td>4</td>
</tr>
<tr>
<td>56</td>
<td>1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1</td>
<td>8</td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>
Very simple Algorithm (Idea)

<table>
<thead>
<tr>
<th></th>
<th>22</th>
<th>33</th>
<th>41</th>
<th>26</th>
<th>59</th>
<th>57</th>
<th>52</th>
<th>61</th>
<th>27</th>
<th>49</th>
<th>67</th>
<th>23</th>
<th>56</th>
<th>14</th>
<th>12</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Very simple Sorting Algorithm

- **Idea:** Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.
- **Program:** SimpleSort

 Eingabe: s_1, \cdots, s_n.

 for all $P_{i,j}$ where $1 \leq i, j \leq n$ **do in parallel**

 if $s_i > s_j$ **then** $P_{i,j}(1) \rightarrow R_{i,j}$ **else** $P_{i,j}(0) \rightarrow R_{i,j}$

 for all i where $1 \leq i \leq n$ **do in parallel**

 for all $P_{i,j}$ where $1 \leq j \leq n$ **do in parallel**

 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.

 $P_i(s_i) \rightarrow R_{q_i+1}$.

- **Complexity:** $T(n) = O(\log n)$ and $P(n) = n^2$.
- **Efficiency:** $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.
- **Model:** CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \ldots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
 if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel
 for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel
 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.
 $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.
- Model: CREW.
Very simple Sorting Algorithm

- **Idea:** Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use \(n^2 \) processors.
- **Programm:** SimpleSort

 Eingabe: \(s_1, \ldots, s_n \).

 for all \(P_{i,j} \) where \(1 \leq i, j \leq n \) do in parallel

 if \(s_i > s_j \) then \(P_{i,j}(1) \rightarrow R_{i,j} \) else \(P_{i,j}(0) \rightarrow R_{i,j} \)

 for all \(i \) where \(1 \leq i \leq n \) do in parallel

 for all \(P_{i,j} \) where \(1 \leq j \leq n \) do in parallel

 Processors \(P_{i,j} \) bestimmen \(q_i = \sum_{l=1}^{n} R_{i,l} \).

 \(P_i(s_i) \rightarrow R_{q_i+1} \).

- **Complexity:** \(T(n) = O(\log n) \) and \(P(n) = n^2 \).
- **Efficiency:** \(\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right) \).
- **Model:** CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \ldots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel

for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel

Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.

$P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O(\frac{1}{n})$.
- Model: CREW.
Very simple Sorting Algorithm

- **Idea:** Compute the position for each element.
- **Compare pairwise all elements and count the number of smaller elements.**
- **Use** n^2 **processors.**

Programm: SimpleSort

Eingabe: s_1, \ldots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ **do in parallel**

- **if** $s_i > s_j$ **then** $P_{i,j}(1) \to R_{i,j}$ **else** $P_{i,j}(0) \to R_{i,j}$

for all i where $1 \leq i \leq n$ **do in parallel**

- **for all** $P_{i,j}$ where $1 \leq j \leq n$ **do in parallel**

 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.

 $P_i(s_i) \to R_{q_i+1}$.

Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.

Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.

Model: CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \ldots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

 if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel

 for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel

 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.

 $P_{i}(s_i) \rightarrow R_{q_i+1}$.

Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.

Efficiency: $\frac{O(n\log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.

Model: CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \cdots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
 if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel
 for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel
 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.
 $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.
- Model: CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \cdots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel
 if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel
 for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel
 Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.
 $P_i(s_i) \rightarrow R_{q_i+1}$.

- Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.

Model: CREW.
Very simple Sorting Algorithm

- Idea: Compute the position for each element.
- Compare pairwise all elements and count the number of smaller elements.
- Use n^2 processors.

Programm: SimpleSort

Eingabe: s_1, \ldots, s_n.

for all $P_{i,j}$ where $1 \leq i, j \leq n$ do in parallel

if $s_i > s_j$ then $P_{i,j}(1) \rightarrow R_{i,j}$ else $P_{i,j}(0) \rightarrow R_{i,j}$

for all i where $1 \leq i \leq n$ do in parallel

for all $P_{i,j}$ where $1 \leq j \leq n$ do in parallel

Processors $P_{i,j}$ bestimmen $q_i = \sum_{l=1}^{n} R_{i,l}$.

$P_i(s_i) \rightarrow R_{q_i+1}$.

Complexity: $T(n) = O(\log n)$ and $P(n) = n^2$.

Efficiency: $\frac{O(n \log n)}{n^2 \cdot O(\log n)} = O\left(\frac{1}{n}\right)$.

Model: CREW.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$.
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.
Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$.
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$.

Is $O(1)$ for $P(n) \leq n/\log n$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$.
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

- Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.
- Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$
- Is $O(1)$ for $P(n) \leq n/\log n$.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$.
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

- Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.
- Efficiency: $Eff(n) =$

$$\frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$$

- Is $O(1)$ for $P(n) \leq n/\log n$.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block.
- Merge the blocks pairwise and parallel.

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/ \log n$.

Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel.

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$.
Improved Algorithm for CREW

- Work with \(P(n) \) processors \((P(n) \leq n)\).
- Split the input in blocks of size \(O(n/P(n)) \). \(O(1) \)
- Sort parallel each block. \(O(n/P(n) \cdot \log(n/P(n))) \)
- Merge the blocks pairwise and parallel. \(O(n/P(n) + \log n) \cdot O(\log P(n)) \)

Complexity: \(T(n) = O(n/P(n) \cdot \log n + \log^2 n) \).
Efficiency: \(\text{Eff}(n) = \)
\[
\frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}
\]

Is \(O(1) \) for \(P(n) \leq n/\log n. \)
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel. $O(n/P(n) + \log n) \cdot O(\log P(n))$

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

Is $O(1)$ for $P(n) \leq n/\log n$.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel. $O(n/P(n) + \log n) \cdot O(\log P(n))$

Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

Efficiency: $Eff(n) =$

$$\frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$$

Is $O(1)$ for $P(n) \leq n/\log n$.
Improved Algorithm for CREW

- Work with $P(n)$ processors ($P(n) \leq n$).
- Split the input in blocks of size $O(n/P(n))$. $O(1)$
- Sort parallel each block. $O(n/P(n) \cdot \log(n/P(n)))$
- Merge the blocks pairwise and parallel. $O(n/P(n) + \log n) \cdot O(\log P(n))$

 Complexity: $T(n) = O(n/P(n) \cdot \log n + \log^2 n)$.

 Efficiency: $Eff(n) = \frac{O(n \log n)}{O(P(n)) \cdot O(n/P(n) \cdot \log n + \log^2 n)} = \frac{O(n \log n)}{O(n \cdot \log n + P(n) \cdot \log^2 n)}$

 Is $O(1)$ for $P(n) \leq n/\log n$.

Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall \(T_{\text{Merging(EREW)}}(n) = \text{lsO}(n/P(n) + \log n \cdot \log P(n)) \).
- \(T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n)) \)
- \(T(n) = O((n/P(n) + \log^2 n) \cdot \log n) \)
- Efficiency:
 \[
 \text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}
 \]
- Is \(O(1) \) if \(P(n) < n/\log^2 n \).
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging}(\text{EREW})}(n) = \Omega(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

\[
\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}
\]

- Is $O(1)$ if $P(n) < n/\log^2 n$.

Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall \(T_{\text{Merging(EREW)}}(n) = \Theta(n/P(n) + \log n \cdot \log P(n)) \).
- \(T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n)) \)
- \(T(n) = O((n/P(n) + \log^2 n) \cdot \log n) \)
- Efficiency:
 \[
 \text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}
 \]
- Is \(O(1) \) if \(P(n) < n/\log^2 n \).
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging(EREW)}}(n) = \text{lsO}(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:

$$\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}$$

- Is $O(1)$ if $P(n) < n/\log^2 n$.
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging(EREW)}}(n) = \log O(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:
 \[
 \text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}
 \]
- Is $O(1)$ if $P(n) < n/\log^2 n$.
Improved Algorithm EREW

- Exchange the merge algorithm.
- Recall $T_{\text{Merging\!(EREW)}}(n) = \Theta(n/P(n) + \log n \cdot \log P(n))$.
- $T(n) = O(n/P(n) \cdot \log(n/P(n)) + O(n/P(n) \cdot \log P(n) + \log n \cdot \log^2 P(n))$
- $T(n) = O((n/P(n) + \log^2 n) \cdot \log n)$
- Efficiency:
 $$\text{Eff}(n) = \frac{O(n \log n)}{O(P(n) \cdot ((n/P(n) + \log^2 n) \cdot \log n))}$$
- Is $O(1)$ if $P(n) < n/\log^2 n$.
Lower Bound

Theorem:
For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:
- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:
- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Lower Bound

Theorem:
For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:
- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:
- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Lower Bound

Theorem:
For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:
- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:
- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Lower Bound

Theorem:

For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Lower Bound

Theorem:
For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:

- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:

- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Lower Bound

Theorem:
For any parallel sorting algorithm Srt with $P_{Srt}(n) = O(n)$ hold:

$$T_{Srt}(n) = \Omega(\log(n)).$$

Proof:
- Lower bound for sequential is $\Theta(n \log n)$.
- One needs $O(n \log n)$ comparisons.
- In each parallel step are at most $o(n)$ comparisons possible.
- Thus with less steps we have a contradiction to the lower bound for sequential.

Situation at this point:
- Inefficient algorithms with: $T(n) = O(\log n)$ and $P(n) = n^2$.
- Nearly efficient algorithm with: $T(n) = O(\log^2 n)$ and $P(n) = o(n)$.
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \ldots, s_n.
- Program: `compare_exchange(i,j)`
 - `if s_i > s_j then exchange s_i <-> s_j`
- Symbolic view (Batcher):
 - y \hspace{2cm} $\max(x, y)$
 - $\min(x, y)$
 - x
- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \ldots, s_n.
- Program: compare_exchange(i,j)
 \[\text{if } s_i > s_j \text{ then exchange } s_i \leftrightarrow s_j\]
- Symbolic view (Batcher):
 \[
 \begin{align*}
 y \quad & \text{max}(x, y) \\
 x \quad & \text{min}(x, y)
 \end{align*}
 \]
- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \cdots, s_n.
- Program: `compare_exchange(i, j)`
  ```
  if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
  ```
- Symbolic view (Batcher):
  ```
  \[
  \begin{array}{c}
  y \\
  \hline
  x
  \end{array} \hspace{2cm}
  \begin{array}{c}
  \max(x, y) \\
  \hline
  \min(x, y)
  \end{array}
  ```
- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \cdots, s_n.
- Program: \texttt{compare_exchange(i,j)}
 \begin{verbatim}
 if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
 \end{verbatim}
- Symbolic view (Batcher):
 \[
 \begin{array}{c}
 y \\
 \hline
 x
 \end{array}
 \quad \text{max}(x, y)
 \]
 \[
 \begin{array}{c}
 x \\
 \hline
 y
 \end{array}
 \quad \text{min}(x, y)
 \]
- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is \(s_1, \ldots, s_n \).
- **Programm:** `compare_exchange(i,j)
 if \(s_i > s_j \) then exchange \(s_i \leftrightarrow s_j \)

- **Symbolic view (Batcher):**
 \[
 \begin{align*}
 &x &\quad \min(x, y) \\
 \quad &y &\quad \max(x, y)
 \end{align*}
 \]

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \ldots, s_n.
- Program: `compare_exchange(i,j)`

  ```
  if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
  ```

- Symbolic view (Batcher):
  ```
  \[
  \begin{array}{c}
  y \\
  \hline
  x
  \end{array}
  \Rightarrow \max(x, y)
  \]
  ```

  ```
  \[
  \begin{array}{c}
  x \\
  \hline
  y
  \end{array}
  \Rightarrow \min(x, y)
  \]
  ```

- Basic building block for sorting networks.
- Base for Odd-Even merge
- From this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is \(s_1, \ldots, s_n \).
- Programm: `compare_exchange(i, j)`

 \[
 \text{if } s_i > s_j \text{ then exchange } s_i \leftrightarrow s_j
 \]
- Symbolic view (Batcher):

 \[
 \begin{align*}
 x & \quad \text{min}(x, y) \\
 y & \quad \text{max}(x, y)
 \end{align*}
 \]

- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Basic Operation for Sorting

- Identify basic operation for sorting.
- Assume: sorting key is s_1, \cdots, s_n.
- Programm: compare_exchange(i,j)
 - if $s_i > s_j$ then exchange $s_i \leftrightarrow s_j$
- Symbolic view (Batcher):
 \[
 \begin{align*}
 y & \quad \text{max}(x, y) \\
 x & \quad \text{min}(x, y)
 \end{align*}
 \]
- Basic building block for sorting networks.
- Base for Odd-Even merge
- Form this we build the optimal algorithm by Cole
Odd-even Merge (Definition)

- **Input:** Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. n even)
- Let $Odd(S)$ [$Even(S)$] be the elements of S with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $\text{interleave}(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

\[T_{\text{interleave}}(n) = O(1) \quad \text{mit} \quad P_{\text{interleave}}(n) = O(n) \]
Odd-even Merge (Definition)

- **Input:** Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. n even)

- Let $Odd(S)$ [$Even(S)$] be the elements of S with odd [even] index.

- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.

- Then we define: $interleave(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

- $T_{interleave}(n) = O(1)$ mit $P_{interleave}(n) = O(n)$
Odd-even Merge (Definition)

- **Input**: Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. n even)
- Let $Odd(S)$ [$Even(S)$] be the elements of S with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $interleave(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

$$T_{interleave}(n) = O(1) \text{ mit } P_{interleave}(n) = O(n)$$
Odd-even Merge (Definition)

- **Input:** Sequence \(S = (s_1, s_2, \cdots, s_n) \). (O.E.d.A. \(n \) even)
- **Let** \(Odd(S) \) [\(Even(S) \)] be the elements of \(S \) with odd [even] index.
- **Let** \(S' = (s'_1, s'_2, \cdots, s'_n) \) be a second sequence.
- **Then we define:** \(interleave(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n) \).

\[
\begin{array}{cccccccc}
 s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 \\
 r_1 & r_2 & r_3 & r_4 & r_5 & r_6 & r_7 & r_8 \\
 s'_1 & s'_2 & s'_3 & s'_4 & s'_5 & s'_6 & s'_7 & s'_8 \\
 r_9 & r_{10} & r_{11} & r_{12} & r_{13} & r_{14} & r_{15} & r_{16}
\end{array}
\]

- \(T_{interleave}(n) = O(1) \) mit \(P_{interleave}(n) = O(n) \)
Odd-even Merge (Definition)

- Input: Sequence $S = (s_1, s_2, \cdots, s_n)$. (O.E.d.A. n even)
- Let $Odd(S)$ [$Even(S)$] be the elements of S with odd [even] index.
- Let $S' = (s'_1, s'_2, \cdots, s'_n)$ be a second sequence.
- Then we define: $interleave(S, S') = (s_1, s'_1, s_2, s'_2, \cdots, s_n, s'_n)$.

$$T_{interleave}(n) = O(1) \text{ mit } P_{interleave}(n) = O(n)$$
Odd-even Merge (Definition)

- **Programm:** `odd_even(S)`

 `for all i where 1 < i < n and i even do in parallel`

 `compare_exchange(i, i + 1).`

- $T_{\text{compare}_\text{exchange}}(n) = O(1)$ mit $P_{\text{compare}_\text{exchange}}(n) = O(n)$
Odd-even Merge (Definition)

- Programm: `odd_even(S)`

 for all i where $1 < i < n$ and i even do in parallel

 `compare_exchange(i, i + 1)`.

- $T_{\text{compare_exchange}}(n) = O(1)$ mit $P_{\text{compare_exchange}}(n) = O(n)$
Odd-even Merge (Definition)

- **Programm**: `odd_even(S)`
 - **for all** `i` **where** `1 < i < n` **and** `i` **even** **do in parallel**
 - `compare_exchange(i, i + 1)`.

- \[T_{\text{compare_exchange}}(n) = O(1) \text{ mit } P_{\text{compare_exchange}}(n) = O(n) \]
Odd-even Merge (Definition)

- Programm: \texttt{join1}(S, S')
 \texttt{odd_even}(\texttt{interleave}(S, S'))

- $T_{\text{join1}}(n) = O(1)$ mit $P_{\text{join1}}(n) = O(n)$
Odd-even Merge (Definition)

Programm: \texttt{join1}(S, S')

\texttt{odd_even}(\texttt{interleave}(S, S'))

\[T_{join1}(n) = O(1) \text{ mit } P_{join1}(n) = O(n) \]
Odd-even Merge (Definition)

- Programm: $\text{join1}(S, S')$
 - $\text{odd_even}(\text{interleave}(S, S'))$

$T_{\text{join1}}(n) = O(1)$ mit $P_{\text{join1}}(n) = O(n)$
Sorting with Merging

- Programm: odd_even_merge(S, S')

 if $|S| = |S'| = 1$ then merge with compare_exchange.
 $S_{odd} = odd_even_merge(odd(S), odd(S'))$.
 $S_{even} = odd_even_merge(even(S), even(S'))$.
 return join1(S_{odd}, S_{even}).

- $T_{odd_even_merge}(n) = O(\log n)$ mit $P_{odd_even_merge}(n) = O(n)$

Theorem:

The algorithm odd_even_merge sorts two already sorted sequences into one.

Proof follows.
Sorting with Merging

- **Programm**: odd_even_merge(S, S')

 if $|S| = |S'| = 1$ then merge with compare_exchange.

 $S_{odd} = odd_even_merge(odd(S), odd(S')).$

 $S_{even} = odd_even_merge(even(S), even(S')).$

 return $join_1(S_{odd}, S_{even}).$

- $T_{odd_even_merge}(n) = O(\log n)$ mit $P_{odd_even_merge}(n) = O(n)$

Theorem:

The algorithm odd_even_merge sorts two already sorted sequences into one.

Proof follows.
Sorting with Merging

- **Programm:** `odd_even_merge(S, S')`

 - if $|S| = |S'| = 1$ then merge with `compare_exchange`.
 - $S_{odd} = odd_even_merge(odd(S), odd(S'))$.
 - $S_{even} = odd_even_merge(even(S), even(S'))$.
 - return $join_1(S_{odd}, S_{even})$.

- $T_{odd_even_merge}(n) = O(\log n)$ mit $P_{odd_even_merge}(n) = O(n)$

Theorem:

The algorithm `odd_even_merge` sorts two already sorted sequences into one.

Proof follows.
Sorting with Merging

- Programm: `odd_even_merge(S, S')`

 `if |S| = |S'| = 1 then` merge with `compare_exchange`.

 $S_{odd} = odd_even_merge(odd(S), odd(S'))$.

 $S_{even} = odd_even_merge(even(S), even(S'))$.

 `return join1(S_{odd}, S_{even})`.

- $T_{odd_even_merge}(n) = O(\log n)$ mit $P_{odd_even_merge}(n) = O(n)$

Theorem:

The algorithm `odd_even_merge` sorts two already sorted sequences into one.

Proof follows.
Sorting with Merging

- Programm: odd_even_merge(S, S')
 - if $|S| = |S'| = 1$ then merge with compare_exchange.
 - $S_{odd} = odd_even_merge(odd(S), odd(S'))$.
 - $S_{even} = odd_even_merge(even(S), even(S'))$.
 - return join1(S_{odd}, S_{even}).

- $T_{odd_even_merge}(n) = O(\log n)$ mit $P_{odd_even_merge}(n) = O(n)$

Theorem:
The algorithm odd_even_merge sorts two already sorted sequences into one.

Proof follows.
Theorem:

There exists a sorting algorithm with \(T(n) = O(\log^2 n) \) and \(P(n) = n \).

Proof: use divide and conquer, and merging of depth \(O(\log n) \).

Theorem:

There exists a sorting network of size \(O(n \log^2 n) \).

Proof: All calls to \textit{compare exchange} operation are independent form the input (oblivious algorithm).
Theorem:
There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

Theorem:
There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to compare_exchange operation are independent from the input (oblivious algorithm).
Sorting Networks

Theorem:
There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

Theorem:
There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to `compare_exchange` operation are independent from the input (oblivious algorithm).
Sorting Networks

Theorem:
There exists a sorting algorithm with $T(n) = O(\log^2 n)$ and $P(n) = n$.

Proof: use divide and conquer, and merging of depth $O(\log n)$.

Theorem:
There exists a sorting network of size $O(n \log^2 n)$.

Proof: All calls to `compare_exchange` operation are independent form the input (oblivious algorithm).
The 0-1 Principle

Theorem:
If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \cdots, a_n) to (b_1, b_2, \cdots, b_n), then if X gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

Theorem:

If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \cdots, a_n) to (b_1, b_2, \cdots, b_n), then if X gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

Theorem:
If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \cdots, a_n) to (b_1, b_2, \cdots, b_n), then if X gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

Theorem:

If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \ldots, a_n) to (b_1, b_2, \ldots, b_n), then if X gets $(f(a_1), f(a_2), \ldots, f(a_n))$ then the output $(f(b_1), f(b_2), \ldots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the "sorted" sequence $(f(b_1), f(b_2), \ldots, f(b_n))$. i.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \ldots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

Theorem:

If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \cdots, a_n) to (b_1, b_2, \cdots, b_n), then if X gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
The 0-1 Principle

Theorem:
If a sorting network X, resp. sorting algorithm is correct for all 0-1 inputs, then it is also correct for any input.

Proof (by contradiction):

- Let $f(x)$ be non-decreasing function: $f(s_i) \leq f(s_j) \iff s_i \leq s_j$.
- If X sorts the sequence (a_1, a_2, \cdots, a_n) to (b_1, b_2, \cdots, b_n), then if X gets $(f(a_1), f(a_2), \cdots, f(a_n))$ then the output $(f(b_1), f(b_2), \cdots, f(b_n))$ is also sorted.
- Assume $b_i > b_{i+1}$ and $f(b_i) \neq f(b_{i+1})$, then we have $f(b_i) > f(b_{i+1})$ in the “sorted” sequence $(f(b_1), f(b_2), \cdots, f(b_n))$. I.e errors may be kept under the function f.
- Choose now f: $f(b_j) = 0$ for $b_j < b_i$ and $f(b_j) = 1$ otherwise.
- Thus the sequence $(f(b_1), f(b_2), \cdots, f(b_n))$ is not sorted, because of $f(b_i) = 1$ and $f(b_{i+1}) = 0$.
- This is a contradiction.
Correctness of the Merging

Theorem:
The algorithm odd_even_merge sorts two sorted sequences into a single one.

Proof:

- \(S \) has the form: \(S = 0^p1^{m-p} \) for some \(p \) with \(0 \leq p \leq m \).
- \(S' \) has the form: \(S' = 0^q1^{m'-q} \) for some \(q \) with \(0 \leq q \leq m' \).
- Thus the sequence \(S_{odd} \) has the form \(0^\lceil p/2 \rceil + \lceil q/2 \rceil 1^* \).
- And \(S_{even} \) has the form \(0^\lfloor p/2 \rfloor + \lfloor q/2 \rfloor 1^* \).
- Define: \(d = \lceil p/2 \rceil + \lfloor q/2 \rfloor - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor) \)
- Depending on \(d \) we consider three cases: \(d = 0, d = 1 \) and \(d = 2 \).
Theorem:

The algorithm `odd _even _merge` sorts two sorted sequences into a single one.

Proof:

- **S** has the form: $S = 0^p 1^{m-p}$ for some p with $0 \leq p \leq m$.
- **S'** has the form: $S' = 0^q 1^{m'-q}$ for some q with $0 \leq q \leq m'$.
- Thus the sequence S_{odd} has the form $0^{\lceil p/2 \rceil + \lceil q/2 \rceil} 1^*$
- And S_{even} has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor} 1^*$.
- Define: $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$
- Depending on d we consider three cases: $d = 0$, $d = 1$ and $d = 2$.
Correctness of the Merging

Theorem:
The algorithm `odd_even_merge` sorts two sorted sequences into a single one.

Proof:

- S has the form: $S = 0^p1^{m-p}$ for some p with $0 \leq p \leq m$.
- S' has the form: $S' = 0^q1^{m'-q}$ for some q with $0 \leq q \leq m'$.
- Thus the sequence S_{odd} has the form $0^\lceil p/2 \rceil + \lceil q/2 \rceil 1^*$.
- And S_{even} has the form $0^\lfloor p/2 \rfloor + \lfloor q/2 \rfloor 1^*$.
- Define: $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$
- Depending on d we consider three cases: $d = 0$, $d = 1$ and $d = 2$.
Correctness of the Merging

Theorem:
The algorithm odd_even_merge sorts two sorted sequences into a single one.

Proof:

- S has the form: $S = 0^p1^{m-p}$ for some p with $0 \leq p \leq m$.
- S' has the form: $S' = 0^q1^{m'-q}$ for some q with $0 \leq q \leq m'$.
- Thus the sequence S_{odd} has the form $0^{\lceil p/2 \rceil + \lceil q/2 \rceil}1^*$.
- And S_{even} has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor}1^*$.
- Define: $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$.
- Depending on d we consider three cases: $d = 0$, $d = 1$ and $d = 2$.
Correctness of the Merging

Theorem:
The algorithm *odd_even_merge* sorts two sorted sequences into a single one.

Proof:

- S has the form: $S = 0^p 1^{m-p}$ for some p with $0 \leq p \leq m$.
- S' has the form: $S' = 0^q 1^{m'-q}$ for some q with $0 \leq q \leq m'$.
- Thus the sequence S_{odd} has the form $0^{\lceil p/2 \rceil + \lceil q/2 \rceil} 1^*$.
- And S_{even} has the form $0^{\lfloor p/2 \rfloor + \lfloor q/2 \rfloor} 1^*$.
- **Definiere:** $d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor)$
- Depending on d we consider three cases: $d = 0$, $d = 1$ and $d = 2$.
Correctness of the Merging

Theorem:
The algorithm \textit{odd_even_merge} sorts two sorted sequences into a single one.

Proof:

- \(S \) has the form: \(S = 0^p 1^{m-p} \) for some \(p \) with \(0 \leq p \leq m \).
- \(S' \) has the form: \(S' = 0^q 1^{m'-q} \) for some \(q \) with \(0 \leq q \leq m' \).
- Thus the sequence \(S_{odd} \) has the form \(0\lceil p/2 \rceil + \lceil q/2 \rceil 1^* \).
- And \(S_{even} \) has the form \(0\lfloor p/2 \rfloor + \lfloor q/2 \rfloor 1^* \).
- Definiere: \(d = \lceil p/2 \rceil + \lceil q/2 \rceil - (\lfloor p/2 \rfloor + \lfloor q/2 \rfloor) \)
- Depending on \(d \) we consider three cases: \(d = 0, d = 1 \) and \(d = 2 \).
Correctness of the Merging

If \(d = 0 \): Then we have: \(p \) and \(q \) are even.

- The \textit{interleave} step of \textit{join1} has the form:

\[
\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'−p−q}
\]

- The resulting sequences is already sorted.
- The \textit{compare_exchange} step keeps the order.

If \(d = 1 \): Then we have: \(p \) is odd and \(q \) is even.

- The \textit{interleave} step of \textit{join1} has the form:

\[
\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}01^{m+m'−p−q}
\]

- The resulting sequences is already sorted.

If \(d = 2 \): Then we have: \(p \) and \(q \) are odd.

- The \textit{interleave} step of \textit{join1} has the form:

\[
\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}101^{m+m'−p−q}
\]

- The \textit{compare_exchange} step will exchange the 1 on position \(2r \) with the 0 on position \(2r + 1 \).
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.

- The `interleave` step of `join1` has the form:

 \[\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'-p-q} \]

- The resulting sequences is already sorted.
- The `compare_exchange` step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.

- The `interleave` step of `join1` has the form:

 \[\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}01^{m+m'-p-q} \]

- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.

- The `interleave` step of `join1` has the form:

 \[\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor(p+q)/2\rfloor}101^{m+m'-p-q} \]

- The `compare_exchange` step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.
- The *interleave* step of $join1$ has the form:
 \[\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}1^{m+m'-p-q} \]
- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.
- The *interleave* step of $join1$ has the form:
 \[\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}01^{m+m'-p-q} \]
- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.
- The *interleave* step of $join1$ has the form:
 \[\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2}101^{m+m'-p-q} \]
- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.
- The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 1^{m+m'-p-q}
 \]
- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.
- The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 01^{m+m'-p-q}
 \]
- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.
- The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 101^{m+m'-p-q}
 \]
- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.

- The **interleave** step of join1 has the form:

$$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 1^{m+m' - p - q}$$

- The resulting sequences is already sorted.
- The **compare_exchange** step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.

- The **interleave** step of join1 has the form:

$$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 01^{m+m' - p - q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.

- The **interleave** step of join1 has the form:

$$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 01^{m+m' - p - q}$$

- The **compare_exchange** step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.

- The *interleave* step of *join1* has the form:

$$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 1^{m+m' - p - q}$$

- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.

- The *interleave* step of *join1* has the form:

$$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor (p+q)/2 \rfloor} 01^{m+m' - p - q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.

- The *interleave* step of *join1* has the form:

$$\text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{\lfloor (p+q)/2 \rfloor} 101^{m+m' - p - q}$$

- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.

- The *interleave* step of $join\, 1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}1^{m+m'-p-q}$$

- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.

- The *interleave* step of $join\, 1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}\lfloor(p+q)/2\rfloor 01^{m+m'-p-q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.

- The *interleave* step of $join\, 1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}\lfloor(p+q)/2\rfloor 101^{m+m'-p-q}$$

- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.

- The \textit{interleave} step of $join_1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}1^{m+m'-p-q}$$

- The resulting sequences is already sorted.
- The \textit{compare_exchange} step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.

- The \textit{interleave} step of $join_1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{\lfloor(p+q)/2\rfloor}01^{m+m'-p-q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.

- The \textit{interleave} step of $join_1$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{\lfloor(p+q)/2\rfloor}101^{m+m'-p-q}$$

- The \textit{compare_exchange} step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.

- The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 1^{m+m'-p-q}
 \]
- The resulting sequences is already sorted.
- The *compare_exchange* step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.

- The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 1^{m+m'-p-q}
 \]
- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.

- The *interleave* step of *join1* has the form:
 \[
 \text{interleave}(S_{\text{odd}}, S_{\text{even}}) = (00)^{(p+q)/2} 10^{m+m'-p-q}
 \]
- The *compare_exchange* step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Correctness of the Merging

If $d = 0$: Then we have: p and q are even.

- The $interleave$ step of $join$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{(p+q)/2}1^{m+m'-p-q}$$

- The resulting sequences is already sorted.
- The $compare_exchange$ step keeps the order.

If $d = 1$: Then we have: p is odd and q is even.

- The $interleave$ step of $join$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{\lfloor(p+q)/2\rfloor}01^{m+m'-p-q}$$

- The resulting sequences is already sorted.

If $d = 2$: Then we have: p and q are odd.

- The $interleave$ step of $join$ has the form:

$$interleave(S_{odd}, S_{even}) = (00)^{\lfloor(p+q)/2\rfloor}10^{1^{m+m'-p-q}}$$

- The $compare_exchange$ step will exchange the 1 on position $2r$ with the 0 on position $2r + 1$.
Corollary:
The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $0^p1^{m-p}, 0^q1^{m'-q}$.

Theorem:
The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Testing the Correctness of a Network

Corollary:

The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p 1^{m-p}, 0^q 1^{m'-q})$.

Theorem:

The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Corollary:
The correctness of a merge network may be tested in time $O(n^2)$.

Proof: Test all inputs of the form $(0^p 1^{m-p}, 0^q 1^{m'-q})$.

Theorem:
The test for correctness of a sorting network is NP-hard.

Proof: Literature.
Situation

- **Aim**: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
Situation

- **Aim:** Fast optimal algorithm.
- **So far** \(T(n) = \log^2 n \) bei \(P(n) = O(n) \).
- **So far:** Two loop for merging and sorting.
- **Idea:** make one loop faster, i.e. the merging in \(O(1) \).
- **Problem:** With no further information we need \(\Theta(\log n) \) steps.
- **Idea:** compute this additional information during the sorting.
- **Choose as additional information nice splitting points for merging.**
- **I.e choose positions which split the blocks to be merged of constants size.**
- **Problem:** How to compute these points?
- **Solution is the base for the algorithm of Cole.**
Situation

- **Aim:** Fast optimal algorithm.
- **So far** $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- **So far:** Two loop for merging and sorting.
- **Idea:** make one loop faster, i.e. the merging in $O(1)$.
- **Problem:** With no further information we need $\Theta(\log n)$ steps.
- **Idea:** compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- i.e choose positions which split the blocks to be merged of constants size.
- **Problem:** How to compute these points?
- **Solution** is the base for the algorithm of Cole.
Situation

- **Aim:** Fast optimal algorithm.
- **So far** $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- **So far:** Two loop for merging and sorting.
- **Idea:** make one loop faster, i.e. the merging in $O(1)$.
- **Problem:** With no further information we need $\Theta(\log n)$ steps.
- **Idea:** compute this additional information during the sorting.
- **Choose as additional information nice splitting points for merging.**
- **I.e.** choose positions which split the blocks to be merged of constants size.
- **Problem:** How to compute these points?
- **Solution is the base for the algorithm of Cole.**
Situation

- **Aim**: Fast optimal algorithm.
- **So far**: \(T(n) = \log^2 n \) bei \(P(n) = O(n) \).
- **So far**: Two loop for merging and sorting.
- **Idea**: make one loop faster, i.e. the merging in \(O(1) \).
- **Problem**: With no further information we need \(\Theta(\log n) \) steps.
- **Idea**: compute this additional information during the sorting.
- **Choose as additional information nice splitting points for merging.**
- **I.e choose positions which split the blocks to be merged of constants size.**
- **Problem**: How to compute these points?
- **Solution is the base for the algorithm of Cole.**
Situation

- **Aim:** Fast optimal algorithm.

- **So far** $T(n) = \log^2 n$ bei $P(n) = O(n)$.

- **So far:** Two loop for merging and sorting.

- **Idea:** make one loop faster, i.e. the merging in $O(1)$.

- **Problem:** With no further information we need $\Theta(\log n)$ steps.

- **Idea:** compute this additional information during the sorting.

- Choose as additional information nice splitting points for merging.

- I.e choose positions which split the blocks to be merged of constants size.

- **Problem:** How to compute these points?

- **Solution** is the base for the algorithm of Cole.
Situation

- **Aim:** Fast optimal algorithm.
- **So far** $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- **So far:** Two loop for merging and sorting.
- **Idea:** make one loop faster, i.e. the merging in $O(1)$.
- **Problem:** With no further information we need $\Theta(\log n)$ steps.
- **Idea:** compute this additional information during the sorting.
- **Choose as additional information nice splitting points for merging.**
 - i.e choose positions which split the blocks to be merged of constants size.
- **Problem:** How to compute these points?
- **Solution is the base for the algorithm of Cole.**
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- i.e. choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
Situation

- Aim: Fast optimal algorithm.
- So far $T(n) = \log^2 n$ bei $P(n) = O(n)$.
- So far: Two loop for merging and sorting.
- Idea: make one loop faster, i.e. the merging in $O(1)$.
- Problem: With no further information we need $\Theta(\log n)$ steps.
- Idea: compute this additional information during the sorting.
- Choose as additional information nice splitting points for merging.
- I.e choose positions which split the blocks to be merged of constants size.
- Problem: How to compute these points?
- Solution is the base for the algorithm of Cole.
The Merging-Tree, a View
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each \(k \)-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in \(O(1) \) time.
- Total running time will be \(O(\log n) \).
- The additional effort should be at most \(O(1) \).
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- **Total running time will be** $O(\log n)$.
- The additional effort should be at most $O(1)$.
Idea

- Before merging two sequences we will merge two sub-sequences.
- Choose as sub-sequence each k-th element of the original sequence.
- These sub-sequences will be used as crutch/support to do the final merging.
- I.e. these sub-sequences are used as a kind of “preview”.
- Using these crutch points we will be able to do the merging in $O(1)$ time.
- Total running time will be $O(\log n)$.
- The additional effort should be at most $O(1)$.
The Merging-Tree, a View

Each Processor starts with 256 elements.
The Merging-Tree, a View

Each Prozessor starts with 256 elements
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each Prozessor starts with 256 elements
The Merging-Tree, a View

Each Prozessor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements

1. Sends 4
2. Has 4
3. Sends 16
4. Has 16
5. Sends 64
6. Has 256
7. Each
The Merging-Tree, a View

Each Processor starts with 256 elements

↑ each ↑
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each Processor starts with 256 elements

↑ each ↑
The Merging-Tree, a View

Each processor starts with 256 elements.
The Merging-Tree, a View

Each Prozessor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Prozessor starts with 256 elements
The Merging-Tree, a View

Each processor starts with 256 elements
The Merging-Tree, a View

Each Prozessor starts with 256 elements
The Merging-Tree, a View

Each Prozessor starts with 256 elements.
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Processor starts with 256 elements.
The Merging-Tree, a View

Each Processor starts with 256 elements
The Merging-Tree, a View

Each Prozessor starts with 256 elements
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = \{x \in S \mid x < e\}$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{\mid A\mid}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between A and B.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let J and K be two sorted sequences.
- **Note:** without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = |\{x \in S | x < e\}|$.
- **Notation:** $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between A and B.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between A and B.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = |\{ x \in S \mid x < e \}|$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between A and B.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following **good sampler** for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between A and B.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following **good** sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between A and B.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $rng(e, S) = |\{x \in S \mid x < e\}|$.
- **Notation:** $Rng_{A,B}$ is the function $Rng_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $Rng_{A,B}(e) = rng(e, B)$ for all $e \in A$.
- $Rng_{A,B}$ is called the rank between A and B.
- Depending on the context $Rng_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $Rng_{A,B}$ is the function $Rng_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $Rng_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $Rng_{A,B}$ is called the rank between A and B.
- Depending on the context $Rng_{A,B}$ could also be an array with $|A|$ elements.
Definition

- Let J and K be two sorted sequences.
- Note: without additional information we could not merge J and K in $O(1)$ time with $O(n)$ processors.
- Let L be a third sequence, which will be called in the following good sampler for J and K.
- Informal: $|L| < |J|$ and the elements of L are evenly spread in J.
- Let $a < b$, c is between a and b iff $a < c \leq b$.
- The rank of e in S is $\text{rng}(e, S) = |\{x \in S \mid x < e\}|$.
- Notation: $\text{Rng}_{A,B}$ is the function $\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|}$ with $\text{Rng}_{A,B}(e) = \text{rng}(e, B)$ for all $e \in A$.
- $\text{Rng}_{A,B}$ is called the rank between A and B.
- Depending on the context $\text{Rng}_{A,B}$ could also be an array with $|A|$ elements.
Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Definition:
We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:
- Let \(S \) be a sorted sequence
- Let \(S_1 \) be the sequence consisting of each forth element of \(S \).
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- Example \((k = 1)\): 1, 2, 3, 4.
- Example \((k = 3)\): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Definition:

We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:

- Let \(S \) be a sorted sequence
- Let \(S_1 \) be the sequence consisting of each forth element of \(S \).
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- Example (\(k = 1 \)): 1, 2, 3, 4.
- Example (\(k = 3 \)): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{\mid A\mid} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Definition:

We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:

- Let \(S \) be a sorted sequence
- Let \(S_1 \) be the sequence consisting of each forth element of \(S \).
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- Example \((k = 1)\): 1, 2, 3, 4.
- Example \((k = 3)\): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Good Sampler

\[\text{rng}(e, S) = | \{ x \in S \mid x < e \} | \text{ and } R_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } R_{A,B}(e) = \text{rng}(e, B) \]

Definition:

We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:

- Let \(S \) be a sorted sequence.
- Let \(S_1 \) be the sequence consisting of each forth element of \(S \).
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- Example (\(k = 1 \)): 1, 2, 3, 4.
- Example (\(k = 3 \)): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{\lfloor |A| \rfloor} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Definition:

We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:

- Let \(S \) be a sorted sequence
- **Let \(S_1 \) be the sequence consisting of each forth element of \(S \).**
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- Example \((k = 1)\): \(1, 2, 3, 4\).
- Example \((k = 3)\): \(1, 2, 3, 4, 5, 6, 7, 8, 9, 10\).
Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Definition:

We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:

- Let \(S \) be a sorted sequence
- Let \(S_1 \) be the sequence consisting of each forth element of \(S \).
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- Example \((k = 1)\): 1, 2, 3, 4.
- Example \((k = 3)\): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Good Sampler

Definition:
We call L a good sampler of J, iff:
- L and J are sorted.
- Between any $k + 1$ succeeding elements of $\{-\infty\} \cup L \cup \{+\infty\}$ are at most $2 \cdot k + 1$ many elements in J.

Example:
- Let S be a sorted sequence
- Let S_1 be the sequence consisting of each forth element of S.
- Then S_1 is a good sampler of S.
- Let S_2 be the sequence consisting of each second element of S.
- Then S_1 is a good sampler of S_2.
- Example ($k = 1$): $1, 2, 3, 4$.
- Example ($k = 3$): $1, 2, 3, 4, 5, 6, 7, 8, 9, 10$.

$$rng(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = rng(e, B)$$
Good Sampler

Definition:
We call L a good sampler of J, iff:
1. L and J are sorted.
2. Between any $k+1$ succeeding elements of $\{-\infty\} \cup L \cup \{+\infty\}$ are at most $2 \cdot k + 1$ many elements in J.

Example:
- Let S be a sorted sequence.
- Let S_1 be the sequence consisting of each forth element of S.
- Then S_1 is a good sampler of S.
- Let S_2 be the sequence consisting of each second element of S.
- Then S_1 is a good sampler of S_2.
- Example ($k = 1$): 1, 2, 3, 4.
- Example ($k = 3$): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Good Sampler

\[\text{rng}(e, S) = |\{ x \in S \mid x < e \}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Definition:

We call \(L \) a good sampler of \(J \), iff:

- \(L \) and \(J \) are sorted.
- Between any \(k + 1 \) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\} \) are at most \(2 \cdot k + 1 \) many elements in \(J \).

Example:

- Let \(S \) be a sorted sequence
- Let \(S_1 \) be the sequence consisting of each forth element of \(S \).
- Then \(S_1 \) is a good sampler of \(S \).
- Let \(S_2 \) be the sequence consisting of each second element of \(S \).
- Then \(S_1 \) is a good sampler of \(S_2 \).
- **Example** \((k = 1)\): \(1, 2, 3, 4 \).
- **Example** \((k = 3)\): \(1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \).
Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad R_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad R_{A,B}(e) = \text{rng}(e, B)\]

Definition:

We call \(L\) a good sampler of \(J\), iff:

- \(L\) and \(J\) are sorted.
- Between any \(k + 1\) succeeding elements of \(\{-\infty\} \cup L \cup \{+\infty\}\) are at most \(2 \cdot k + 1\) many elements in \(J\).

Example:

- Let \(S\) be a sorted sequence
- Let \(S_1\) be the sequence consisting of each fourth element of \(S\).
- Then \(S_1\) is a good sampler of \(S\).
- Let \(S_2\) be the sequence consisting of each second element of \(S\).
- Then \(S_1\) is a good sampler of \(S_2\).
- Example \((k = 1)\): 1, 2, 3, 4.
- Example \((k = 3)\): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Merging using a Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).

Programm: \textit{merge_with_help}(J, K, L)

\[
\text{for all } i \text{ where } 1 \leq i \leq s \text{ do in parallel}
\]

Assign \(J_i = \{x \in J \mid l_{i-1} < x \leq l_i\} \).
Assign \(K_i = \{x \in K \mid l_{i-1} < x \leq l_i\} \).
Assign \(\text{res}_i = \text{merge}(J_i, K_i) \).

return \((\text{res}_1, \text{res}_2, \cdots, \text{res}_s)\).

Situation:
Merging using a Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).
- Programm: `merge_with_help(J, K, L)`

 for all \(i \) where \(1 \leq i \leq s \) do in parallel

 Assign \(J_i = \{x \in J \mid l_{i-1} < x \leq l_i\} \).

 Assign \(K_i = \{x \in K \mid l_{i-1} < x \leq l_i\} \).

 Assign \(\text{res}_i = \text{merge}(J_i, K_i) \).

 return \((\text{res}_1, \text{res}_2, \cdots, \text{res}_s) \).

- Situation:

\[
\begin{array}{cccccccccc}
| & | & | & | & | & | & | & | & \\
L_1 & L_2 & L_3 & L_4 & L_5 & L_6 & L_7 & L_8 & L_9 \\
| & | & | & | & | & | & | & \\
& l_1 & l_2 & l_3 & l_4 & l_5 & l_6 & l_7 & l_8 \\
| & | & | & | & | & | & | & \\
K_1 & K_2 & K_3 & K_4 & K_5 & K_6 & K_7 & K_8 & K_9
\end{array}
\]
Merging using a Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).

Program: merge_with_help(\(J, K, L \))

for all \(i \) where \(1 \leq i \leq s \) do in parallel

Assign \(J_i = \{x \in J \mid l_{i-1} < x \leq l_i\} \).
Assign \(K_i = \{x \in K \mid l_{i-1} < x \leq l_i\} \).
Assign \(\text{res}_i = \text{merge}(J_i, K_i) \).

return \((\text{res}_1, \text{res}_2, \cdots, \text{res}_s) \).

Situation:

<table>
<thead>
<tr>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
<th>(L_4)</th>
<th>(L_5)</th>
<th>(L_6)</th>
<th>(L_7)</th>
<th>(L_8)</th>
<th>(L_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_1)</td>
<td>(l_2)</td>
<td>(l_3)</td>
<td>(l_4)</td>
<td>(l_5)</td>
<td>(l_6)</td>
<td>(l_7)</td>
<td>(l_8)</td>
<td></td>
</tr>
<tr>
<td>(K_1)</td>
<td>(K_2)</td>
<td>(K_3)</td>
<td>(K_4)</td>
<td>(K_5)</td>
<td>(K_6)</td>
<td>(K_7)</td>
<td>(K_8)</td>
<td>(K_9)</td>
</tr>
</tbody>
</table>
Merging using a Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).
- Programm: \text{merge_with_help}(J, K, L)

 \textbf{for all } i \text{ where } 1 \leq i \leq s \text{ do in parallel}
 \begin{align*}
 &\text{Assign } J_i = \{x \in J \mid l_{i-1} < x \leq l_i\}. \\
 &\text{Assign } K_i = \{x \in K \mid l_{i-1} < x \leq l_i\}.
 \\
 &\text{Assign } res_i = \text{merge}(J_i, K_i).
 \\
 \end{align*}

\textbf{return } (res_1, res_2, \cdots, res_s).

- Situation:

<table>
<thead>
<tr>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
<th>(L_4)</th>
<th>(L_5)</th>
<th>(L_6)</th>
<th>(L_7)</th>
<th>(L_8)</th>
<th>(L_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_1)</td>
<td>(l_2)</td>
<td>(l_3)</td>
<td>(l_4)</td>
<td>(l_5)</td>
<td>(l_6)</td>
<td>(l_7)</td>
<td>(l_8)</td>
<td></td>
</tr>
<tr>
<td>(K_1)</td>
<td>(K_2)</td>
<td>(K_3)</td>
<td>(K_4)</td>
<td>(K_5)</td>
<td>(K_6)</td>
<td>(K_7)</td>
<td>(K_8)</td>
<td>(K_9)</td>
</tr>
</tbody>
</table>
Merging using a Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{\lvert A \rvert} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

- Let \(J, K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \ldots, l_s) \).
- Program: `merge_with_help(J, K, L)`
 - for all \(i \) where \(1 \leq i \leq s \) do in parallel
 - Assign \(J_i = \{x \in J \mid l_{i-1} < x \leq l_i\} \).
 - Assign \(K_i = \{x \in K \mid l_{i-1} < x \leq l_i\} \).
 - Assign \(res_i = \text{merge}(J_i, K_i) \).
 - return \((res_1, res_2, \ldots, res_s)\).

Situation:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
& L_1 & L_2 & L_3 & L_4 & L_5 & L_6 & L_7 & L_8 & L_9 \\
\hline
K_1 & K_2 & K_3 & K_4 & K_5 & K_6 & K_7 & K_8 & K_9 \\
\hline
l_1 & l_2 & l_3 & l_4 & l_5 & l_6 & l_7 & l_8
\end{array}
\]
Merging using a Good Sampler

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{\left|A\right|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

- Let \(J \), \(K \) and \(L \) be sorted sequences.
- Let \(L \) be a good sampler of both \(J \) and \(K \).
- Let \(L = (l_1, l_2, \cdots, l_s) \).
- Programm: \(\text{merge_with_help}(J, K, L) \)

 \begin{align*}
 \text{for all } i \text{ where } 1 \leq i \leq s \text{ do in parallel}\\
 \quad \text{Assign } J_i = \{x \in J \mid l_{i-1} < x \leq l_i\}.\\
 \quad \text{Assign } K_i = \{x \in K \mid l_{i-1} < x \leq l_i\}.\\
 \quad \text{Assign } \text{res}_i = \text{merge}(J_i, K_i).\\
 \end{align*}

 \text{return } (\text{res}_1, \text{res}_2, \cdots, \text{res}_s).

- Situation:

\[
\begin{array}{cccccccccc}
L_1 & L_2 & L_3 & L_4 & L_5 & L_6 & L_7 & L_8 & L_9 \\
\hline
l_1 & l_2 & l_3 & l_4 & l_5 & l_6 & l_7 & l_8 \\
K_1 & K_2 & K_3 & K_4 & K_5 & K_6 & K_7 & K_8 & K_9 \\
\end{array}
\]
Merging using a Good Sampler (Example)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A, B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A, B}(e) = \text{rng}(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>(\text{merge}(K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

rng(e, S) = |{x ∈ S | x < e}| and Rng_{A,B} : A → \mathbb{N}^{|A|} with Rng_{A,B}(e) = rng(e, B)

- $K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20)$
- $J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21)$
- $L = (5, 10, 12, 17)$

Then we have:

<table>
<thead>
<tr>
<th>i</th>
<th>K_i</th>
<th>J_i</th>
<th>merge(K_i, J_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Result: (1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)
Merging using a Good Sampler (Example)

\[
\text{rng}(e, S) = |\{ x \in S \mid x < e \}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B)
\]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>merge((K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>merge((K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } R_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } R_{A,B}(e) = \text{rng}(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)
- Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>(\text{merge}(K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

\[rng(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{\lvert A \rvert} \text{ with } Rng_{A,B}(e) = rng(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)
- Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>merge((K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td></td>
</tr>
</tbody>
</table>

- Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)
- Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>(\text{merge}(K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>(\emptyset)</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

- Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

\[\text{rng}(e, S) = |\{ x \in S \mid x < e \}| \text{ and } R_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } R_{A,B}(e) = \text{rng}(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)
- Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>(\text{merge}(K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>(\emptyset)</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

- Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging using a Good Sampler (Example)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } R_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } R_{A,B}(e) = \text{rng}(e, B) \]

- \(K = (1, 4, 6, 9, 11, 12, 13, 16, 19, 20) \)
- \(J = (2, 3, 7, 8, 10, 14, 15, 17, 18, 21) \)
- \(L = (5, 10, 12, 17) \)

Then we have:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(K_i)</th>
<th>(J_i)</th>
<th>(\text{merge}(K_i, J_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, 4)</td>
<td>(2, 3)</td>
<td>(1, 2, 3, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(6, 9)</td>
<td>(7, 8, 10)</td>
<td>(6, 7, 8, 9, 10)</td>
</tr>
<tr>
<td>3</td>
<td>(11, 12)</td>
<td>(\emptyset)</td>
<td>(11, 12)</td>
</tr>
<tr>
<td>4</td>
<td>(13, 16)</td>
<td>(14, 15, 17)</td>
<td>(13, 14, 15, 16, 17)</td>
</tr>
<tr>
<td>5</td>
<td>(19, 20)</td>
<td>(18, 21)</td>
<td>(18, 19, 20, 21)</td>
</tr>
</tbody>
</table>

Result: \((1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)\)
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(L \) is a good sampler for \(K \) and \(J \).

If \(Rng_{L,J}, Rng_{L,K}, Rng_{K,L} \) and \(Rng_{J,L} \) is known, then we have:

\[T_{\text{merge _ with _ help}(J,K,L)} = O(1) \text{ with } P_{\text{merge _ with _ help}(J,K,L)} = O(|J| + |K|). \]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \(Rng_{L,J} \) resp. \(Rng_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(Rng_{J,L} \) and \(Rng_{K,L} \) to know the area to write its output sequence.
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{ x \in S \mid x < e \}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:
If \(L \) is a good sampler for \(K \) and \(J \).
If \(Rng_{L,J}, Rng_{L,K}, Rng_{K,L} \) and \(Rng_{J,L} \) is known, then we have:
\[T_{\text{merge_with_help}(J,K,L)} = O(1) \text{ with } P_{\text{merge_with_help}(J,K,L)} = O(|J| + |K|). \]

Proof:
- The same way as in the merging introduced in the last chapter.
- Each processor uses \(Rng_{L,J} \) resp. \(Rng_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(Rng_{J,L} \) and \(Rng_{K,L} \) to know the area to write its output sequence.
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad Rng_{A,B} : A \mapsto \mathbb{N}^{\mid A\mid} \quad \text{with} \quad Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(L \) is a good sampler for \(K \) and \(J \).

If \(Rng_{L,J}, Rng_{L,K}, Rng_{K,L} \) and \(Rng_{J,L} \) is known, then we have:

\[T_{merge_with_help(J,K,L)} = O(1) \quad \text{with} \quad P_{merge_with_help(J,K,L)} = O(|J| + |K|). \]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \(Rng_{L,J} \) resp. \(Rng_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(Rng_{J,L} \) and \(Rng_{K,L} \) to know the area to write its output sequence.
Merging with good sampler (running time)

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } R_{A,B} : A \mapsto \mathbb{N}_{|A|} \text{ with } R_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(L \) is a good sampler for \(K \) and \(J \).
If \(R_{L,J}, R_{L,K}, R_{K,L} \) and \(R_{J,L} \) is known, then we have:

\[
T_{\text{merge with help}(J,K,L)} = O(1) \text{ with } P_{\text{merge with help}(J,K,L)} = O(|J| + |K|).
\]

Proof:

- The same way as in the merging introduced in the last chapter.
- Each processor uses \(R_{L,J} \) resp. \(R_{L,K} \) to know the area to read its input sequences.
- Each processor uses \(R_{J,L} \) and \(R_{K,L} \) to know the area to write its output sequence.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S | x < e\}| \text{ and } R_{A,B} : A \rightarrow \mathbb{N}^{|A|} \text{ with } R_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(X\) is a good sampler for \(X'\) and \(Y\) is a good sampler for \(Y'\), then \(\text{merge}(X, Y)\) is a good sampler for \(X'\) [resp. \(Y'\)].

Proof:

- Consider \(X\) as a good sampler for \(X'\).
- Any additional element make the good sampler just ‘better’.

Note:

\(\text{merge}(X, Y)\) is not necessary a sampler for \(\text{merge}(X', Y')\).

- \(X = (2, 7)\) and \(X' = (2, 5, 6, 7)\).
- \(Y = (1, 8)\) and \(Y' = (1, 3, 4, 8)\).
- \(\text{merge}(X, Y) = (1, 2, 7, 8)\) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8)\).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(X \) is a good sampler for \(X' \) and \(Y \) is a good sampler for \(Y' \), then \(\text{merge}(X, Y) \) is a good sampler for \(X' \) [resp. \(Y' \)].

Proof:

- Consider \(X \) as a good sampler for \(X' \).
- Any additional element make the good sampler just "better".

Note:

\(\text{merge}(X, Y) \) is not necessary a sampler for \(\text{merge}(X', Y') \).

- \(X = (2, 7) \) and \(X' = (2, 5, 6, 7) \).
- \(Y = (1, 8) \) and \(Y' = (1, 3, 4, 8) \).
- \(\text{merge}(X, Y) = (1, 2, 7, 8) \) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then $\text{merge}(X, Y)$ is a good sampler for X' [resp. Y'].

Proof:

- Consider X as a good sampler for X'.
- Any additional element makes the good sampler just "better".

Note:

merge(X, Y) is not necessary a sampler for merge(X', Y').

- $X = (2, 7)$ and $X' = (2, 5, 6, 7)$.
- $Y = (1, 8)$ and $Y' = (1, 3, 4, 8)$.
- merge(X, Y) = (1, 2, 7, 8) and merge(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[rng(e, S) = |\{ x \in S \mid x < e \}| \quad \text{and} \quad Rng_{A,B} : A \mapsto \mathbb{N}^{\lvert A \rvert} \quad \text{with} \quad Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(X \) is a good sampler for \(X' \) and \(Y \) is a good sampler for \(Y' \), then \(\text{merge}(X, Y) \) is a good sampler for \(X' \) [resp. \(Y' \)].

Proof:

- Consider \(X \) as a good sampler for \(X' \).
- Any additional element make the good sampler just "better".

Note:

\(\text{merge}(X, Y) \) is not necessary a sampler for \(\text{merge}(X', Y') \).

- \(X = (2, 7) \) and \(X' = (2, 5, 6, 7) \).
- \(Y = (1, 8) \) and \(Y' = (1, 3, 4, 8) \).
- \(\text{merge}(X, Y) = (1, 2, 7, 8) \) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } Rng_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(X \) is a good sampler for \(X' \) and \(Y \) is a good sampler for \(Y' \), then \(\text{merge}(X, Y) \) is a good sampler for \(X' \) [resp. \(Y' \)].

Proof:

- Consider \(X \) as a good sampler for \(X' \).
- Any additional element make the good sampler just “better”.

Note:

\(\text{merge}(X, Y) \) is not necessary a sampler for \(\text{merge}(X', Y') \).

- \(X = (2, 7) \) and \(X' = (2, 5, 6, 7) \).
- \(Y = (1, 8) \) and \(Y' = (1, 3, 4, 8) \).
- \(\text{merge}(X, Y) = (1, 2, 7, 8) \) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \quad \text{and} \quad \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \quad \text{with} \quad \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(X \) is a good sampler for \(X' \) and \(Y \) is a good sampler for \(Y' \), then \(\text{merge}(X, Y) \) is a good sampler for \(X' \) [resp. \(Y' \)].

Proof:

- Consider \(X \) as a good sampler for \(X' \).
- Any additional element make the good sampler just "better".

Note:

\(\text{merge}(X, Y) \) is not necessary a sampler for \(\text{merge}(X', Y') \).

- \(X = (2, 7) \) and \(X' = (2, 5, 6, 7) \).
- \(Y = (1, 8) \) and \(Y' = (1, 3, 4, 8) \).
- \(\text{merge}(X, Y) = (1, 2, 7, 8) \) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

\[\text{rng}(e, S) = |\{ x \in S \mid x < e \}| \quad \text{and} \quad Rng_{A,B} : A \mapsto \mathbb{N}^{\lvert A \rvert} \quad \text{with} \quad Rng_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

If \(X \) is a good sampler for \(X' \) and \(Y \) is a good sampler for \(Y' \), then \(\text{merge}(X, Y) \) is a good sampler for \(X' \) [resp. \(Y' \)].

Proof:

- Consider \(X \) as a good sampler for \(X' \).
- Any additional element make the good sampler just ‘‘better’’.

Note:

\(\text{merge}(X, Y) \) is not necessary a sampler for \(\text{merge}(X', Y') \).

- \(X = (2, 7) \) and \(X' = (2, 5, 6, 7) \).
- \(Y = (1, 8) \) and \(Y' = (1, 3, 4, 8) \).
- \(\text{merge}(X, Y) = (1, 2, 7, 8) \) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

Lemma:

If \(X \) is a good sampler for \(X' \) and \(Y \) is a good sampler for \(Y' \), then \(\text{merge}(X, Y) \) is a good sampler for \(X' \) [resp. \(Y' \)].

Proof:

- Consider \(X \) as a good sampler for \(X' \).
- Any additional element make the good sampler just “better”.

Note:

\(\text{merge}(X, Y) \) is not necessary a sampler for \(\text{merge}(X', Y') \).

- \(X = (2, 7) \) and \(X' = (2, 5, 6, 7) \).
- \(Y = (1, 8) \) and \(Y' = (1, 3, 4, 8) \).
- \(\text{merge}(X, Y) = (1, 2, 7, 8) \) and \(\text{merge}(X', Y') = (1, 2, 3, 4, 5, 6, 7, 8) \).
- There are 5 elements between 2 and 7.
Properties of Good Samplers

Lemma:
Let X be a good sampler for X' and let Y be a good sampler for Y'.
Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$.

Proof:
- W.l.o.g. contain X and Y elements $-\infty$ and $+\infty$.
- Let (e_1, e_2, \cdots, e_r) successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be
 $$x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad y = |Y \cap \{e_1, e_2, \cdots, e_r\}|.$$
Properties of Good Samplers

\[\text{rng}(e, S) = |\{ x \in S \mid x < e \}| \] and \[\text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \] with \[\text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

Let \(X \) be a good sampler for \(X' \) and let \(Y \) be a good sampler for \(Y' \). Then there are at most \(2 \cdot r + 2 \) elements of merge\((X', Y')\) between \(r \) successive elements of merge\((X, Y)\).

Proof:

- W.l.o.g. contain \(X \) and \(Y \) elements \(-\infty\) and \(+\infty\).
- Let \((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\).
- W.l.o.g. let \(e_1 \in X \).
- Consider now two cases: \(e_r \in X \) and \(e_r \in Y \).
- Let in the following be

\[x = |X \cap \{e_1, e_2, \cdots, e_r\}| \] and
\[y = |Y \cap \{e_1, e_2, \cdots, e_r\}|. \]
Properties of Good Samplers

Lemma:

Let X be a good sampler for X' and let Y be a good sampler for Y'.
Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$.

Proof:

- W.l.o.g. contain X and Y elements $-\infty$ and $+\infty$.
- Let (e_1, e_2, \cdots, e_r) successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be

\[
x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \\
y = |Y \cap \{e_1, e_2, \cdots, e_r\}|.
\]
Properties of Good Samplers

Lemma:
Let X be a good sampler for X' and let Y be a good sampler for Y'.
Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r
successive elements of $\text{merge}(X, Y)$.

Proof:
- W.l.o.g. contain X and Y elements $-\infty$ and $+\infty$.
- Let (e_1, e_2, \cdots, e_r) successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be
 \[x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad y = |Y \cap \{e_1, e_2, \cdots, e_r\}|. \]
Properties of Good Samplers

Let X be a good sampler for X' and let Y be a good sampler for Y'. Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$.

Proof:

- W.l.o.g. contain X and Y elements $-\infty$ and $+\infty$.
- Let (e_1, e_2, \cdots, e_r) successive elements of $\text{merge}(X, Y)$.
- W.l.o.g. let $e_1 \in X$.
- Consider now two cases: $e_r \in X$ and $e_r \in Y$.
- Let in the following be

\[
x = |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \quad y = |Y \cap \{e_1, e_2, \cdots, e_r\}|.
\]
Properties of Good Samplers

\[\text{rng}(e, S) = |\{x \in S \mid x < e\}| \text{ and } \text{Rng}_{A,B} : A \mapsto \mathbb{N}^{|A|} \text{ with } \text{Rng}_{A,B}(e) = \text{rng}(e, B) \]

Lemma:

Let \(X \) be a good sampler for \(X' \) and let \(Y \) be a good sampler for \(Y' \).
Then there are at most \(2 \cdot r + 2 \) elements of \(\text{merge}(X', Y') \) between \(r \) successive elements of \(\text{merge}(X, Y) \).

Proof:

1. W.l.o.g. contain \(X \) and \(Y \) elements \(-\infty \) and \(+\infty \).
2. Let \((e_1, e_2, \cdots, e_r)\) successive elements of \(\text{merge}(X, Y) \).
3. W.l.o.g. let \(e_1 \in X \).
4. Consider now two cases: \(e_r \in X \) and \(e_r \in Y \).
5. Let in the following be

\[
\begin{align*}
x &= |X \cap \{e_1, e_2, \cdots, e_r\}| \quad \text{and} \\
y &= |Y \cap \{e_1, e_2, \cdots, e_r\}|.
\end{align*}
\]
Properties of Good Samplers

\((e_1, e_2, \ldots, e_r)\) successive elements of \(\text{merge}(X, Y)\) and \(x = |X \cap \{e_1, e_2, \ldots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \ldots, e_r\}|\) are:

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of \(\text{merge}(X', Y')\) between \(r\) successive elements of \(\text{merge}(X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\).

If: \(e_r \in X\)

- **Between** \(e_1\) and \(e_r\) are at most \(2(x - 1) + 1\) elements of \(X'\).
- Between \(e_1\) and \(e_r\) are at most \(2(y + 1) + 1\) elements of \(Y'\), because they are between \(y + 2\) elements of \(Y\).
- Thus we get: \(2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2\).

Example \(x = 3\) and \(y = 2\):

\[e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X\]
Properties of Good Samplers

$$(e_1, e_2, \ldots, e_r)$$ successive elements of $\text{merge}(X, Y)$ and $x = |X \cap \{e_1, e_2, \ldots, e_r\}|$ and $y = |Y \cap \{e_1, e_2, \ldots, e_r\}|$

Lemma:

Let X be a good sampler for X' and let Y be a good sampler for Y'. Then there are at most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$.

Proof: W.l.o.g. let $e_1 \in X$.

If: $e_r \in X$

- Between e_1 and e_r are at most $2(x - 1) + 1$ elements of X'.
- Between e_1 and e_r are at most $2(y + 1) + 1$ elements of Y', because they are between $y + 2$ elements of Y.

Thus we get: $2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2$.

Example $x = 3$ and $y = 2$:

$$e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X$$
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\).

If: \(e_r \in X\)

- Between \(e_1\) and \(e_r\) are at most \(2(x - 1) + 1\) elements of \(X'\).
- Between \(e_1\) and \(e_r\) are at most \(2(y + 1) + 1\) elements of \(Y'\), because they are between \(y + 2\) elements of \(Y\).
- Thus we get: \(2(x - 1) + 1 + 2(y + 1) + 1 = 2 \cdot r + 2\).

Example \(x = 3\) and \(y = 2\):

\[a \in Y \quad e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X \quad b \in Y \]
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}| \) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}| \) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \cdots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \cdots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\[e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y\]
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.

The elements from \(X'\) between \((e_1, e_2, \cdots, e_r)\) are between \(x + 1\) elements from \(X\).

The elements from \(Y'\) between \((e_1, e_2, \cdots, e_r)\) are between \(y + 1\) elements from \(Y\).

Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\(e_0 \in Y\) \hspace{1cm} e_1 \in X \hspace{1cm} e_2 \in Y \hspace{1cm} e_3 \in X \hspace{1cm} e_4 \in Y\)
Properties of Good Samplers

\((e_1, e_2, \cdots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \cdots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \cdots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \cdots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \cdots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\[e_0 \in Y \quad e_1 \in X \quad e_2 \in Y \quad e_3 \in X \quad e_4 \in Y \quad e_5 \in X\]
Properties of Good Samplers

(e₁, e₂, · · · , eᵣ) successive elements of merge(X, Y) and x = |X ∩ {e₁, e₂, · · · , eᵣ}| and y = |Y ∩ {e₁, e₂, · · · , eᵣ}| and

Lemma:

Let X be a good sampler for X′ and let Y be a good sampler for Y′. Then there are at most 2 · r + 2 elements of merge(X′, Y′) between r successive elements of merge(X, Y).

Proof: W.l.o.g. let e₁ ∈ X. If: eᵣ ∈ Y

- Add e₀ ∈ Y with e₀ < e₁ to the good sampler.
- Add eᵣ₊₁ ∈ X with eᵣ < eᵣ₊₁ to the good sampler.
- The elements from X′ between (e₁, e₂, · · · , eᵣ) are between x + 1 elements from X.
- The elements from Y′ between (e₁, e₂, · · · , eᵣ) are between y + 1 elements from Y.
- Thus we get: 2x + 1 + 2y + 1 = 2r + 2.

Example x = 2 and y = 2:

e₀ ∈ Y e₁ ∈ X e₂ ∈ Y e₃ ∈ X e₄ ∈ Y e₅ ∈ X
Properties of Good Samplers

\((e_1, e_2, \ldots, e_r)\) successive elements of merge\((X, Y)\) and \(x = |X \cap \{e_1, e_2, \ldots, e_r\}|\) and \(y = |Y \cap \{e_1, e_2, \ldots, e_r\}|\) and

Lemma:

Let \(X\) be a good sampler for \(X'\) and let \(Y\) be a good sampler for \(Y'\). Then there are at most \(2 \cdot r + 2\) elements of merge\((X', Y')\) between \(r\) successive elements of merge\((X, Y)\).

Proof: W.l.o.g. let \(e_1 \in X\). If: \(e_r \in Y\)

- Add \(e_0 \in Y\) with \(e_0 < e_1\) to the good sampler.
- Add \(e_{r+1} \in X\) with \(e_r < e_{r+1}\) to the good sampler.
- The elements from \(X'\) between \((e_1, e_2, \ldots, e_r)\) are between \(x + 1\) elements from \(X\).
- The elements from \(Y'\) between \((e_1, e_2, \ldots, e_r)\) are between \(y + 1\) elements from \(Y\).
- Thus we get: \(2x + 1 + 2y + 1 = 2r + 2\).

Example \(x = 2\) and \(y = 2\):

\[
\begin{align*}
e_0 & \in Y \\
e_1 & \in X \\
e_2 & \in Y \\
e_3 & \in X \\
e_4 & \in Y \\
e_5 & \in X
\end{align*}
\]
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let $\text{reduce}(X)$ be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let $\text{reduce}(X)$ be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y',
then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let $\text{reduce}(X)$ be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let $\text{reduce}(X)$ be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let $\text{reduce}(X)$ be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Properties of good sampler

At most $2 \cdot r + 2$ elements of $\text{merge}(X', Y')$ between r successive elements of $\text{merge}(X, Y)$

Definition

Let $\text{reduce}(X)$ be the operation, which chooses from X every forth element.

Lemma:

If X is a good sampler for X' and Y is a good sampler for Y', then $\text{reduce}(\text{merge}(X, Y))$ is a good sampler for $\text{reduce}(\text{merge}(X', Y'))$.

Proof:

- Consider $k + 1$ successive elements $(e_1, e_2, \cdots, e_{k+1})$ of $\text{reduce}(\text{merge}(X, Y))$.
- At most $4k + 1$ elements of $\text{merge}(X, Y)$ are between $e_1, e_2, \cdots, e_{k+1}$ including e_1, e_{k+1}.
- At most $8k + 4$ elements of $\text{merge}(X', Y')$ are between these $4k + 1$ elements.
- At most $2k + 1$ elements of $\text{reduce}(\text{merge}(X', Y'))$ are between $(e_1, e_2, \cdots, e_{k+1})$.
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes v "cares" about as many elements as the number of leaves below v.
- A node v receives from its sons sequences of already sorted sequences.
- The "length" of the sequences doubles each time.
- Node v receives sequences X_1, X_2, \cdots, X_r and Y_1, Y_2, \cdots, Y_r.
- Node v sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node v updates an interior help-sequence val_v.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$.
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaf contain the elements to be sorted.
- Interior nodes \(v \) “cares” about as many elements as the number of leaves below \(v \). A node \(v \) receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node \(v \) receives sequences \(X_1, X_2, \cdots, X_r \) and \(Y_1, Y_2, \cdots, Y_r \).
- Node \(v \) sends to his father sequences \(Z_1, Z_2, \cdots, Z_r, Z_{r+1} \).
- Node \(v \) updates a interior help-sequence we \(\text{val}_{\tilde{v}} \).
- It holds: \(|X_1| = |Y_1| = |Z_1| = 1 \).
- It holds: \(|X_i| = 2 \cdot |X_{i-1}|, \quad |Y_i| = 2 \cdot |Y_{i-1}| \) and \(|Z_i| = 2 \cdot |Z_{i-1}| \).
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes v “cares” about as many elements as the number of leaves below v.
- A node v receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node v receives sequences X_1, X_2, \cdots, X_r and Y_1, Y_2, \cdots, Y_r.
- Node v sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node v updates a interior help-sequence value val_v.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$.

Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes \(v \) “cares” about as many elements as the number of leaves below \(v \).
- A node \(v \) receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node \(v \) receives sequences \(X_1, X_2, \ldots, X_r \) and \(Y_1, Y_2, \ldots, Y_r \).
- Node \(v \) sends to his father sequences \(Z_1, Z_2, \ldots, Z_r, Z_{r+1} \).
- Node \(v \) updates an interior help sequence \(\text{val}_v \).
- It holds: \(|X_1| = |Y_1| = |Z_1| = 1 \).
- It holds: \(|X_i| = 2 \cdot |X_{i-1}|, \ |Y_i| = 2 \cdot |Y_{i-1}| \) and \(|Z_i| = 2 \cdot |Z_{i-1}| \).
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes v “cares” about as many elements as the number of leaves below v.
- A node v receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node v receives sequences X_1, X_2, \cdots, X_r and Y_1, Y_2, \cdots, Y_r.
- Node v sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node v updates an interior help-sequence val_v.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$.
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes v “cares” about as many elements as the number of leaves below v.
- A node v receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node v receives sequences X_1, X_2, \cdots, X_r and Y_1, Y_2, \cdots, Y_r.
- Node v sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node v updates an interior help-sequence val_v.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$.
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes \(v \) “cares” about as many elements as the number of leaves below \(v \).
- A node \(v \) receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node \(v \) receives sequences \(X_1, X_2, \ldots, X_r \) and \(Y_1, Y_2, \ldots, Y_r \).
- Node \(v \) sends to his father sequences \(Z_1, Z_2, \ldots, Z_r, Z_{r+1} \).
- Node \(v \) updates a interior help-sequence value \(\text{val}_v \).
- It holds: \(|X_1| = |Y_1| = |Z_1| = 1 \).
- It holds: \(|X_i| = 2 \cdot |X_{i-1}|, \quad |Y_i| = 2 \cdot |Y_{i-1}| \) and \(|Z_i| = 2 \cdot |Z_{i-1}| \).
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes \(v \) “cares” about as many elements as the number of leaves below \(v \).
- A node \(v \) receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node \(v \) receives sequences \(X_1, X_2, \cdots, X_r \) and \(Y_1, Y_2, \cdots, Y_r \).
- Node \(v \) sends to his father sequences \(Z_1, Z_2, \cdots, Z_r, Z_{r+1} \).
- Node \(v \) updates an interior help-sequence \(\text{val}_v \).
- It holds: \(|X_1| = |Y_1| = |Z_1| = 1 \).
- It holds: \(|X_i| = 2 \cdot |X_{i-1}|, |Y_i| = 2 \cdot |Y_{i-1}| \) and \(|Z_i| = 2 \cdot |Z_{i-1}| \).
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes v "cares" about as many elements as the number of leaves below v.
- A node v receives from its sons sequences of already sorted sequences.
- The "length" of the sequences doubles each time.
- Node v receives sequences X_1, X_2, \cdots, X_r and Y_1, Y_2, \cdots, Y_r.
- Node v sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node v updates a interior help-sequence val_v.

It holds: $|X_1| = |Y_1| = |Z_1| = 1$.

It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$.
Overview to the Algorithm of Cole

- We start with an explanation using a complete binary tree.
- The leaves contain the elements to be sorted.
- Interior nodes v “cares” about as many elements as the number of leaves below v.
- A node v receives from its sons sequences of already sorted sequences.
- The “length” of the sequences doubles each time.
- Node v receives sequences X_1, X_2, \cdots, X_r and Y_1, Y_2, \cdots, Y_r.
- Node v sends to his father sequences $Z_1, Z_2, \cdots, Z_r, Z_{r+1}$.
- Node v updates a interior help-sequence val_v.
- It holds: $|X_1| = |Y_1| = |Z_1| = 1$.
- It holds: $|X_i| = 2 \cdot |X_{i-1}|$, $|Y_i| = 2 \cdot |Y_{i-1}|$ and $|Z_i| = 2 \cdot |Z_{i-1}|$.

One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: reduce(val_v) till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node \(v \)

- Receives from its sons the two sequences \(X \) and \(Y \).
- Computes: \(val_v = \text{merge_with_help}(X, Y, val_v) \).
- Sends to its father: \(\text{reduce}(val_v) \) till \(v \) has sorted all received sequences.
- Sends to its father each second element from \(val_v \), if \(v \) is done with sorting.
- Sends to its father \(val_v \), if \(v \) finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>(val_v)</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node ν

- Receives from its sons the two sequences X and Y.
- Computes: \(val_ν = \text{merge_with_help}(X, Y, val_ν) \).
- Sends to its father: \(\text{reduce}(val_ν) \) till ν has sorted all received sequences.
- Sends to its father each second element from \(val_ν \), if ν is done with sorting.
- Sends to its father \(val_ν \), if ν finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>(val_ν)</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node \(v \)

- Receives from its sons the two sequences \(X \) and \(Y \).
- Computes: \(val_v = \text{merge_with_help}(X, Y, val_v) \).
- Sends to its father: \(\text{reduce}(val_v) \) till \(v \) has sorted all received sequences.
- Sends to its father each second element from \(val_v \), if \(v \) is done with sorting.
- Sends to its father \(val_v \), if \(v \) finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>(val_v)</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge}_\text{with}_\text{help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge	extunderscore with	extunderscore help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.

Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
One basic Operation of an interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Example:

<table>
<thead>
<tr>
<th>Step</th>
<th>Left</th>
<th>Right</th>
<th>val_v</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>7,8</td>
<td>\emptyset</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>5,8</td>
<td>3,5,7,8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>4,8</td>
</tr>
<tr>
<td>4</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>5</td>
<td>1,3,4,7</td>
<td>2,5,6,8</td>
<td>1,2,3,4,5,6,7,8</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
</tbody>
</table>
Basic operation of a interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Thus we get the following pattern:

 $X_1 \quad X_2 \quad X_3 \quad X_4 \quad \cdots \quad X_r$
 $Z_1 \quad Z_2 \quad \cdots \quad Z_r \quad Z_{r+1} \quad Z_{r+2}$

- If a node x is finished after t steps, then will the father of x be finished after $t + 3$ steps.
- Thus we get a running time of $3\log n$.
Basic operation of a interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = merge_with_help(X, Y, val_v)$.
- Sends to its father: reduce(val_v) till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Thus we get the following pattern:

\[
X_1 \quad X_2 \quad X_3 \quad X_4 \quad \cdots \quad X_r \\
Z_1 \quad Z_2 \quad \cdots \quad Z_r \quad Z_{r+1} \quad Z_{r+2}
\]

- If a node x is finished after t steps, then will the father of x be finished after $t + 3$ steps.
- Thus we get a running time of $3 \log n$.
Basic operation of a interior Node v

- Receives from its sons the two sequences X and Y.
- Computes: $val_v = \text{merge_with_help}(X, Y, val_v)$.
- Sends to its father: $\text{reduce}(val_v)$ till v has sorted all received sequences.
- Sends to its father each second element from val_v, if v is done with sorting.
- Sends to its father val_v, if v finishes sorting two steps before.
- Thus we get the following pattern:
 \[
 X_1 \ X_2 \ X_3 \ X_4 \ \cdots \ X_r \\
 Z_1 \ Z_2 \ \cdots \ Z_r \ Z_{r+1} \ Z_{r+2}
 \]
- If a node x is finished after t steps, then will the father of x be finished after $t + 3$ steps.
- Thus we get a running time of $3 \log n$.
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1$.
Invariant

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1$.
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1$.
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1.$
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1.$
Invariant:

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1.$
Invariant

- Each X_i is a good sampler of X_{i+1}.
- Each Y_i is a good sampler of Y_{i+1}.
- Each Z_i is a good sampler of Z_{i+1}.
- Each X_i is half as big as X_{i+1}.
- Each Y_i is half as big as Y_{i+1}.
- Each Z_i is half as big as Z_{i+1}.
- $|X_1| = |Y_1| = |Z_1| = 1$.
Situation

- Running time is $O(\log n)$.
- The inner nodes v need $|val_v|$ many processors.
- We still have to proof that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- Important: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Situation

- Running time is $O(\log n)$.
- The inner nodes v need $|val_v|$ many processors.
- We still have to proof that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- Important: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Running time is $O(\log n)$.

The inner nodes v need $|val_v|$ many processors.

We still have to prove that the number of processors is in $O(n)$.

PRAM Model has to be verified.

Important: The computation of the values $Rng_{X,Y}$ has to be shown.

These values will be in the following also transmitted and updated.
Running time is $O(\log n)$.

The inner nodes ν need $|val_\nu|$ many processors.

We still have to proof that the number of processors is in $O(n)$.

PRAM Model has to be verified.

Important: The computation of the values $Rng_{X,Y}$ has to be shown.

These values will be in the following also transmitted and updated.
Situation

- Running time is $O(\log n)$.
- The inner nodes v need $|val_v|$ many processors.
- We still have to proof that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- **Important:** The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Situation

- Running time is $O(\log n)$.
- The inner nodes v need $|val_v|$ many processors.
- We still have to prove that the number of processors is in $O(n)$.
- PRAM Model has to be verified.
- Important: The computation of the values $Rng_{X,Y}$ has to be shown.
- These values will be in the following also transmitted and updated.
Computing the Ranks

- In each step will compute: $\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i))$.
- Using the Lemma from above we have: $\text{merge}(X_i, Y_i)$ is a good sampler of X_{i+1} and Y_{i+1}.
- Let $L = \text{merge}(X_i, Y_i)$, $J = X_{i+1}$ and $K = Y_{i+1}$.
- We have to compute: $Rng_{L,J}$, $Rng_{L,K}$, $Rng_{J,L}$ and $Rng_{K,L}$.

Invariant:

- Let S_1, S_2, \cdots, S_p be a sequence of sequences at node v.
- Then node c also knows: Rng_{S_{i+1}, S_i} for $1 \leq i < p$.
- Furthermore for each sequence S is known: $Rng_{S,S}$.
Computing the Ranks

- In each step will compute: merge_with_help(X_{i+1}, Y_{i+1}, merge(X_i, Y_i)).
- Using the Lemma from above we have: merge(X_i, Y_i) is a good sampler of X_{i+1} and Y_{i+1}.
- Let L = merge(X_i, Y_i), J = X_{i+1} and K = Y_{i+1}.
- We have to compute: Rng_{L,J}, Rng_{L,K}, Rng_{J,L} and Rng_{K,L}.

Invariant:

- Let S_1, S_2, \ldots, S_p be a sequence of sequences at node v.
- Then node c also knows: Rng_{S_{i+1}, S_i} for 1 \leq i < p.
- Furthermore for each sequence S is known: Rng_{S,S}.
Computing the Ranks

- In each step will compute: $\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i))$.
- Using the Lemma from above we have: $\text{merge}(X_i, Y_i)$ is a good sampler of X_{i+1} and Y_{i+1}.
- Let $L = \text{merge}(X_i, Y_i)$, $J = X_{i+1}$ and $K = Y_{i+1}$.
- We have to compute: $\text{Rng}_{L,J}$, $\text{Rng}_{L,K}$, $\text{Rng}_{J,L}$ and $\text{Rng}_{K,L}$.

Invariant:

- Let S_1, S_2, \cdots, S_p be a sequence of sequences at node v.
- Then node c also knows: $\text{Rng}_{S_{i+1}, S_i}$ for $1 \leq i < p$.
- Furthermore for each sequence S is known: $\text{Rng}_{S,S}$.
Computing the Ranks

- In each step will compute: $\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i))$.
- Using the Lemma from above we have: $\text{merge}(X_i, Y_i)$ is a good sampler of X_{i+1} and Y_{i+1}.
- Let $L = \text{merge}(X_i, Y_i)$, $J = X_{i+1}$ and $K = Y_{i+1}$.
- We have to compute: $\text{Rng}_{L,J}$, $\text{Rng}_{L,K}$, $\text{Rng}_{J,L}$ and $\text{Rng}_{K,L}$.

Invariant:

- Let S_1, S_2, \ldots, S_p be a sequence of sequences at node v.
- Then node c also knows: $\text{Rng}_{S_{i+1}, S_i}$ for $1 \leq i < p$.
- Furthermore for each sequence S is known: $\text{Rng}_{S,S}$.
Computing the Ranks

- In each step will compute: $\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i))$.
- Using the Lemma from above we have: $\text{merge}(X_i, Y_i)$ is a good sampler of X_{i+1} and Y_{i+1}.
- Let $L = \text{merge}(X_i, Y_i)$, $J = X_{i+1}$ and $K = Y_{i+1}$.
- We have to compute: $\text{Rng}_{L,J}$, $\text{Rng}_{L,K}$, $\text{Rng}_{J,L}$ and $\text{Rng}_{K,L}$.

Invariant:

- Let S_1, S_2, \ldots, S_p be a sequence of sequences at node v.
- Then node c also knows: $\text{Rng}_{S_{i+1}, S_i}$ for $1 \leq i < p$.
- Furthermore for each sequence S is known: $\text{Rng}_{S, S}$.
Computing the Ranks

- In each step will compute: `merge_with_help(X_{i+1}, Y_{i+1}, merge(X_i, Y_i))`.
- Using the Lemma from above we have: `merge(X_i, Y_i)` is a good sampler of `X_{i+1}` and `Y_{i+1}`.
- Let `L = merge(X_i, Y_i)`, `J = X_{i+1}` and `K = Y_{i+1}`.
- We have to compute: `Rng_L, J`, `Rng_L, K`, `Rng_J, L` and `Rng_K, L`.

Invariant:
- Let `S_1, S_2, \ldots, S_p` be a sequence of sequences at node `v`.
- Then node `c` also knows: `Rng_{S_{i+1}, S_i}` for `1 \leq i < p`.
- Furthermore for each sequence `S` is known: `Rng_{S, S}`.
Computing the Ranks

- In each step will compute: \(\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)) \).
- Using the Lemma from above we have: \(\text{merge}(X_i, Y_i) \) is a good sampler of \(X_{i+1} \) and \(Y_{i+1} \).
- Let \(L = \text{merge}(X_i, Y_i) \), \(J = X_{i+1} \) and \(K = Y_{i+1} \).
- We have to compute: \(\text{Rng}_{L,J} \), \(\text{Rng}_{L,K} \), \(\text{Rng}_{J,L} \) and \(\text{Rng}_{K,L} \).

Invariant:

- Let \(S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \(v \).
- Then node \(c \) also knows: \(\text{Rng}_{s_i+1,s_i} \) for \(1 \leq i < p \).
- Furthermore for each sequence \(S \) is known: \(\text{Rng}_{S,S} \).
Computing the Ranks

- In each step will compute: \(\text{merge_with_help}(X_{i+1}, Y_{i+1}, \text{merge}(X_i, Y_i)) \).
- Using the Lemma from above we have: \(\text{merge}(X_i, Y_i) \) is a good sampler of \(X_{i+1} \) and \(Y_{i+1} \).
- Let \(L = \text{merge}(X_i, Y_i) \), \(J = X_{i+1} \) and \(K = Y_{i+1} \).
- We have to compute: \(\text{Rng}_{L,J}, \text{Rng}_{L,K}, \text{Rng}_{J,L} \) and \(\text{Rng}_{K,L} \).

Invariant:

- Let \(S_1, S_2, \ldots, S_p \) be a sequence of sequences at node \(v \).
- Then node \(c \) also knows: \(\text{Rng}_{S_{i+1}, S_i} \) for \(1 \leq i < p \).
- Furthermore for each sequence \(S \) is known: \(\text{Rng}_{S,S} \).
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \cdots, b_k)$ be a sorted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using k processors.

Proof:
- Program: $\text{rng1}(a,S)$
 for all P_i where $1 \leq i \leq k$ do in parallel
 if $b_i < a \leq b_{i+1}$ then return i

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \ldots, b_k)$ be a sorted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using k processors.

Proof:

- Program: $rng1(a,S)$
 - for all P_i where $1 \leq i \leq k$ do in parallel
 - if $b_i < a \leq b_{i+1}$ then return i

 .

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \cdots, b_k)$ be a sorted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using k processors.

Proof:
- Programm: $\text{rng1}(a, S)$
 for all P_i where $1 \leq i \leq k$ do in parallel
 if $b_i < a \leq b_{i+1}$ then return i

- Note, the program has no write-conflicts.
- Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \cdots, b_k)$ be a sortierted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using k processors.

Proof:

- **Programm:** rng1(a,S)
 for all P_i where $1 \leq i \leq k$ do in parallel
 - if $b_i < a \leq b_{i+1}$ then return i

- **Note,** the program has no write-conflicts.

- **Note,** it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let $S = (b_1, b_2, \ldots, b_k)$ be a sorted sequence, then we may compute the rank of $a \in S$ in time $O(1)$ using k processors.

Proof:
- **Programm:** rng1(a, S)
 - for all P_i where $1 \leq i \leq k$ do in parallel
 - if $b_i < a \leq b_{i+1}$ then return i

Note, the program has no write-conflicts.

Note, it could be changed, to avoid read-conflicts.
Computing the Ranks

Lemma:
Let \(S_1, S_2, S \) be two sorted sequences with \(S = \text{merge}(S_1, S_2) \) and \(S_1 \cap S_2 = \emptyset \). Then we may compute \(\text{Rnk}_{S_1,S_2} \) and \(\text{Rnk}_{S_2,S_1} \) in time \(O(1) \) using \(O(|S|) \) processors.

Proof:

- We do know \(\text{Rnk}_{S,S} \), \(\text{Rnk}_{S_1,S_1} \) and \(\text{Rnk}_{S_2,S_2} \).
- Furthermore we have: \(\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1) \).
- The claim follows directly.
Computing the Ranks

Lemma:

Let S_1, S_2, S be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute Rnk_{S_1, S_2} and Rnk_{S_2, S_1} in time $O(1)$ using $O(|S|)$ processors.

Proof:

- We do know $\text{Rnk}_S, \text{Rnk}_{S_1, S_1}$ and Rnk_{S_2, S_2}.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

Lemma:

Let S_1, S_2, S be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute Rnk_{S_1, S_2} and Rnk_{S_2, S_1} in time $O(1)$ using $O(|S|)$ processors.

Proof:

- We do know $\text{Rnk}_{S, S}$, Rnk_{S_1, S_1} and Rnk_{S_2, S_2}.

- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.

- The claim follows directly.
Computing the Ranks

Lemma:

Let S_1, S_2, S be two sorted sequences with $S = \text{merge}(S_1, S_2)$ and $S_1 \cap S_2 = \emptyset$. Then we may compute Rnk_{S_1, S_2} and Rnk_{S_2, S_1} in time $O(1)$ using $O(|S|)$ processors.

Proof:

- We do know $\text{Rnk}_{S, S}$, Rnk_{S_1, S_1} and Rnk_{S_2, S_2}.
- Furthermore we have: $\text{rnk}(a, S_2) = \text{rnk}(a, \text{merge}(S_1, S_2)) - \text{rnk}(a, S_1)$.
- The claim follows directly.
Computing the Ranks

Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X', X}$ and $\text{Rnk}_{Y', Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X', U}$, $\text{Rnk}_{Y', U}$, $\text{Rnk}_{U, X'}$ and $\text{Rnk}_{U, Y'}$.

Proof:

- First we compute $\text{Rnk}_{X', U}$ and $\text{Rnk}_{Y', U}$.
- Then we compute $\text{Rnk}_{X, X'}$ and $\text{Rnk}_{Y, Y'}$.
- Finally we compute $\text{Rnk}_{U, X'}$ and $\text{Rnk}_{U, Y'}$.
Computing the Ranks

Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

we have $\text{rnk}(a, S)$ and Rnk_{S_1,S_2} and Rnk_{S_2,S_1}.
Computing the Ranks

Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

we have $\text{rnk}(a, S)$ and Rnk_{S_1,S_2} and Rnk_{S_2,S_1}
Computing the Ranks

Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

We have $\text{rnk}(a, S)$ and Rnk_{S_1,S_2} and Rnk_{S_2,S_1}.
Computing the Ranks

Lemma:

- Let \(X \) be a good sampler of \(X' \).
- Let \(Y \) be a good sampler of \(Y' \).
- Let \(U = \text{merge}(X, Y) \).
- Assume \(\text{Rnk}_{X',X} \) and \(\text{Rnk}_{Y',Y} \) are known.

Then we may compute in time \(O(1) \) using \(O(|X| + |Y|) \) processors \(\text{Rnk}_{X',U} \), \(\text{Rnk}_{Y',U} \), \(\text{Rnk}_{U,X'} \) and \(\text{Rnk}_{U,Y'} \).

Proof:

- First we compute \(\text{Rnk}_{X',U} \) and \(\text{Rnk}_{Y',U} \).
- Then we compute \(\text{Rnk}_{X,X'} \) and \(\text{Rnk}_{Y,Y'} \).
- Finally we compute \(\text{Rnk}_{U,X'} \) and \(\text{Rnk}_{U,Y'} \).
Computing the Ranks

Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Computing the Ranks

Lemma:

- Let \(X \) be a good sampler of \(X' \).
- Let \(Y \) be a good sampler of \(Y' \).
- Let \(U = \text{merge}(X, Y) \).
- Assume \(\text{Rnk}_{X',X} \) and \(\text{Rnk}_{Y',Y} \) are known.

Then we may compute in time \(O(1) \) using \(O(|X| + |Y|) \) processors \(\text{Rnk}_{X',U} \), \(\text{Rnk}_{Y',U} \), \(\text{Rnk}_{U,X'} \) and \(\text{Rnk}_{U,Y'} \).

Proof:

- First we compute \(\text{Rnk}_{X',U} \) and \(\text{Rnk}_{Y',U} \).
- Then we compute \(\text{Rnk}_{X,X'} \) and \(\text{Rnk}_{Y,Y'} \).
- Finally we compute \(\text{Rnk}_{U,X'} \) and \(\text{Rnk}_{U,Y'} \).
Computing the Ranks

Lemma:

- Let X be a good sampler of X'.
- Let Y be a good sampler of Y'.
- Let $U = \text{merge}(X, Y)$.
- Assume $\text{Rnk}_{X',X}$ and $\text{Rnk}_{Y',Y}$ are known.

Then we may compute in time $O(1)$ using $O(|X| + |Y|)$ processors $\text{Rnk}_{X',U}$, $\text{Rnk}_{Y',U}$, $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.

Proof:

- First we compute $\text{Rnk}_{X',U}$ and $\text{Rnk}_{Y',U}$.
- Then we compute $\text{Rnk}_{X,X'}$ and $\text{Rnk}_{Y,Y'}$.
- Finally we compute $\text{Rnk}_{U,X'}$ and $\text{Rnk}_{U,Y'}$.
Computing the Ranks

Lemma:

- Let \(X \) be a good sampler of \(X' \).
- Let \(Y \) be a good sampler of \(Y' \).
- Let \(U = \text{merge}(X, Y) \).
- Assume \(\text{Rnk}_{X',X} \) and \(\text{Rnk}_{Y',Y} \) are known.

Then we may compute in time \(O(1) \) using \(O(|X| + |Y|) \) processors \(\text{Rnk}_{X',U}, \text{Rnk}_{Y',U}, \text{Rnk}_{U,X'}, \text{Rnk}_{U,Y'} \).

Proof:

- First we compute \(\text{Rnk}_{X',U} \) and \(\text{Rnk}_{Y',U} \).
- Then we compute \(\text{Rnk}_{X,X'}, \text{Rnk}_{Y,Y'} \).
- Finally we compute \(\text{Rnk}_{U,X'}, \text{Rnk}_{U,Y'} \).
Computing the Ranks (Rnk\(_{X',U}\))

- Let \(X = (a_1, a_2, \ldots, a_k) \).
- Let w.l.o.g. \(a_0 = -\infty \) and \(a_{k+1} = +\infty \).
- Using a good sampler \(X \) we split \(X' \) into \(X'_1, X'_2, \ldots, X'_k, X'_{k+1} \).
- Note: Rnk\(_{X',X}\) is known.
- Splitting may be done in time \(O(1) \) using \(O(|X|) \) processors.
- Let \(U_i \) be the sequence of elements of \(Y \) which are between \(a_{i-1} \) and \(a_i \).
- Thus we get:

Programm: Rnk\(_{X',U}\)
for all \(i \) where \(1 \leq i \leq k + 1 \) do in parallel
for all \(x \in X'_i \) do
\[
\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)
\]

- Running time \(O(1) \) using \(\sum_{i=1}^{k+1} |U_i| \) processors.
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \ldots, a_k)\).
- Let \(\text{w.l.o.g. } a_0 = -\infty \text{ and } a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \ldots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 \[
 \text{Programm: } \text{Rnk}_{X', U} \\
 \text{for all } i \text{ where } 1 \leq i \leq k + 1 \text{ do in parallel} \\
 \text{for all } x \in X'_i \text{ do} \\
 \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)
 \]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \ldots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \ldots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 Programm: \(\text{Rnk}_{X', U}\)
 for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel
 for all \(x \in X'_i\) do
 \(\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)\)

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X'},U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X',X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 Programm: \(\text{Rnk}_{X',U}\)
 for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel
 for all \(x \in X'_i\) do
 \(\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)\)

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((Rnk_{X'}, U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(Rnk_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 Programm: \(Rnk_{X', U}\)

 for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel

 for all \(x \in X'_i\) do

 \[rnk(x, U) = rnk(a_{i-1}, U) + rnk(x, U_i)\]

 Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \ldots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \ldots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 \[
 \text{Programm: } \text{Rnk}_{X', U} \\
 \text{for all } i \text{ where } 1 \leq i \leq k + 1 \text{ do in parallel} \\
 \quad \text{for all } x \in X'_i \text{ do} \\
 \quad \quad \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)
 \]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X'},U)\)

- Let \(X = (a_1, a_2, \ldots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \ldots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X',X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

Programm: \(\text{Rnk}_{X',U}\)

for all \(i\) where \(1 \leq i \leq k + 1\) do in parallel

for all \(x \in X'_i\) do

\[\text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)\]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X'}, U)\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let w.l.o.g. \(a_0 = -\infty\) and \(a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X', X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

\[
\text{Programm: Rnk}_{X', U} \\
\text{for all } i \text{ where } 1 \leq i \leq k + 1 \text{ do in parallel} \\
\quad \text{for all } x \in X'_i \text{ do} \\
\quad \quad \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)
\]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X',U})\)

- Let \(X = (a_1, a_2, \cdots, a_k)\).
- Let \(\text{w.l.o.g. } a_0 = -\infty \text{ and } a_{k+1} = +\infty\).
- Using a good sampler \(X\) we split \(X'\) into \(X'_1, X'_2, \cdots, X'_k, X'_{k+1}\).
- Note: \(\text{Rnk}_{X',X}\) is known.
- Splitting may be done in time \(O(1)\) using \(O(|X|)\) processors.
- Let \(U_i\) be the sequence of elements of \(Y\) which are between \(a_{i-1}\) and \(a_i\).
- Thus we get:

 \[
 \text{Programm: } \text{Rnk}_{X',U} \\
 \text{for all } i \text{ where } 1 \leq i \leq k + 1 \text{ do in parallel} \\\n \quad \text{for all } x \in X'_i \text{ do} \\\n \qquad \text{rnk}(x, U) = \text{rnk}(a_{i-1}, U) + \text{rnk}(x, U_i)
 \]

- Running time \(O(1)\) using \(\sum_{i=1}^{k+1} |U_i|\) processors.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.

\[\text{we have } \text{rnk}(a, S) \text{ and } \text{Rnk}_{S_1,S_2} \text{ and } \text{Rnk}_{S_2,S_1} \]
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.
Computing the Ranks ($\text{Rnk}_{X',X}$)

- Let $a_i \in X$.
- Let a' minimal element in X'_{i+1}.
- The rank of a_i in X' is the same as the rank of a' in X'.
- This rank is already known.
- This may be computed in time $O(1)$ using one processor.
Computing the Ranks \((\text{Rnk}_{X,X'})\)

- Let \(a_i \in X\).
- Let \(a'\) minimal element in \(X'_{i+1}\).
- The rank of \(a_i\) in \(X'\) is the same as the rank of \(a'\) in \(X'\).
- This rank is already known.
- This may be computed in time \(O(1)\) using one processor.
Computing the Ranks ($\text{Rnk}_{U,X'}$)

- **Note:** $\text{Rnk}_{U,X'}$ consists of $\text{Rnk} X, X'$ and $\text{Rnk} Y, X'$.
- $\text{Rnk} X, X'$ is already known.
- Still to compute: $\text{Rnk} Y, X'$.
- $\text{Rnk} Y, X$ may be computed using the previous lemma.
- We compute $\text{rk}(a, X')$ using $\text{rk}(a, X)$ and $\text{Rnk}_{X,X'}$.
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$.
Computing the Ranks \((\text{Rnk}_{U,X'})\)

- **Note:** \(\text{Rnk}_{U,X'}\) consists of \(\text{Rnk } X, X'\) and \(\text{Rnk } Y, X'\).
- \(\text{Rnk } X, X'\) is already known.
- Still to compute: \(\text{Rnk } Y, X'\).
- \(\text{Rnk } Y, X\) may be computed using the previous lemma.
- We compute \(\text{rnk}(a, X')\) using \(\text{rnk}(a, X)\) and \(\text{Rnk}_{X,X'}\).
- Thus we compute \(\text{Rnk}_{U,X'}\) with \(O(|U|)\) processors and time \(O(1)\).
Computing the Ranks \((\text{Rnk}_{U,X'})\)

- **Note**: \(\text{Rnk}_{U,X'}\) consists of \(\text{Rnk} \ X, X'\) and \(\text{Rnk} \ Y, X'\).
- \(\text{Rnk} \ X, X'\) is already known.
- **Still to compute**: \(\text{Rnk} \ Y, X'\).
- \(\text{Rnk} \ Y, X\) may be computed using the previous lemma.
- We compute \(\text{rnk}(a, X')\) using \(\text{rnk}(a, X)\) and \(\text{Rnk}_{X,X'}\).
- Thus we compute \(\text{Rnk}_{U,X'}\) with \(O(|U|)\) processors and time \(O(1)\).
Computing the Ranks \((\text{Rnk}_{U,X'})\)

- **Note:** \(\text{Rnk}_{U,X'}\) consists of \(\text{Rnk} X, X'\) and \(\text{Rnk} Y, X'\).
- \(\text{Rnk} X, X'\) is already known.
- Still to compute: \(\text{Rnk} Y, X'\).
- \(\text{Rnk} Y, X\) may be computed using the previous lemma.
- We compute \(\text{rnk}(a, X')\) using \(\text{rnk}(a, X)\) and \(\text{Rnk}_{X,X'}\).
- Thus we compute \(\text{Rnk}_{U,X'}\) with \(O(|U|)\) processors and time \(O(1)\).

We have \(\text{rnk}(a, S)\) and \(\text{Rnk}_{S_1,S_2}\) and \(\text{Rnk}_{S_2,S_1}\)
Computing the Ranks ($\text{Rnk}_{U,X'}$)

- Note: $\text{Rnk}_{U,X'}$ consists of $\text{Rnk} X, X'$ and $\text{Rnk} Y, X'$.
- $\text{Rnk} X, X'$ is already known.
- Still to compute: $\text{Rnk} Y, X'$.
- $\text{Rnk} Y, X$ may be computed using the previous lemma.
- We compute $\text{rnk}(a, X')$ using $\text{rnk}(a, X)$ and $\text{Rnk}_{X,X'}$.
- Thus we compute $\text{Rnk}_{U,X'}$ with $O(|U|)$ processors and time $O(1)$.
Computing the Ranks ($Rnk_{U,X'}$)

- Note: $Rnk_{U,X'}$ consists of Rnk_X, X' and Rnk_Y, X'.
- Rnk_X, X' is already known.
- Still to compute: Rnk_Y, X'.
- Rnk_Y, X may be computed using the previous lemma.
- We compute $rnk(a, X')$ using $rnk(a, X)$ and Rnk_X, X'.
- Thus we compute $Rnk_{U,X'}$ with $O(|U|)$ processors and time $O(1)$.

we have $rnk(a, S)$ and Rnk_{S_1, S_2} and Rnk_{S_2, S_1}
Computing the Ranks

Consider the step
\[\text{merge with help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \]

Using the invariant we know: Rnk_{J,X_i} and Rnk_{K,Y_i}.

Using the above considerations we may compute: Rnk_{L,J}, Rnk_{L,K}, Rnk_{J,L} and Rnk_{K,L}.

Still to be computed: Rnk_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))}

Known: Rnk_{X_{i+1}, \text{merge}(X_i, Y_i)} and Rnk_{Y_{i+1}, \text{merge}(X_i, Y_i)}.

It is now easy to compute: Rnk_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} and Rnk_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))}.

Also easy to compute: Rnk_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))}.
Computing the Ranks

- Consider the step
 \(\text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \):

- Using the invariant we know: \(\text{Rnk}_{J,X_i} \) and \(\text{Rnk}_{K,Y_i} \).

- Using the above considerations we may compute: \(\text{Rnk}_{L,J} \), \(\text{Rnk}_{L,K} \), \(\text{Rnk}_{J,L} \) and \(\text{Rnk}_{K,L} \).

- Still to be computed: \(\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Known: \(\text{Rnk}_{X_{i+1},\text{merge}(X_i, Y_i)} \) and \(\text{Rnk}_{Y_{i+1},\text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \(\text{Rnk}_{X_{i+1},\text{reduce}(\text{merge}(X_i, Y_i))} \) and \(\text{Rnk}_{Y_{i+1},\text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \(\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Computing the Ranks

we have \(\text{rnk}(a, S) \) and \(\text{Rnk}_{S_1, S_2} \) and \(\text{Rnk}_{S_2, S_1} \)

- Consider the step
 \[
 \text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i))
 \]

- Using the invariant we know: \(\text{Rnk}_{J, X_i} \) and \(\text{Rnk}_{K, Y_i} \).

- Using the above considerations we may compute: \(\text{Rnk}_{L, J} \), \(\text{Rnk}_{L, K} \), \(\text{Rnk}_{J, L} \) and \(\text{Rnk}_{K, L} \).

- Still to be computed: \(\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

- Known: \(\text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \(\text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \(\text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \(\text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \(\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Computing the Ranks

we have \(\text{rnk}(a, S) \) and \(\text{Rnk}_{S_1, S_2} \) and \(\text{Rnk}_{S_2, S_1} \)

Consider the step

\[
\text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i))
\]

Using the invariant we know: \(\text{Rnk}_{J, X_i} \) and \(\text{Rnk}_{K, Y_i} \).

Using the above considerations we may compute: \(\text{Rnk}_{L, J} \), \(\text{Rnk}_{L, K} \), \(\text{Rnk}_{J, L} \) and \(\text{Rnk}_{K, L} \).

Still to be computed: \(\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

Known: \(\text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \(\text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

It is now easy to compute: \(\text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \(\text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

Also easy to compute: \(\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Computing the Ranks

Consider the step
\[merge_{\text{with help}}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)):\]

- Using the invariant we know: \(\text{Rnk}_{J, X_i}\) and \(\text{Rnk}_{K, Y_i}\).
- Using the above considerations we may compute: \(\text{Rnk}_{L, J}\), \(\text{Rnk}_{L, K}\), \(\text{Rnk}_{J, L}\) and \(\text{Rnk}_{K, L}\).

Still to be computed: \(\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))}\)

Known: \(\text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)}\) and \(\text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)}\).

It is now easy to compute: \(\text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))}\) and \(\text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))}\).

Also easy to compute: \(\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))}\).
Computing the Ranks

we have \(\text{rnk}(a, S) \) and \(\text{Rnk}_{S_1, S_2} \) and \(\text{Rnk}_{S_2, S_1} \)

- Consider the step
 \(\text{merge_with_help}(J = X_{i+1}, K = Y_{i+1}, L = \text{merge}(X_i, Y_i)) \):

- Using the invariant we know: \(\text{Rnk}_{J, X_i} \) and \(\text{Rnk}_{K, Y_i} \).

- Using the above considerations we may compute: \(\text{Rnk}_{L, J} \), \(\text{Rnk}_{L, K} \), \(\text{Rnk}_{J, L} \) and \(\text{Rnk}_{K, L} \).

- Still to be computed: \(\text{Rnk}_{\text{reduce}(\text{merge}(X_{i+1}, Y_{i+1})), \text{reduce}(\text{merge}(X_i, Y_i))} \)

- Known: \(\text{Rnk}_{X_{i+1}, \text{merge}(X_i, Y_i)} \) and \(\text{Rnk}_{Y_{i+1}, \text{merge}(X_i, Y_i)} \).

- It is now easy to compute: \(\text{Rnk}_{X_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \) and \(\text{Rnk}_{Y_{i+1}, \text{reduce}(\text{merge}(X_i, Y_i))} \).

- Also easy to compute: \(\text{Rnk}_{\text{merge}(X_{i+1}, Y_{i+1}), \text{reduce}(\text{merge}(X_i, Y_i))} \).
Computing the Ranks

we have \(rnk(a, S) \) and \(Rnk_{S_1, S_2} \) and \(Rnk_{S_2, S_1} \)

- Consider the step
 \[merge_with_help(J = X_{i+1}, K = Y_{i+1}, L = merge(X_i, Y_i)) \]
- Using the invariant we know: \(Rnk_{J,X_i} \) and \(Rnk_{K,Y_i} \).
- Using the above considerations we may compute: \(Rnk_{L,J} \), \(Rnk_{L,K} \), \(Rnk_{J,L} \)
 and \(Rnk_{K,L} \).
- Still to be computed: \(Rnk_{reduce(merge(X_{i+1}, Y_{i+1})), reduce(merge(X_i, Y_i))} \)
- Known: \(Rnk_{X_{i+1}, merge(X_i, Y_i)} \) and \(Rnk_{Y_{i+1}, merge(X_i, Y_i)} \).
- It is now easy to compute: \(Rnk_{X_{i+1}, reduce(merge(X_i, Y_i))} \) and \(Rnk_{Y_{i+1}, reduce(merge(X_i, Y_i))} \).
- Also easy to compute: \(Rnk_{merge(X_{i+1}, Y_{i+1}), reduce(merge(X_i, Y_i))} \).
Algorithm of Cole

Theorem:
We may sort n values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:
We may sort n values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
Algorithm of Cole

Theorem:
We may sort \(n \) values on a CREW PRAM using \(O(n) \) processors in time \(O(\log n) \).

Proof: discussed before.

Theorem:
We may sort \(n \) values on a EREW PRAM using \(O(n) \) processors in time \(O(\log n) \).

Proof: see literature.

Theorem:
There exists a sorting network with \(O(n) \) processors and depth \(O(\log n) \).

Proof: see literature.
Theorem:
We may sort n values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:
We may sort n values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
Algorithm of Cole

Theorem:

We may sort n values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:

We may sort n values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:

There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
we have $\text{rnk}(a, S)$ and Rnk_{S_1, S_2} and Rnk_{S_2, S_1}

Theorem:
We may sort n values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:
We may sort n values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
Algorithm of Cole

Theorem:
We may sort n values on a CREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: discussed before.

Theorem:
We may sort n values on a EREW PRAM using $O(n)$ processors in time $O(\log n)$.

Proof: see literature.

Theorem:
There exists a sorting network with $O(n)$ processors and depth $O(\log n)$.

Proof: see literature.
we have \(\text{rnk}(a, S) \) and \(\text{rnk}_{S_1, S_2} \) and \(\text{rnk}_{S_2, S_1} \)

Literatur:

A. Gibbons, W. Rytter:
Chapter 5.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Questions

- Explain the motivation behind parallel systems.
- Explain the ideas of the different sorting algorithms.
- Explain the different running times of these sorting algorithms.
- Explain the different efficiency of these sorting algorithms.
- Explain the idea of the algorithm of Cole.
- Explain the running time of the algorithm of Cole.
- Explain the number of processors used in the algorithm of Cole.
Legend

■ : Not of relevance
■ : implicitly used basics
■ : idea of proof or algorithm
■ : structure of proof or algorithm
■ : Full knowledge