Theory of Parallel and Distributed Systems (WS2016/17)
Chapter 3
More Algorithms

Walter Unger

Lehrstuhl für Informatik 1

13:28, November 22, 2016
Contents I

1. Colourings I
 - Cycle
 - Trees

2. Eulerian cycle
 - Introduction

3. Matchings
 - Introduction
 - Algorithm
 - Running times
Colouring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
Colourings

Colouring Problem

• Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
• Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:

Colouring number (chromatic index) of G:

$$\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \quad \forall \{a, b\} \in E : c(a) \neq c(b)\}.$$
Colourings

Colouring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:
- $\forall\{a, b\} \in E : c(a) \neq c(b)$.
Colouring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute \exists Function $c : V \mapsto \{1, \ldots, k\}$ with:
 \[\forall \{a, b\} \in E : c(a) \neq c(b). \]
- Colouring number (chromatic index) of G:
 \[\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \ldots, k\} \mid \forall \{a, b\} \in E : c(a) \neq c(b)\}. \]
Colourings

Colouring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute \exists Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall \{a, b\} \in E : c(a) \neq c(b)$.
- Colouring number (chromatic index) of G:
 $\chi(G) := \min \{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall \{a, b\} \in E : c(a) \neq c(b)\}$.
Colourings

Colouring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall\{a, b\} \in E : c(a) \neq c(b)$.
- Colouring number (chromatic index) of G:
 - $\chi(G) := \min\{k | \exists c : V \mapsto \{1, \cdots, k\} | \forall\{a, b\} \in E : c(a) \neq c(b)\}$.

- Colouring problem is NP-complete.
Colourings

Colouring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall\{a, b\} \in E : c(a) \neq c(b)$.
- Colouring number (chromatic index) of G:
 $\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall\{a, b\} \in E : c(a) \neq c(b)\}$.

- Colouring problem is NP-complete.
- Let $G = C_n$, i.e. $G = (\{v_0, \cdots, v_{n-1}\}, \{v_i, v_{(i+1) \mod n}\} \mid 0 \leq i < n)$.

Colourings

Colouring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute $[\exists\exists?]$ Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall\{a, b\} \in E : c(a) \neq c(b)$.
- Colouring number (chromatic index) of G:
 $\chi(G) := \min\{\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall\{a, b\} \in E : c(a) \neq c(b)\}\}$.

- Colouring problem is NP-complete.
- Let $G = C_n$, i.e. $G = (\{v_0, \cdots, v_{n-1}\}, \{v_i, v_{(i+1) \pmod n}\} \mid 0 \leq i < n)$.
- Then we have $\chi(C_n) \leq 3$ and $\chi(C_{2n}) \leq 2$ ($\chi(C_{2n+1}) = 3$).
Colourings

Colouring Problem

- Given undirected graph \(G = (V, E) \) and \(k \in \mathbb{N} \).
- Compute \([\text{exists?}]\) Function \(c : V \mapsto \{1, \cdots, k\} \) with:
 - \(\forall \{a, b\} \in E : c(a) \neq c(b) \).
- Colouring number (chromatic index) of \(G \):
 \(\chi(G) := \min\{ k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall \{a, b\} \in E : c(a) \neq c(b) \} \).

- Colouring problem is NP-complete.
- Let \(G = C_n \), i.e. \(G = (\{v_0, \cdots, v_{n-1}\}, \{v_i, v_{(i+1) \mod n}\} \mid 0 \leq i < n) \).
- Then we have \(\chi(C_n) \leq 3 \) and \(\chi(C_{2n}) \leq 2 \) (\(\chi(C_{2n+1}) = 3 \)).
- We do not have a nice order on the nodes:
Colourings

Colouring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \ldots, k\}$ with:
 - $\forall \{a, b\} \in E : c(a) \neq c(b)$.
- Colouring number (chromatic index) of G:
 $\chi(G) := \min \{\{k | \exists c : V \mapsto \{1, \ldots, k\} | \forall \{a, b\} \in E : c(a) \neq c(b)\}\}.$

- Colouring problem is NP-complete.
- Let $G = C_n$, i.e. $G = (\{v_0, \ldots, v_{n-1}\}, \{v_i, v_{(i+1) \mod n}\} | 0 \leq i < n\}$.
- Then we have $\chi(C_n) \leq 3$ and $\chi(C_{2\cdot n}) \leq 2$ ($\chi(C_{2\cdot n+1}) = 3$).
- We do not have a nice order on the nodes:
 - let $\pi(i)$ be a permutation
Colourings

Colouring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall \{a, b\} \in E : c(a) \neq c(b)$.
- Colouring number (chromatic index) of G:
 $$\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall \{a, b\} \in E : c(a) \neq c(b)\}.$$

- Colouring problem is NP-complete.
- Let $G = C_n$, i.e. $G = (\{v_0, \cdots, v_{n-1}\}, \{\{v_i, v_{(i+1) \mod n}\} \mid 0 \leq i < n\})$.
- Then we have $\chi(C_n) \leq 3$ and $\chi(C_{2\cdot n}) \leq 2 \ (\chi(C_{2\cdot n+1}) = 3)$.
- We do not have a nice order on the nodes:
 - let $\pi(i)$ be a permutation
- Let $G = C_n$, i.e.
 $$G = (\{v_0, \cdots, v_{n-1}\}, \{\{v_{\pi(i)}, v_{\pi((i+1) \mod n)}\} \mid 0 \leq i < n\}).$$
Parallel Colouring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i-1)$.
- Register N_i holds $\pi(i)$.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(i)$.
- In register C_i will be the colour of v_{R_i}.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(i)$.
- In register C_i will be the colour of v_{R_i}.
- Initialize C_i with i.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(i)$.
- In register C_i will be the colour of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colours.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i-1)$.
- Register N_i holds $\pi(i)$.
- In register C_i will be the colour of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colours.
- We will use the colours $\{0, 1, \cdots, n\}$.
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle
for all \(P_{i+1} \) where \(0 \leq i < n \) do in parallel
\[\pi(i - 1) \rightarrow R_i \]
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

def for all P_{i+1} where $0 \leq i < n$ do in parallel
 $\pi(i - 1) \rightarrow R_i$
 $\pi(i) \rightarrow N_i$
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$

$c = i$

$c \rightarrow C_i$
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$

$c = i$

$c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.

$c = 2 \cdot k + ((c \gg k) \% 2)$.

$c \rightarrow C_i$
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle
for all P_{i+1} where $0 \leq i < n$ do in parallel
 $\pi(i - 1) \rightarrow R_i$
 $\pi(i) \rightarrow N_i$
 $c = i$
 $c \rightarrow C_i$
repeat $\lceil \log^*(n) \rceil + 2$ times
 $C_{N_i} \rightarrow c'$
 minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.
 $c = 2 \cdot k + ((c \gg k) \% 2)$.
 $c \rightarrow C_i$
Parallel Colouring Algorithm of (on) a cycle (Idea)

- At the start we are using n colours.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- At the start we are using n colours.
- Within each colour-reduction will the colouring stay correct.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- At the start we are using n colours.
- Within each colour-reduction will the colouring stay correct.
- Within each colour reduction will the colouring number be reduced from x to $\log(x) + O(1)$.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- At the start we are using n colours.
- Within each colour-reduction will the colouring stay correct.
- Within each colour reduction will the colouring number be reduced from x to $\log(x) + O(1)$.
- After $\lceil \log^*(n) \rceil$ reductions steps will be the colouring numbers ≤ 5.
Parallel Colouring Algorithm of (on) a cycle (Idea)

- At the start we are using n colours.
- Within each colour-reduction will the colouring stay correct.
- Within each colour reduction will the colouring number be reduced from x to $\log(x) + O(1)$.
- After $\lceil \log^*(n) \rceil$ reductions steps will be the colouring numbers ≤ 5.
- A second reduction of colours will follow now:
Last Steps

- The rows hold c and the columns hold c'.
- The entries in the table hold the new c.

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Last Steps

- The rows hold c and the columns hold c'.
- The entries in the table hold the new c.

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td></td>
<td>010</td>
<td></td>
<td>100</td>
<td></td>
<td>010</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>001</td>
<td></td>
<td>010</td>
<td>001</td>
<td>100</td>
<td></td>
<td>010</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td></td>
<td>011</td>
<td>000</td>
<td></td>
<td>011</td>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td></td>
<td></td>
<td>001</td>
<td>001</td>
<td></td>
<td>011</td>
<td>001</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td></td>
<td>101</td>
<td>000</td>
<td></td>
<td></td>
<td>010</td>
<td>000</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td></td>
<td></td>
<td>101</td>
<td>001</td>
<td>010</td>
<td></td>
<td>010</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td></td>
<td>011</td>
<td>000</td>
<td>101</td>
<td></td>
<td></td>
<td>000</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td></td>
<td>011</td>
<td>001</td>
<td>101</td>
<td>001</td>
<td>011</td>
<td>001</td>
</tr>
</tbody>
</table>
Last Steps

- The rows hold \(c \) and the columns hold \(c' \).
- The entries in the table hold the new \(c \).

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Last Steps

- The rows hold c and the columns hold c'.
- The entries in the table hold the new c.

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- We only have the colours 000, 001, 010, 011, 100, 101 (≤ 5).
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$

$c = i$

$c \rightarrow C_i$
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all \(P_{i+1} \) where \(0 \leq i < n \) do in parallel

\[\pi(i - 1) \rightarrow R_i \]
\[\pi(i) \rightarrow N_i \]
\[c = i \]
\[c \rightarrow C_i \]

repeat \(\lceil \log^*(n) \rceil + 2 \) times

\[C_{N_i} \rightarrow c' \]

minimal \(k \) with: \(((c \gg k) \% 2) \neq ((c' \gg k) \% 2) \).
\[c = 2 \cdot k + ((c \gg k) \% 2) \]
\[c \rightarrow C_i \]
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

\[
\pi(i - 1) \rightarrow R_i \\
\pi(i) \rightarrow N_i \\
c = i \\
c \rightarrow C_i
\]

repeat $\lceil \log^*(n) \rceil + 2$ times

\[
C_{N_i} \rightarrow c' \\
\text{minimal } k \text{ with: } ((c \gg k) \mod 2) \neq ((c' \gg k) \mod 2). \\
c = 2 \cdot k + ((c \gg k) \mod 2). \\
c \rightarrow C_i
\]

for $r := 5$ downto 3 do:
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$
$\pi(i) \rightarrow N_i$
$c = i$
$c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$
$c = 2 \cdot k + ((c \gg k) \% 2)$
$c \rightarrow C_i$

for $r := 5$ downto 3 do:

if $c = r$ then
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all \(P_{i+1} \) where \(0 \leq i < n \) do in parallel

\[
\begin{align*}
\pi(i - 1) &\rightarrow R_i \\
\pi(i) &\rightarrow N_i \\
c &\equiv i \\
c &\rightarrow C_i
\end{align*}
\]

repeat \(\lceil \log^*(n) \rceil + 2 \) times

\[
\begin{align*}
C_{N_i} &\rightarrow c' \\
\text{minimal } k \text{ with: } ((c \gg k) \% 2) \neq ((c' \gg k) \% 2). \\
c &\equiv 2 \cdot k + ((c \gg k) \% 2). \\
c &\rightarrow C_i
\end{align*}
\]

for \(r := 5 \) downto 3 do:

if \(c = r \) then

\[
\begin{align*}
C_{N_i} &\rightarrow c' \\
c' &\rightarrow C_i \\
C_{N_i} &\rightarrow c''
\end{align*}
\]
Parallel Colouring Algorithm of (on) a cycle (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

\[\pi(i - 1) \rightarrow R_i \]
\[\pi(i) \rightarrow N_i \]
\[c = i \]
\[c \rightarrow C_i \]

repeat $\lceil \log^*(n) \rceil + 2$ times

\[C_{N_i} \rightarrow c' \]

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.
\[c = 2 \cdot k + ((c \gg k) \% 2). \]
\[c \rightarrow C_i \]

for $r := 5$ downto 3 do:

if $c = r$ then

\[C_{N_i} \rightarrow c' \]
\[c' \rightarrow C_i \]
\[C_{N_i} \rightarrow c'' \]
\[c := \min(\{0, 1, 2\} \setminus \{c', c''\}) \]
\[c \rightarrow C_i \]
Theorem:

A cycle with n nodes could be coloured with n processors in time $O(\log^* n)$ with at most 3 colours.

Proof: see above.
Colouring a Cycle

Theorem:
A cycle with \(n \) nodes could be coloured with \(n \) processors in time \(O(\log^* n) \) with at most 3 colours.

Proof: see above.

Theorem:
A cycle of \(n \) processors may colour itself in time \(O(\log^* n) \) with at most 3 colours.

Proof: see above.
Colourings I

Eulerian cycle

Matchings

3:7 Cycle 3/4

Colouring a Cycle

Theorem:

A cycle with \(n \) nodes could be coloured with \(n \) processors in time \(O(\log^* n) \) with at most 3 colours.

Proof: see above.

Theorem:

A cycle of \(n \) processors may colour itself in time \(O(\log^* n) \) with at most 3 colours.

Proof: see above.

Theorem:

A cycle of \(n \) processors needs at least \((\log^* n) \) time to colour itself with at most 3 colours.

Proof: see V4.
Colouring a Cycle

Theorem:
A cycle with \(n \) nodes could be coloured with \(n \) processors in time \(O(\log^* n) \) with at most 3 colours.

Proof: see above.

Theorem:
A cycle of \(n \) processors may colour itself in time \(O(\log^* n) \) with at most 3 colours.

Proof: see above.

Theorem:
A cycle of \(n \) processors needs at least \((\log^* n) \) time to colour itself with at most 3 colours.

Proof: see V4.
Colouring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
Colouring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.

A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.

Register R_i holds $\pi(i - 1)$.

Register N_i holds $\pi(j - 1)$ where j is the father of i.
Colouring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(j - 1)$ where j is the father of i.
- The father of the root r is r.
A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.

Register R_i holds $\pi(i - 1)$.

Register N_i holds $\pi(j - 1)$ where j is the father of i.

The father of the root r is r.

In register C_i will be the colour of v_{R_i}.
Colouring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(j - 1)$ where j is the father of i.
- The father of the root r is r.
- In register C_i will be the colour of v_{R_i}.
- Initialize C_i with i.
A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.

- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(j - 1)$ where j is the father of i.
- The father of the root r is r.
- In register C_i will be the colour of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colours.
Colouring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i-1)$.
- Register N_i holds $\pi(j-1)$ where j is the father of i.
- The father of the root r is r.
- In register C_i will be the colour of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colours.
- We will use the colours $\{0, 1, \cdots, n\}$.
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-cycle

\begin{verbatim}
for all P_{i+1} where $0 \leq i < n$ do in parallel
\[\pi(i - 1) \rightarrow R_i\]
\[\pi(i) \rightarrow N_i\]
\[c = i\]
\[c \rightarrow C_i\]
\end{verbatim}
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-cycle
\begin{verbatim}
for all P_{i+1} where $0 \leq i < n$ do in parallel
 $\pi(i - 1) \rightarrow R_i$
 $\pi(i) \rightarrow N_i$
 $c = i$
 $c \rightarrow C_i$
repeat $\lceil \log^*(n) \rceil + 2$ times
 $C_{N_i} \rightarrow c'$
 minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$.
 $c = 2 \cdot k + ((c \gg k)\%2)$.
 $c \rightarrow C_i$
\end{verbatim}
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-cycle
for all P_{i+1} where $0 \leq i < n$ do in parallel
\[\pi(i - 1) \rightarrow R_i \]
\[\pi(i) \rightarrow N_i \]
\[c = i \]
\[c \rightarrow C_i \]
repeat \[\lceil \log^*(n) \rceil + 2 \] times
\[C_{N_i} \rightarrow c' \]
minimal k with: \((c \gg k) \% 2 \neq (c' \gg k) \% 2)\).
\[c = 2 \cdot k + ((c \gg k) \% 2) \]
\[c \rightarrow C_i \]
Parallel Colouring Algorithm of (on) a tree (Idea)

- At the start we are using \(n \) colours.
Parallel Colouring Algorithm of (on) a tree (Idea)

- At the start we are using n colours.
- Within each colour-reduction will the colouring stay correct.
Parallel Colouring Algorithm of (on) a tree (Idea)

- At the start we are using n colours.
- Within each colour-reduction will the colouring stay correct.
- Within each colour reduction will the colouring number be reduced from x to $\log(x) + O(1)$.
Parallel Colouring Algorithm of (on) a tree (Idea)

- At the start we are using \(n \) colours.
- Within each colour-reduction will the colouring stay correct.
- Within each colour reduction will the colouring number be reduced from \(x \) to \(\log(x) + O(1) \).
- After \(\lceil \log^*(n) \rceil \) reductions steps will be the colouring numbers \(\leq 5 \).
Parallel Colouring Algorithm of (on) a tree (Idea)

- At the start we are using n colours.
- Within each colour-reduction will the colouring stay correct.
- Within each colour reduction will the colouring number be reduced from x to $\log(x) + O(1)$.
- After $\lceil \log^*(n) \rceil$ reductions steps will be the colouring numbers ≤ 5.
- A second reduction of colours will follow now:
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-tree

for all \(P_{i+1} \) where \(0 \leq i < n \) do in parallel

\(\pi(i - 1) \rightarrow R_i \)
\(\pi(i) \rightarrow N_i \)
\(c = i \) and \(c \rightarrow C_i \)

repeat \(\lceil \log^*(n) \rceil + 2 \) times

\(C_{N_i} \rightarrow c' \)

minimal \(k \) with: \(((c \gg k) \% 2) \neq ((c' \gg k) \% 2) \).
\(c = 2 \cdot k + ((c \gg k) \% 2) \).
\(c \rightarrow C_i \)

for \(r := 5 \) downto 3 do:

if \(c = r \) then

\(C_{N_i} \rightarrow c' \)
\(c' \rightarrow C_i \)
\(C_{N_i} \rightarrow c'' \)
\(c := \min(\{0, 1, 2\} \setminus \{c', c''\}) \)
\(c \rightarrow C_i \)
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-tree

for all P_{i+1} where $0 \leq i < n$ do in parallel

\[\pi(i - 1) \rightarrow R_i \]
\[\pi(i) \rightarrow N_i \]
\[c = i \text{ and } c \rightarrow C_i \]

repeat $\lceil \log^*(n) \rceil + 2$ times, if $R_i \neq N_i$

\[C_{N_i} \rightarrow c' \]

minimal k with: \((c \gg k) \% 2 \neq ((c' \gg k) \% 2).

\[c = 2 \cdot k + ((c \gg k) \% 2). \]
\[c \rightarrow C_i \]

for $r := 5$ downto 3 do:

if $c = r$ then

\[C_{N_i} \rightarrow c' \]
\[c' \rightarrow C_i \]
\[C_{N_i} \rightarrow c'' \]
\[c := \min(\{0, 1, 2\} \setminus \{c', c''\}) \]
\[c \rightarrow C_i \]
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

- $\pi(i - 1) \rightarrow R_i$
- $\pi(j - 1) \rightarrow N_i$ with j is father of i
- $c = i$ and $c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

- $C_{N_i} \rightarrow c'$
- minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.
- $c = 2 \cdot k + ((c \gg k) \% 2)$.
- $c \rightarrow C_i$
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(j - 1) \rightarrow N_i$ with j is father of i

$c = i$ and $c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.

$c = 2 \cdot k + ((c \gg k) \% 2)$.

$c \rightarrow C_i$

if $R_i = N_i$ then $c = \min(\{0, 1\} \setminus R_i$ else $c = C_{N_i}$
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-cycle
for all P_{i+1} where $0 \leq i < n$ do in parallel
\(\pi(i - 1) \rightarrow R_i\)
\(\pi(j - 1) \rightarrow N_i\) with j is father of i
$c = i$ and $c \rightarrow C_i$
repeat $\lceil \log^*(n) \rceil + 2$ times
$C_{N_i} \rightarrow c'$
minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.
$c = 2 \cdot k + ((c \gg k) \% 2)$.
$c \rightarrow C_i$
if $R_i = N_i$ then $c = \min(\{0, 1\} \setminus R_i)$ else $c = C_{N_i}$
c $\rightarrow C_i$
Parallel Colouring Algorithm of (on) a tree (Idea)

Programm: colour-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(j - 1) \rightarrow N_i$ with j is father of i

$c = i$ and $c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$

minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$.

$c = 2 \cdot k + ((c \gg k)\%2)$.

$c \rightarrow C_i$

if $R_i = N_i$ then $c = \min(\{0, 1\} \setminus R_i)$ else $c = C_{N_i}$

$c \rightarrow C_i$

for $r := 5$ downto 3 do:

if $c = r$ then

$C_{N_i} \rightarrow c'$

$c' \rightarrow C_i$

$C_{N_i} \rightarrow c''$

$c := \min(\{0, 1, 2\} \setminus \{c', c''\})$

$c \rightarrow C_i$
Colouring a Tree

Theorem:

A tree with \(n \) nodes could be coloured with \(n \) processors in time \(O(\log^* n) \) with at most 3 colours.

Proof: see above.
Colouring a Tree

Theorem:
A tree with n nodes could be coloured with n processors in time $O(\log^* n)$ with at most 3 colours.

Proof: see above.

Theorem:
A tree of n processors may colour itself in time $O(\log^* n)$ with at most 3 colours.

Proof: see above.
Eulerian cycle

Definition:
A graph $G = (V, E)$ is called Eulerian, iff there exists a cycle which visits each edge precisely once.
Eulerian cycle

Definition:
A graph \(G = (V, E) \) is called Eulerian, iff there exists a cycle which visits each edge precisely once.

Theorem
A non-directed graph \(G = (V, E) \) is Eulerian
- \(G \) is connected and
- each node of \(G \) has even degree.
Eulerian cycle

Definition:
A graph $G = (V, E)$ is called Eulerian, iff there exists a cycle which visits each edge precisely once.

Theorem
A non-directed graph $G = (V, E)$ is Eulerian
- G is connected and
- each node of G has even degree.

Theorem
A directed graph $G = (V, E)$ is Eulerian
- G is strong connected and
- each node as as many incoming edges as outgoing ones.
Definition:
A graph $G = (V, E)$ is called Eulerian, iff there exists a cycle which visits each edge precisely once.

Theorem
A non-directed graph $G = (V, E)$ is Eulerian
- G is connected and
- each node of G has even degree.

Theorem
A directed graph $G = (V, E)$ is Eulerian
- G is strongly connected and
- each node as as many incoming edges as outgoing ones.

Problem: Compute Eulerian cycle on Eulerian graphs.
Idea

- Non Parallel:

Start with a free edge and follow free/unused edges till a cycle is closed.

Repeat till all edges are in some cycle.

Join pairs of cycles into a single one.

Repeat till just one cycle remains.

If \(G \) is non-directed, then make a directed version of \(G \).

Compute a cover of cycles.

Compute an additional cycle which meets each cycle precisely once.

Uses these to compute a cycle for \(G \).

Delete some edges to get a Eulerian cycle for \(G \).
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
Idea

- **Non Parallel:**
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
Idea

- **Non Parallel:**
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are is some cycle.
 - Join pairs of cycles into a single one.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.

- If G is non-directed, then make a directed version of G.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.

- If G is non-directed, then make a directed version of G.

- Compute a cover of cycles.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.

- If G is non-directed, then make a directed version of G.
- Compute a cover of cycles.
- Compute an additional cycle which meets each cycle precisely once.
Idea

- **Non Parallel:**
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.
- If G is non-directed, then make a directed version of G.
- Compute a cover of cycles.
- Compute an additional cycle which meets each cycle precisely once.
- **Uses these to compute a cycle for G**
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.

- If G is non-directed, then make a directed version of G.
- Compute a cover of cycles.
- Compute an additional cycle which meets each cycle precisely once.
- Uses these to compute a cycle for G
- Delete some edges to get a Eulerian cycle for G.
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
- Substitute each non-directed edge with two directed ones: \{i, j\} becomes (i, j) and (j, i).
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
- Substitute each non-directed edge with two directed ones:
 $\{i, j\}$ becomes (i, j) and (j, i).
- Define a successor for each edge:
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
- Substitute each non-directed edge with two directed ones:
 \(\{i, j\} \) becomes \((i, j)\) and \((j, i)\).
- Define a successor for each edge:
 - The neighbors of v are: $v_0, v_1, \cdots, v_{d-1}$.
Change a non-directed Graph into a directed one

- \(G \) contains \(m \) non-directed edges.
- Substitute each non-directed edge with two directed ones: \(\{i, j\} \) becomes \((i, j)\) and \((j, i)\).
- Define a successor for each edge:
 - The neighbors of \(v \) are: \(v_0, v_1, \ldots, v_d - 1 \).
 - Then define for all \(i \):
 \[
 \text{Succ}((v_i, v)) := (v, v_{(i+1) \mod d}) \quad \text{and} \quad \text{Succ}((v_{(i+1) \mod d}, v)) := (v, v_i).
 \]
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
- Substitute each non-directed edge with two directed ones: \{\(i, j\)\} becomes (\(i, j\)) and (\(j, i\)).
- Define a successor for each edge:
 - The neighbors of v are: $v_0, v_1, \cdots, v_{d-1}$.
 - Then define for all i:
 \[
 Succ((v_i, v)) := (v, v_{(i+1) \mod d}) \text{ und } Succ((v_{(i+1) \mod d}, v)) := (v, v_i).
 \]
- Each directed edge is in precisely one cycle (defined by $Succ$).
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
- Substitute each non-directed edge with two directed ones: \(\{i, j\} \) becomes \((i, j)\) and \((j, i)\).
- Define a successor for each edge:
 - The neighbors of v are: \(v_0, v_1, \ldots, v_{d-1}\).
 - Then define for all i:
 \[
 \text{Succ}((v_i, v)) := (v, v_{(i+1) \mod d}) \quad \text{and} \\
 \text{Succ}((v_{(i+1) \mod d}, v)) := (v, v_i).
 \]
- Each directed edge is in precisely one cycle (defined by Succ).
- For each cycle C exists one cycle C', which consists the reverse edges.
Change a non-directed Graph into a directed one

- **G** contain *m* non-directed edges.
- Substitute each non-directed edge with two directed ones: \{i, j\} becomes (i, j) and (j, i).
- Define a successor for each edge:
 - The neighbors of *v* are: *v*₀, *v*₁, · · · , *v*_{*d*−1}.
 - Then define for all *i*:
 \[
 \text{Succ}((v_{i}, v)) := (v, v_{(i+1) \mod d}) \quad \text{und} \\
 \text{Succ}((v_{(i+1) \mod d}, v)) := (v, v_{i}).
 \]
- Each directed edge is in precisely one cycle (defined by Succ).
- For each cycle *C* exists one cycle *C*', which consists the reverse edges.
- We will now delete one of the two cycles *C* or *C*'.

3:16 Introduction 8/8

Generating a directed Graph

- Identify the generated cycles:
Identify the generated cycles:

Let \(\min((i, j), (k, l)) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases} \).
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min(((i,j),(k,l))) := \begin{cases} (i,j) & \text{if } i \leq k \lor i = k \land j < l \\ (k,l) & \text{otherwise} \end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
Generating a directed Graph

- Identify the generated cycles:
 - Let $\text{min}((i,j),(k,l)) := \begin{cases} (i,j) & \text{if } i \leq k \lor i = k \land j < l \\ (k,l) & \text{otherwise} \end{cases}$.
 - For each edge e define $\text{Edge}'(e) = e$;
 - For all edges e repeat $\log m$ times:
Generating a directed Graph

Identify the generated cycles:

- Let \(\min(((i, j), (k, l))) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases} \).
- For each edge \(e \) define \(\text{Edge}'(e) = e \);
- For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min(((i, j), (k, l)) := \begin{cases} (i, j) & \text{if } i \leq k \vee i = k \wedge j < l \\ (k, l) & \text{otherwise} \end{cases} \).

- For each edge \(e \) define \(\text{Edge}'(e) = e \);
- For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)

- \(\text{Succ}(e) = \text{Succ} (\text{Succ}(e)) \).
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min(((i, j), (k, l))) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
 - For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
 - \(\text{Succ}(e) = \text{Succ}(\text{Succ}(e)) \).
 - For each edge \((i, j) \): if \(\min(((i, j), (j, i))) \neq (i, j) \) then let \(\text{Edge}'(e) = 0 \).
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min(((i,j),(k,l)) := \begin{cases} (i,j) & \text{if } i \leq k \lor i = k \land j < l \\ (k,l) & \text{otherwise} \end{cases} \) .
 - For each edge \(e \) define \(\text{Edge}'(e) = e; \)
 - For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
 - \(\text{Succ}(e) = \text{Succ}(\text{Succ}(e)) \).
 - For each edge \((i,j) \): if \(\min(((i,j),(j,i)) \neq (i,j) \) then let \(\text{Edge}'(e) = 0. \)
 - Thus we have selected for each non-directed edge a directed one (resp. a direction).
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min((i, j), (k, l)) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
 - For all edges \(e \) repeat \log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
 - \(\text{Succ}(e) = \text{Succ}(\text{Succ}(e)) \).
- For each edge \((i, j) \): if \(\min((i, j), (j, i)) \neq (i, j) \) then let \(\text{Edge}'(e) = 0 \).
- Thus we have selected for each non-directed edge a directed one (resp. a direction).
- Possible with \(m \) in time \(O(\log m) \).
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\text{min}(((i, j), (k, l))) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
 - For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
 - \(\text{Succ}(e) = \text{Succ}(\text{Succ}(e)) \).

- For each edge \((i, j)\): if \(\min(((i, j), (j, i))) \neq (i, j) \) then let \(\text{Edge}'(e) = 0 \).

- Thus we have selected for each non-directed edge a directed one (resp. a direction).

- Possible with \(m \) in time \(O(\log m) \).

- We consider in the following on directed graphs.
Step 1

- Let $G = (V, E)$ be a directed graph.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$.
 using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \Leftrightarrow j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$.
 using the order: $(i, j) < (k, l) \Leftrightarrow i < k \lor (i = k \land j < l)$.
- We have already defined the cycles:
 Successor of edge $e = Edge(i)$ is the edge $Succ(i)$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$.
 using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
- We have already defined the cycles:
 Successor of edge $e = Edge(i)$ is the edge $Succ(i)$.
- We also store in $P(i)$ the position of $Succ(i)$ in $Edge$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 - using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$.
 - using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
- We have already defined the cycles:
 - Successor of edge $e = Edge(i)$ is the edge $Succ(i)$.
- We also store in $P(i)$ the position of $Succ(i)$ in $Edge$.
- I.e. $Edge(P(i)) = Succ(i)$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$.
 using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
- We have already defined the cycles:
 Successor of edge $e = Edge(i)$ is the edge $Succ(i)$.
- We also store in $P(i)$ the position of $Succ(i)$ in $Edge$.
- I.e. $Edge(P(i)) = Succ(i)$.
- This information could be updated during the sorting of $Succ$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$.
 using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
- We have already defined the cycles:
 Successor of edge $e = Edge(i)$ is the edge $Succ(i)$.
- We also store in $P(i)$ the position of $Succ(i)$ in $Edge$.
 I.e. $Edge(P(i)) = Succ(i)$.
- This information could be updated during the sorting of $Succ$.
- This could be done in time $O(\log m)$ using $O(m)$ processors.
Step 2

- Situation: We have a directed graph covered by cycles.
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge e the cycles where e belongs to.
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge e the cycles where e belongs to.
- **Solution:** compute for each cycle the minimal edge $((i, j) < (k, l) \iff i < k \lor (i = k \land j < l))$.
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge e the cycles where e belongs to.
- **Solution:** compute for each cycle the minimal edge $((i, j) < (k, l) \iff i < k \lor (i = k \land j < l))$.
- **Algorithm:**

```plaintext
Programm:
for all $P_{i}$ where $1 \leq i \leq m$ do in parallel
    CycleRep$(i) := \text{Succ}(i)$
for $i := 1$ to $\lceil \log m \rceil$ do:
    CycleRep$(i) := \min(CycleRep(i), \text{CycleRep}(\text{P}(i)))$
    P$(i) := \text{P}(\text{P}(i))$
We use again the doubling technique.
Possible in time $O(\log m)$ using $O(m)$ Processors.
```
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge e the cycles where e belongs to.
- **Solution:** compute for each cycle the minimal edge $(i, j) < (k, l) \Leftrightarrow i < k \lor (i = k \land j < l))$.
- **Algorithm:**

 Programm:

 for all P_i where $1 \leq i \leq m$ do in parallel

 $CycleRep(i) := Succ(i)$

 for $i := 1$ to $\lceil \log m \rceil$ do:

 $CycleRep(i) := \min(CycleRep(i), CycleRep(P(i)))$

 $P(i) := P(P(i))$
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge \(e \) the cycles where \(e \) belongs to.
- **Solution:** compute for each cycle the minimal edge \(((i, j) < (k, l) \Leftrightarrow i < k \lor (i = k \land j < l)) \).
- **Algorithm:**

Programm:

\[
\text{for all } P_i \text{ where } 1 \leq i \leq m \text{ do in parallel}
\]

\[
\text{CycleRep}(i) := \text{Succ}(i)
\]

\[
\text{for } i := 1 \text{ to } \lceil \log m \rceil \text{ do:}
\]

\[
\text{CycleRep}(i) := \min(\text{CycleRep}(i), \text{CycleRep}(P(i)))
\]

\[
P(i) := P(P(i))
\]

- We use again the doubling technique.
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge e the cycles where e belongs to.
- **Solution:** compute for each cycle the minimal edge $((i, j) < (k, l) \iff i < k \lor (i = k \land j < l))$.
- **Algorithm:**

  ```plaintext
  Programm:
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
  \[
  \text{CycleRep}(i) := \text{Succ}(i)
  \]
  for $i := 1$ to $\lceil \log m \rceil$ do:
  \[
  \text{CycleRep}(i) := \min(\text{CycleRep}(i), \text{CycleRep}(P(i)))
  \]
  \[
  P(i) := P(P(i))
  \]

  We use again the doubling technique.

  Possible in time $O(\log m)$ using $O(m)$ Processors.
Step 2 (Continued)

- **Situation:** the cycles of the coverage are identified by *CycleRep*.
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by $CycleRep$.
- Problem: join the cycle into a single one.
Situation: the cycles of the coverage are identified by CycleRep.

Problem: join the cycle into a single one.

Solution: Identify the nodes of the cycle.
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by $CycleRep$.
- Problem: join the cycle into a single one.
- Solution: Identify the nodes of the cycle.
- $C = \{CycleRep(i) \mid 1 \leq i \leq m\}$. (Note $C$ is a edge set)
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by \( \text{CycleRep} \).
- Problem: join the cycle into a single one.
- Solution: Identify the nodes of the cycle.
- \( C = \{ \text{CycleRep}(i) \mid 1 \leq i \leq m \} \). (Note \( C \) is a edge set)
- \( G' = V \cup C \)
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by $\text{CycleRep}$.
- Problem: join the cycle into a single one.
- Solution: Identify the nodes of the cycle.
- $C = \{\text{CycleRep}(i) | 1 \leq i \leq m\}$. (Note $C$ is a edge set)
- $G' = V \cup C$
- $E' = \{(u, v) | u \in V, v \in C : v \text{ is identified in the cycle by } u\}$
Step 2 (Continued)

- **Situation:** the cycles of the coverage are identified by $CycleRep$.
- **Problem:** join the cycle into a single one.
- **Solution:** Identify the nodes of the cycle.
  \[ C = \{ CycleRep(i) \mid 1 \leq i \leq m \} \text{.} \] (Note $C$ is a edge set)
- **$G'$:** $V \cup C$
- **$E'$:** $\{(u, v) \mid u \in V, v \in C : v \text{ is identified in the cycle by } u\}$
- **Computing of $E'$:**
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by $\text{CycleRep}$.
- Problem: join the cycle into a single one.
- Solution: Identify the nodes of the cycle.
- $C = \{\text{CycleRep}(i) | 1 \leq i \leq m\}$. (Note $C$ is a edge set)
- $G' = V \cup C$
- $E' = \{(u, v) | u \in V, v \in C : v \text{ is identified in the cycle by } u\}$
- Computing of $E'$:

Programm:

\begin{verbatim}
for all $P_i$ where $1 \leq i \leq m$ do in parallel
(u, v) = Edge(i)
Edge'(2 \cdot i) = (u, \text{CycleRep}(i))
Edge'(2 \cdot i + 1) = (v, \text{CycleRep}(i))
\end{verbatim}
Step 2 (Continued)

- **Situation:** Cover of cycles and graph $G'$ defined.
Step 2 (Continued)

- **Situation**: Cover of cycles and graph $G'$ defined.
- **Problem**: there are multiple edges.
Step 2 (Continued)

- Situation: Cover of cycles and graph $G'$ defined.
- Problem: there are multiple edges.
- Solution: sort them out.
Step 2 (Continued)

- Situation: Cover of cycles and graph $G'$ defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.
Step 2 (Continued)

- Situation: Cover of cycles and graph $G'$ defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$. 
Step 2 (Continued)

- Situation: Cover of cycles and graph $G'$ defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$. 
- Programm:
  
  ```plaintext
 for all P_i where $1 \leq i \leq m$ do in parallel
 if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$
  ```
Step 2 (Continued)

- Situation: Cover of cycles and graph $G'$ defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.  
- Programm:
  
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
  
  if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$
  
- Sort $Edge'$. 
Step 2 (Continued)

- Situation: Cover of cycles and graph $G'$ defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.  

Programm:

```latex
\textbf{for all} P_i where $1 \leq i \leq m$ \textbf{do in parallel}
\begin{align*}
\text{if } &\text{Edge}'(i) = \text{Edge}'(i + 1) \text{ then } \text{Edge}(i) = \infty
\end{align*}
```

- Sort $Edge'$.  

- Consider only the first $|E'|$ elements of $Edge'$.  

Step 2 (Continued)

- Situation: Cover of cycles and graph \( G' \) defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort \( Edge' \).

Programm:

for all \( P_i \) where \( 1 \leq i \leq m \) do in parallel

if \( Edge'(i) = Edge'(i+1) \) then \( Edge(i) = \infty \)

- Sort \( Edge' \).

Consider only the first \( |E'| \) elements of \( Edge' \).

Problem: node \( u \) could appear several times in a cycle \( v \).
Step 2 (Continued)

- Situation: Cover of cycles and graph $G'$ defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$. 
- Programm:
  
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
  
  if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$
  
- Sort $Edge'$. 
- Consider only the first $|E'|$ elements of $Edge'$. 
- Problem: node $u$ could appear several times in a cycle $v$. 
- As before we may compute a single representative.
Step 2 (Continued)

- Situation: Cover of cycles and graph $G'$ defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.

Programm:

\[
\text{for all } P_i \text{ where } 1 \leq i \leq m \text{ do in parallel}
\]

\[
\text{if } Edge'(i) = Edge'(i + 1) \text{ then } Edge(i) = \infty
\]

- Sort $Edge'$.

- Consider only the first $|E'|$ elements of $Edge'$.
- Problem: node $u$ could appear several times in a cycle $v$.
- As before we may compute a single representative.
- Let these edge be $(i, u) = Cert(u, v)$. 
Step 2 (Continued)

- Situation: Cover of cycles and graph $G'$ defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.

Programm:

```plaintext
for all P_i where $1 \leq i \leq m$ do in parallel
 if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$

Sort $Edge'$.

Consider only the first $|E'|$ elements of $Edge'$.

Problem: node u could appear several times in a cycle v.

As before we may compute a single representative.

Let these edge be $(i, u) = Cert(u, v)$.

May be done in time $O(\log m)$ using $O(m)$ processors.
Step 3

- Situation: Covering of the cycles and graph G' computed.
Step 3

- **Situation:** Covering of the cycles and graph G' computed.
- **Problem:** Compute cycle in G'.
Step 3

- **Situation:** Covering of the cycles and graph G' computed.
- **Problem:** Compute cycle in G'.
- **Solution:** compute spanning tee T for the bipartite Graph G'.
Step 3

- Situation: Covering of the cycles and graph G' computed.
- Problem: Compute cycle in G'.
- Solution: compute spanning tree T for the bipartite Graph G'.
- To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.
Step 3

- **Situation:** Covering of the cycles and graph G' computed.
- **Problem:** Compute cycle in G'.
- **Solution:** compute spanning tee T for the bipartite Graph G'.
- To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.
- Then we substitute each edge in T with two directed edges.
Step 3

- **Situation:** Covering of the cycles and graph G' computed.
- **Problem:** Compute cycle in G'.
- **Solution:** compute spanning tee T for the bipartite Graph G'.
- To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.
- Then we substitute each edge in T with two directed edges.
- **The new graph** T' is Eulerian.
Step 3

- Situation: Covering of the cycles and graph G' computed.
- Problem: Compute cycle in G'.
- Solution: compute spanning tree T for the bipartite Graph G'.
- To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.
- Then we substitute each edge in T with two directed edges.
- The new graph T' is Eulerian.
- The Eulerian cycle is easy to find:
Step 3

- Situation: Covering of the cycles and graph G' computed.
- Problem: Compute cycle in G'.
- Solution: compute spanning tee T for the bipartite Graph G'.
- To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.
- Then we substitute each edge in T with two directed edges.
- The new graph T' is Eulerian.
- The Eulerian cycle is easy to find:
- To do so, compute for each node of the tree the order of edges.
Step 3

Situation: Covering of the cycles and graph G' computed.

Problem: Compute cycle in G'.

Solution: compute spanning tee T for the bipartite Graph G'.

To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.

Then we substitute each edge in T with two directed edges.

The new graph T' is Eulerian.

The Eulerian cycle is easy to find:

To do so, compute for each node of the tree the order of edges.

Could be don in time $O(\log m)$ using $O(m)$ processors.
Step 4

- **Situation:** We have a cover of cycles for G and T'.
Step 4

- **Situation:** We have a cover of cycles for G and T'.
- **Problem:** Find cycle L in G'.
Step 4

- **Situation:** We have a cover of cycles for G and T'.
- **Problem:** Find cycle L in G'.
- **Solution:** Combine the cycles using $\text{Cert}(u, v)$.
Step 4

- **Situation:** We have a cover of cycles for G and T'.
- **Problem:** Find cycle L in G'.
- **Solution:** Combine the cycles using $Cert(u, v)$.
- L will also contain the Eulerian cycle in G.

Step 4

- **Situation:** We have a cover of cycles for G and T'.
- **Problem:** Find cycle L in G'.
- **Solution:** Combine the cycles using $Cert(u, v)$.
- L will also contain the Eulerian cycle in G.
- For each cycle v in G $Cert(u, v)$ gives us an edge, at which we may exchange between v and the cycle in T'.
Step 4

- **Situation:** We have a cover of cycles for G and T'.
- **Problem:** Find cycle L in G'.
- **Solution:** Combine the cycles using $Cert(u, v)$.
- L will also contain the Eulerian cycle in G.
- For each cycle v in G $Cert(u, v)$ gives us an edge, at which we may exchange between v and the cycle in T'.
- These points of change will be used to construct a single cycle L.
Step 4

- **Situation:** We have a cover of cycles for G and T'.
- **Problem:** Find cycle L in G'.
- **Solution:** Combine the cycles using $Cert(u, v)$.
- L will also contain the Eulerian cycle in G.
- For each cycle v in G $Cert(u, v)$ gives us an edge, at which we may exchange between v and the cycle in T'.
- These points of change will be used to construct a single cycle L.
- **Time $O(1)$ using $O(m)$ Processors.**
Step 5

- Situation: we have a cycle for G and T'.

Step 5

- Situation: we have a cycle for G and T'.
- Problem: find cycle in G.
Step 5

- **Situation:** we have a cycle for G and T'.
- **Problem:** find cycle in G.
- **Solution:** delete edges from T'.
Step 5

- **Situation**: we have a cycle for G and T'.
- **Problem**: find cycle in G.
- **Solution**: delete edges from T'.
Step 5

- **Situation:** we have a cycle for G and T'.
- **Problem:** find cycle in G.
- **Solution:** delete edges from T'.
- **Programm:**

 for all P_i where $1 \leq i \leq m$ do in parallel

 if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$

 if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
Step 5

- Situation: we have a cycle for G and T'.
- Problem: find cycle in G.
- Solution: delete edges from T'.
- Program:

 for all P_i where $1 \leq i \leq m$ do in parallel

 if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$

 if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$

- Uses time $O(1)$ with $O(m)$ processors.
Step 5

- Situation: we have a cycle for G and T'.
- Problem: find cycle in G.
- Solution: delete edges from T'.
- Program:

  ```
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
  
  if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
  
  if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
  ```

- Uses time $O(1)$ with $O(m)$ processors.
- Total time is: $O(\log^2 m)$ using $O(m)$ processors.
Step 5

- Situation: we have a cycle for \(G \) and \(T' \).
- Problem: find cycle in \(G \).
- Solution: delete edges from \(T' \).
- Program:

  ```
  for all \( P_i \) where \( 1 \leq i \leq m \) do in parallel
  
  if \( \text{Succ}(i) \in T' \) then \( \text{Succ}(i) := \text{Succ}(\text{Succ}(i)) \)
  
  if \( \text{Succ}(i) \in T' \) then \( \text{Succ}(i) := \text{Succ}(\text{Succ}(i)) \)
  ```

- Uses time \(O(1) \) with \(O(m) \) processors.
- Total time is: \(O(\log^2 m) \) using \(O(m) \) processors.
- Also possible: \(O(\log^2 m) \) time using \(O(m/\log^2 m) \) processors.
Definition

Let $G = (V, E)$ be a non-directed graph.
Definition

Let $G = (V, E)$ be a non-directed graph.

$M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
Definition

Let $G = (V, E)$ be a non-directed graph.

- $M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.

- M is called maximal matching, iff $\not\exists e \in E : M \cup \{e\}$ is a matching.
Definition

- Let $G = (V, E)$ be a non-directed graph.
- $M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\not\exists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.
Definition

- Let $G = (V, E)$ be a non-directed graph.
- $M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\nexists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.

- Sequential: $O(m \log m)$ for maximal matching.
Definition

- Let $G = (V, E)$ be a non-directed graph.
- $M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\not\exists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.

- Sequential: $O(m \log m)$ for maximal matching.
- Idea: Choose any free edge and delete all incident edges.
Definition

Let $G = (V, E)$ be a non-directed graph.

- $M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\nexists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.

- Sequential: $O(m \log m)$ for maximal matching.
- Idea: Choose any free edge and delete all incident edges.
- Sequential: $O(m^3)$ for maximum matching.
Definition

Let $G = (V, E)$ be a non-directed graph.

- $M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\not\exists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.

Sequential: $O(m \log m)$ for maximal matching.

Idea: Choose any free edge and delete all incident edges.

Sequential: $O(m^3)$ for maximum matching.

Idea: enlarging alternating pathes.
Idea

Let $\Delta(G)$ be the maximal degree of G.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-th phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure DegreeSplit $(1 + \log(\Delta(G)))$-times.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure $DegreeSplit$ $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure $DegreeSplit$ $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
- We denote with $G(i,j)$ the graph considered in the j-th Step of the i-th phase.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure DegreeSplit $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
- We denote with $G(i,j)$ the graph considered in the j-th Step of the i-th phase.
- We will describe the procedure DegreeSplit.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure $DegreeSplit$ $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
- We denote with $G(i,j)$ the graph considered in the j-th Step of the i-th phase.
- We will describe the procedure $DegreeSplit$.
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1}$.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure $DegreeSplit$ $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
- We denote with $G(i,j)$ the graph considered in the j-th Step of the i-th phase.
- We will describe the procedure $DegreeSplit$.
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1}$.
- We will call all nodes v with $\delta(v) \geq 2^k$ active.
Step 1

Compute all active nodes of $G(i,j)$
Step 1

- Compute all active nodes of $G(i, j)$
 - Determine the degree in time $O(\log \Delta(G(i, j)))$ with $O(m)$ processors.
Step 1

- Compute all active nodes of $G(i, j)$
 - Determine the degree in time $O(\log \Delta(G(i, j)))$ with $O(m)$ processors.
 - Determine the maximum degree in time $O(\log n)$ with $O(n)$ processors.
Step 1

- Compute all active nodes of $G(i, j)$
 - Determine the degree in time $O(\log \Delta(G(i, j)))$ with $O(m)$ processors.
 - Determine the maximum degree in time $O(\log n)$ with $O(n)$ processors.
 - Then the active nodes are known in time $O(1)$ using $O(n)$ processors.
Step 1

- Compute all active nodes of $G(i, j)$
 - Determine the degree in time $O(\log \Delta(G(i, j)))$ with $O(m)$ processors.
 - Determine the maximum degree in time $O(\log n)$ with $O(n)$ processors.
 - Then the active nodes are known in time $O(1)$ using $O(n)$ processors.

- Total running time: $O(\log n)$ using $O(m)$ processors.
Step 2

Compute the graph $G^*(i,j)$ as follows:

- Compute all nodes that are incident to active nodes.
- Determine the new node degree.
- If there are nodes with odd degree, connect them to a new node v.

Total running time: $O(\log n)$ using $O(m)$ processors.

$G^*(i,j)$ might not be connected.
Each component of $G^*(i,j)$ contains an Eulerian cycle.
Note that each node v has even degree.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
Step 2

- Compute the graph $G^*(i, j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.

$G^*(i, j)$ might not be connected.

Each component of $G^*(i, j)$ contains an Eulerian cycle.

Note that each node v has even degree.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.

- Total running time: $O(\log n)$ using $O(m)$ processors.
Step 2

- Compute the graph $G^*(i, j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.

- Total running time: $O(\log n)$ using $O(m)$ processors.
- $G^*(i, j)$ might not be connected.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.
- Total running time: $O(\log n)$ using $O(m)$ processors.
- $G^*(i,j)$ might not be connected.
- Each component of $G^*(i,j)$ contains an Eulerian cycle.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.

- Total running time: $O(\log n)$ using $O(m)$ processors.
- $G^*(i,j)$ might not be connected.
- Each component of $G^*(i,j)$ contains an Eulerian cycle.
- Note that each node v has even degree.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i, j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i, j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
- For the component with the additional node v start with v using label 0.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i, j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
- For the component with the additional node v start with v using label 0.
- For all other components start at an arbitrary node with label 1.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i, j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
- For the component with the additional node v start with v using label 0.
- For all other components start at an arbitrary node with label 1.
- Running time: $O(\log n)$ with $O(m + n)$ processors.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
- For the component with the additional node v start with v using label 0.
- For all other components start at an arbitrary node with label 1.
- Running time: $O(\log n)$ with $O(m + n)$ processors.
- Use Parallel Prefix to compute the labels.
Step 4

- Delete all edges with label 0.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i,j)$ is not a matching then $G(i,j + 1) = G^{**}(i,j) \setminus \{v\}$.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i,j)$ is not a matching then $G(i,j + 1) = G^{**}(i,j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i,j)$ is a matching then $M_i = E(G^{**}(i,j))$.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i,j)$ is not a matching then $G(i,j + 1) = G^{**}(i,j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i,j)$ is a matching then $M_i = E(G^{**}(i,j))$.
- Running time: $O(1)$ with $O(m + n)$ processors.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i, j)$ is not a matching then $G(i, j + 1) = G^{**}(i, j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i, j)$ is a matching then $M_i = E(G^{**}(i, j))$.
- Running time: $O(1)$ with $O(m + n)$ processors.
- Running time of the procedure $DegreeSplit$: $O(\log^2 n)$ with $O(m + n)$ processors.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i, j)$ is not a matching then $G(i, j + 1) = G^{**}(i, j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i, j)$ is a matching then $M_i = E(G^{**}(i, j))$.
- Running time: $O(1)$ with $O(m + n)$ processors.
- Running time of the procedure $DegreeSplit$: $O(\log^2 n)$ with $O(m + n)$ processors.

It remains to show: After at most $1 + \log(\Delta(G(i, j)))$ steps $DegreeSplit$ computes a matching.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i, j)$ is not a matching then $G(i, j + 1) = G^{**}(i, j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i, j)$ is a matching then $M_i = E(G^{**}(i, j))$.
- Running time: $O(1)$ with $O(m + n)$ processors.
- Running time of the procedure $DegreeSplit$: $O(\log^2 n)$ with $O(m + n)$ processors.
- It remains to show: After at most $1 + \log(\Delta(G(i, j)))$ steps $DegreeSplit$ computes a matching.
- It remains to show: After at most $O(\log_{3/2} n)$ phases the matching is optimal.
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.
Inner loop

Lemma:
Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
Lemma:
Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
Inner loop

Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
Inner loop

Lemma:

Let G be the input of DegreeSplit, then DegreeSplit will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
Inner loop

Lemma:
Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
 - Then v stays active in G_1.
Inner loop

Lemma:
Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
- Then v stays active in G_1.
- Hence the degree is halved in every step.
Lemma:

Let G be the input of *DegreeSplit*, then *DegreeSplit* will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Ket G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
- Then v stays active in G_1.
- Hence the degree is halved in every step.
- **There exists a** $k' \leq k$ such that $G_{k'}$ has a degree of 3.
Inner loop

Lemma:

Let G be the input of DegreeSplit, then DegreeSplit will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
- Then v stays active in G_1.

Hence the degree is halved in every step.

- There exists a $k' \leq k$ such that $G_{k'}$ has a degree of 3.
- After two more iterations the degree is at most one.
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.

- Then v stays active in G_1.

- Hence the degree is halved in every step.
- There exists a $k' \leq k$ such that $G_{k'}$ has a degree of 3.
- After two more iterations the degree is at most one.
- So a matching is found.
Lemma:
A logarithmic number of phases is enough to compute a maximum matching.
Outer loop

Lemma:

A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
Lemma:
A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
Lemma:

A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
- ($C \subset V$ is a vertex cover if $\forall e \in E : e \cup C \neq \emptyset$)
Lemma:
A logarithmic number of phases is enough to compute a maximum matching.

Proof:
- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
- ($C \subset V$ is a vertex cover if $\forall e \in E : e \cup C \neq \emptyset$)
- We show the following;
Outer loop

Lemma:
A logarithmic number of phases is enough to compute a maximum matching.

Proof:
- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
- ($C \subset V$ is a vertex cover if $\forall e \in E : e \cup C \neq \emptyset$)
- We show the following;
 - Half of the nodes in a vertex cover A_i can be made incident to edges from M_i.
Lemma:
A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
- ($C \subset V$ is a vertex cover if $\forall e \in E : e \cup C \neq \emptyset$)
- We show the following;
 - Half of the nodes in a vertex cover A_i can be made incident to edges from M_i.
 - This means it holds: $|A_i/G_{i+1}| \leq |A_i|/2$.
 with A_i/G_{i+1} the nodes of A_i in G_{i+1}
Lemma:
A logarithmic number of phases is enough to compute a maximum matching.

Proof:

• Let A_i be the nodes that are active in phase F_i.
• Then A_i is a vertex cover of G_i.
• $(C \subset V$ is a vertex cover if $\forall e \in E : e \cup C \neq \emptyset)$
• We show the following;
 • Half of the nodes in a vertex cover A_i can be made incident to edges from M_i.
 • This means it holds: $|A_i/G_{i+1}| \leq |A_i|/2$.
 with A_i/G_{i+1} the nodes of A_i in G_{i+1}
 • There are vertex covers C_i: $|C_{i+1}| \leq 2 \cdot |C_i|/3.$
Outer loop (Proof)

Let $G_k = (V, E_k)$ be the graph in the third to last loop of $DegreeSplit$.
Outer loop (Proof)

- Let $G_k = (V, E_k)$ be the graph in the third to last loop of $DegreeSplit$.
- W.l.o.g. G_k is connected with degree ≤ 3.
Outer loop (Proof)

- Let $G_k = (V, E_k)$ be the graph in the third to last loop of $DegreeSplit$.
- W.l.o.g. G_k is connected with degree ≤ 3.
- $DegreeSplit$ can w.l.o.g. remove the smallest set of edges.
Outer loop (Proof)

- Let \(G_k = (V, E_k) \) be the graph in the third to last loop of \(\text{DegreeSplit} \).
- W.l.o.g. \(G_k \) is connected with degree \(\leq 3 \).
- \(\text{DegreeSplit} \) can w.l.o.g. remove the smallest set of edges.
- Hence it holds \(|M_i| \geq |E_k|/4 \).
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
 - at least half of them are incident to M_i.

$|M_i| \geq |E_k|/4$
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
 - at least half of them are incident to M_i.

- If $|E_k| < |A_i|$ then G_k is a tree.
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
 - at least half of them are incident to M_i.

- If $|E_k| < |A_i|$ then G_k is a tree.
 - We remove edges from G_k that have a leaf as one of its end points.
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
 - at least half of them are incident to M_i.

- If $|E_k| < |A_i|$ then G_k is a tree.
 - We remove edges from G_k that have a leaf as one of its end points.
 - Furthermore the incident edges are removed.
Outer loop (Proof)

- Because $\Delta(G_k) \leq 3$ at most 2 trees T_1 and T_2 remain (with $n_1 + n_2$ nodes).
Outer loop (Proof)

- Because $\Delta(G_k) \leq 3$ at most 2 trees T_1 and T_2 remain (with $n_1 + n_2$ nodes).
- Then $((n_1 - 1) + (n_2 - 1))/4$ edges are added to M_i.
Outer loop (Proof)

- Because $\Delta(G_k) \leq 3$ at most 2 trees T_1 and T_2 remain (with $n_1 + n_2$ nodes).
- Then $((n_1 - 1) + (n_2 - 1))/4$ edges are added to M_i.
- Then M_i contains $|A_i|/2$ nodes.

$|M_i| \geq |E_k|/4$
Outer loop (Proof)

- Because $\Delta(G_k) \leq 3$ at most 2 trees T_1 and T_2 remain (with $n_1 + n_2$ nodes).
- Then $((n_1 - 1) + (n_2 - 1))/4$ edges are added to M_i.
- Then M_i contains $|A_i|/2$ nodes.
- Then it holds: $|A_i/G_{i+1}| \leq |A_i|/2$.

$|M_i| \geq |E_k|/4$
We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{-1}|V|$.
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.

\[
|M_i| \geq |E_k|/4 \\
|A_i/G_{i+1}| \leq |A_i|/2
\]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.

$$|M_i| \geq |E_k|/4$$
$$|A_i/G_{i+1}| \leq |A_i|/2$$
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{-1} |V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.

$|M_i| \geq |E_k|/4$

$|A_i/G_{i+1}| \leq |A_i|/2$
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i |V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.

$$|M_i| \geq |E_k|/4$$
$$|A_i/G_{i+1}| \leq |A_i|/2$$
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i - 1|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.

\[|M_i| \geq |E_k|/4 \]
\[|A_i/G_{i+1}| \leq |A_i|/2 \]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.

\[|M_i| \geq |E_k|/4 \]
\[|A_i/G_{i+1}| \leq |A_i|/2 \]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.

$|M_i| \geq |E_k|/4$

$|A_i/G_{i+1}| \leq |A_i|/2$
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.
 - C_i is a vertex cover of G_i.

\[|M_i| \geq |E_k|/4 \]
\[|A_i/G_{i+1}| \leq |A_i|/2 \]
Outer loop (Proof)

We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i - 1|V|$.

We will show that $|C_{i+1}| \leq 2|C_i|/3$.

Basis: $i = 1$: Choose $C_1 = V$.

Case 1: $|A_i| \leq 4|C_i|/3$.

- In phase i half of the nodes are removed from A_i.
- A_i/G_{i+1} is a vertex cover from G_{i+1}.
- $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.

Case 2: $|A_i| > 4|C_i|/3$.

- Half of the nodes from A_i are removed.
- These have end points in M_i.
- C_i is a vertex cover of G_i.
- Then every edge has at least one end point in C_i.

\[
|C_i| \leq (2/3)^i - 1|V|
\]

\[
|A_i/G_{i+1}| \leq |A_i|/2
\]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.
 - C_i is a vertex cover of G_i.
 - Then every edge has at least one end point in C_i.
 - At least $1/4$ of the edges in A_i are contained in C_i.

\[|M_i| \geq |E_k|/4 \]
\[|A_i/G_{i+1}| \leq |A_i|/2 \]
Outer loop (Proof)

- We show using induction that \(G_i \) contains a vertex cover \(C_i \) with \(|C_i| \leq (2/3)^{-1}|V|\).
- We will show that \(|C_{i+1}| \leq 2|C_i|/3\).
- Basis: \(i = 1 \): Choose \(C_1 = V \).
- Case 1: \(|A_i| \leq 4|C_i|/3\).
 - In phase \(i \) half of the nodes are removed from \(A_i \).
 - \(A_i/G_{i+1} \) is a vertex cover from \(G_{i+1} \).
 - \(|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3|\).
- Case 2: \(|A_i| > 4|C_i|/3\).
 - Half of the nodes from \(A_i \) are removed.
 - These have end points in \(M_i \).
 - \(C_i \) is a vertex cover of \(G_i \).
 - Then every edge has at least one end point in \(C_i \).
 - At least \(1/4 \) of the edges in \(A_i \) are contained in \(C_i \).
 - \(C_i/G_{i+1} \) is a vertex cover of \(G_{i+1} \).
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i - 1|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_i+1 is a vertex cover from G_i+1.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.
 - C_i is a vertex cover of G_i.
 - Then every edge has at least one end point in C_i.
 - At least $1/4$ of the edges in A_i are contained in C_i.
 - C_i/G_{i+1} is a vertex cover of G_{i+1}.
 - $|C_i/G_{i+1}| \leq |C_i| - |A_i|/4 \leq |C_i| - (4|C_i|/3)/4 = 2|C_i|/3$.

\[|M_i| \geq |E_k|/4 \]
\[|A_i/G_{i+1}| \leq |A_i|/2 \]
Summary

A maximal vertex cover can be computed in time $O(\log^4 n)$ using $O(n + m)$ processors.
Summary

Theorem:

A maximal vertex cover can be computed in time $O(\log^4 n)$ using $O(n + m)$ processors.

Proof:

- Outer loop: $O(\log n)$
Summary

Theorem:

A maximal vertex cover can be computed in time $O(\log^4 n)$ using $O(n + m)$ processors.

Proof:

- Outer loop: $O(\log n)$
- Inner loop: $O(\log n)$
Summary

Theorem:

A maximal vertex cover can be computed in time $O(\log^4 n)$ using $O(n + m)$ processors.

Proof:

- Outer loop: $O(\log n)$
- Inner loop: $O(\log n)$
- Running time of DegreeSplit: $O(\log^2 n)$.

\[|M_i| \geq |E_k|/4 \]
\[A_i/G_i+1 \leq |A_i|/2 \]