Contents I

1. Colorings I
 - Cycle
 - Trees

2. Eulerian cycle
 - Introduction
 - The algorithm

3. Matchings
 - Introduction
 - Algorithm
 - Running times

4. Colorings II

5. MIS
 - Introduction
 - MIS and Coloring

6. Coloring III
 - Outerplanar graphs

7. Simulations
 - Simple simulations
 - Advanced simulations

- Bipartite graphs
- $\Delta + 1$ Coloring any Graph
Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
Colorings

Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:
Colorings

Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:

 $\forall \{a, b\} \in E : c(a) \neq c(b)$.
Colorings

Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute \exists Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall \{a, b\} \in E : c(a) \neq c(b)$.
- Coloring number (chromatic index) of G:
 \[
 \chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall \{a, b\} \in E : c(a) \neq c(b)\}.
 \]
Colorings

Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute \exists Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall \{a, b\} \in E : c(a) \neq c(b)$.
- Coloring number (chromatic index) of G:
 $$\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall \{a, b\} \in E : c(a) \neq c(b)\}.$$
Colorings

Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute \exists Function $c : V \mapsto \{1, \ldots, k\}$ with:
 - $\forall\{a, b\} \in E : c(a) \neq c(b)$.
- Coloring number (chromatic index) of G:
 $\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \ldots, k\} \mid \forall\{a, b\} \in E : c(a) \neq c(b)\}$.

- Coloring problem is NP-complete.
Colorings

Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall\{a, b\} \in E : c(a) \neq c(b)$.
- Coloring number (chromatic index) of G:
 $\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall\{a, b\} \in E : c(a) \neq c(b)\}$.

- Coloring problem is NP-complete.
- Let $G = C_n$, i.e. $G = (\{v_0, \cdots, v_{n-1}\}, \{v_i, v_{(i+1) \mod n}\} \mid 0 \leq i < n)$.
Colorings

Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall\{a, b\} \in E : c(a) \neq c(b)$.
- Coloring number (chromatic index) of G:
 \[\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall\{a, b\} \in E : c(a) \neq c(b)\} \]

- Coloring problem is NP-complete.
- Let $G = C_n$, i.e. $G = (\{v_0, \cdots, v_{n-1}\}, \{v_i, v_{(i+1) \mod n}\} \mid 0 \leq i < n)$.
- Then we have $\chi(C_n) \leq 3$ and $\chi(C_{2\cdot n}) \leq 2$ ($\chi(C_{2\cdot n+1}) = 3$).
Given undirected graph \(G = (V, E) \) and \(k \in \mathbb{N} \).
Compute \([\text{exists?}]\) Function \(c : V \mapsto \{1, \cdots, k\} \) with:
\[\forall\{a, b\} \in E : c(a) \neq c(b). \]
Coloring number (chromatic index) of \(G \):
\[\chi(G) := \min\{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall\{a, b\} \in E : c(a) \neq c(b)\}. \]

- Coloring problem is NP-complete.
- Let \(G = C_n \), i.e. \(G = (\{v_0, \cdots, v_{n-1}\}, \{v_i, v_{(i+1) \text{ mod } n}\} \mid 0 \leq i < n) \).
- Then we have \(\chi(C_n) \leq 3 \) and \(\chi(C_{2\cdot n}) \leq 2 \) \((\chi(C_{2\cdot n+1}) = 3) \).
- We do not have a nice order on the nodes:
Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.

Compute function $c : V \mapsto \{1, \cdots, k\}$ with:

- $\forall \{a, b\} \in E : c(a) \neq c(b)$.

Coloring number (chromatic index) of G:

$$\chi(G) := \min \{k \mid \exists c : V \mapsto \{1, \cdots, k\} \mid \forall \{a, b\} \in E : c(a) \neq c(b)\}.$$

Coloring problem is NP-complete.

Let $G = C_n$, i.e. $G = (\{v_0, \cdots, v_{n-1}\}, \{\{v_i, v_{(i+1) \mod n}\} \mid 0 \leq i < n\})$.

Then we have $\chi(C_n) \leq 3$ and $\chi(C_{2 \cdot n}) \leq 2$ ($\chi(C_{2 \cdot n+1}) = 3$).

We do not have a nice order on the nodes:

- let $\pi(i)$ be a permutation.
Colorings

Coloring Problem

- Given undirected graph $G = (V, E)$ and $k \in \mathbb{N}$.
- Compute [exists?] Function $c : V \mapsto \{1, \cdots, k\}$ with:
 - $\forall\{a, b\} \in E : c(a) \neq c(b)$.
- Coloring number (chromatic index) of G:
 $$\chi(G) := \min\{k | \exists c : V \mapsto \{1, \cdots, k\} | \forall\{a, b\} \in E : c(a) \neq c(b)\}.$$

- Coloring problem is NP-complete.
- Let $G = C_n$, i.e. $G = (\{v_0, \cdots, v_{n-1}\}, \{\{v_i, v_{(i+1) \mod n}\} | 0 \leq i < n\})$.
- Then we have $\chi(C_n) \leq 3$ and $\chi(C_{2\cdot n}) \leq 2$ ($\chi(C_{2\cdot n+1}) = 3$).
- We do not have a nice order on the nodes:
 - let $\pi(i)$ be a permutation
- Let $G = C_n$, i.e.
 $$G = (\{v_0, \cdots, v_{n-1}\}, \{\{v_{\pi(i)}, v_{\pi((i+1) \mod n)}\} | 0 \leq i < n\}).$$
Parallel Coloring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
Parallel Coloring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.

Parallel Coloring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(i)$.
Parallel Coloring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i-1)$.
- Register N_i holds $\pi(i)$.
- In register C_i will be the color of v_{R_i}.
Parallel Coloring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i-1)$.
- Register N_i holds $\pi(i)$.
- In register C_i will be the color of v_{R_i}.
- Initialize C_i with i.
Parallel Coloring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i-1)$.
- Register N_i holds $\pi(i)$.
- In register C_i will be the color of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colors.
Parallel Coloring Algorithm of (on) a cycle (Idea)

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(i)$.
- In register C_i will be the color of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colors.
- We will use the colors $\{0, 1, \cdots, n\}$.
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

\begin{verbatim}
for all \(P_{i+1} \) where \(0 \leq i < n \) do in parallel
 \(\pi(i - 1) \rightarrow R_i \)
\end{verbatim}
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

\textbf{for all } P_{i+1} \textbf{ where } 0 \leq i < n \textbf{ do in parallel}
\begin{align*}
\pi(i - 1) & \rightarrow R_i \\
\pi(i) & \rightarrow N_i
\end{align*}
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle
for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$
$\pi(i) \rightarrow N_i$
$c = i$
$c \rightarrow C_i$
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i-1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$

$c = i$

$c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.

$c = 2 \cdot k + ((c \gg k) \% 2)$.

$c \rightarrow C_i$
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$

$c = i$

$c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.

$c = 2 \cdot k + ((c \gg k) \% 2)$.

$c \rightarrow C_i$
Parallel Coloring Algorithm of (on) a cycle (Idea)

- At the start we are using n colors.
Parallel Coloring Algorithm of (on) a cycle (Idea)

- At the start we are using \(n \) colors.
- Within each color-reduction will the coloring stay correct.
Parallel Coloring Algorithm of (on) a cycle (Idea)

- At the start we are using \(n \) colors.
- Within each color-reduction will the coloring stay correct.
- Within each color reduction will the coloring number be reduced from \(x \) to \(\log(x) + O(1) \).
Parallel Coloring Algorithm of (on) a cycle (Idea)

- At the start we are using n colors.
- Within each color-reduction will the coloring stay correct.
- Within each color reduction will the coloring number be reduced from x to $\log(x) + O(1)$.
- After $\lceil \log^*(n) \rceil$ reductions steps will be the coloring numbers ≤ 5.
Parallel Coloring Algorithm of (on) a cycle (Idea)

- At the start we are using n colors.
- Within each color-reduction will the coloring stay correct.
- Within each color reduction will the coloring number be reduced from x to $\log(x) + O(1)$.
- After $\lceil \log^*(n) \rceil$ reductions steps will be the coloring numbers ≤ 5.
- A second reduction of colors will follow now:
Last Steps

- The rows hold c and the columns hold c'.
- The entries in the table hold the new c.

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Last Steps

- The rows hold c and the columns hold c'.

- The entries in the table hold the new c.

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>000</td>
<td>010</td>
<td>000</td>
<td>100</td>
<td>000</td>
<td>010</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>001</td>
<td>010</td>
<td>001</td>
<td>100</td>
<td>001</td>
<td>010</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>011</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>001</td>
<td>011</td>
<td>001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>101</td>
<td>000</td>
<td>010</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>001</td>
<td>101</td>
<td>001</td>
<td>010</td>
<td>001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>011</td>
<td>000</td>
<td>101</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>001</td>
<td>011</td>
<td>001</td>
<td>101</td>
<td>001</td>
<td>011</td>
<td>001</td>
</tr>
</tbody>
</table>
Last Steps

- The rows hold c and the columns hold c'.
- The entries in the table hold the new c.

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Last Steps

- The rows hold c and the columns hold c'.
- The entries in the table hold the new c.

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

- We only have the colors 000, 001, 010, 011, 100, 101 (≤ 5).
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

\[\text{for all } P_{i+1} \text{ where } 0 \leq i < n \text{ do in parallel} \]

\[\pi(i - 1) \rightarrow R_i \]
\[\pi(i) \rightarrow N_i \]
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

\[
\begin{align*}
\pi(i - 1) & \rightarrow R_i \\
\pi(i) & \rightarrow N_i \\
c & = i \\
c & \rightarrow C_i
\end{align*}
\]
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

\textbf{for all} P_{i+1} where $0 \leq i < n$ \textbf{do in parallel}

\begin{align*}
\pi(i - 1) & \rightarrow R_i \\
\pi(i) & \rightarrow N_i \\
c & = i \\
c & \rightarrow C_i
\end{align*}

\textbf{repeat} $\lceil \log^*(n) \rceil + 2$ \textbf{times}

\begin{align*}
C_{N_i} & \rightarrow c' \\
\text{minimal } k \text{ with: } ((c \gg k) \% 2) & \neq ((c' \gg k) \% 2). \\
c & = 2 \cdot k + ((c \gg k) \% 2). \\
c & \rightarrow C_i
\end{align*}
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

\[
\begin{align*}
\pi(i - 1) & \rightarrow R_i \\
\pi(i) & \rightarrow N_i \\
c & = i \\
c & \rightarrow C_i
\end{align*}
\]

repeat $\lceil \log^*(n) \rceil + 2$ times

\[
\begin{align*}
C_{N_i} & \rightarrow c' \\
\text{minimal } k \text{ with: } ((c \gg k)\%2) & \neq ((c' \gg k)\%2).
\end{align*}
\]

\[
\begin{align*}
c & = 2 \cdot k + ((c \gg k)\%2).
\end{align*}
\]

\[
\begin{align*}
c & \rightarrow C_i
\end{align*}
\]

for $r := 5$ downto 3 do:
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

\[\pi(i - 1) \rightarrow R_i \]
\[\pi(i) \rightarrow N_i \]
\[c = i \]
\[c \rightarrow C_i \]

repeat $\lceil \log^*(n) \rceil + 2$ times

\[C_{N_i} \rightarrow c' \]

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.
\[c = 2 \cdot k + ((c \gg k) \% 2). \]
\[c \rightarrow C_i \]

for $r := 5$ downto 3 do:

if $c = r$ then
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

\begin{align*}
\pi(i - 1) &\rightarrow R_i \\
\pi(i) &\rightarrow N_i \\
c &\equiv i \\
c &\rightarrow C_i
\end{align*}

repeat \lceil \log^*(n) \rceil + 2 times

\begin{align*}
C_{N_i} &\rightarrow c' \\
\text{minimal } k \text{ with: } ((c \gg k) \% 2) \neq ((c' \gg k) \% 2). \\
c &\equiv 2 \cdot k + ((c \gg k) \% 2). \\
c &\rightarrow C_i
\end{align*}

for $r := 5$ downto 3 do:

if $c = r$ then

\begin{align*}
C_{N_i} &\rightarrow c' \\
c' &\rightarrow C_i \\
C_{N_i} &\rightarrow c''
\end{align*}
Parallel Coloring Algorithm of (on) a cycle (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

- $\pi(i - 1) \rightarrow R_i$
- $\pi(i) \rightarrow N_i$
- $c = i$
- $c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

- $C_{N_i} \rightarrow c'$
- minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.
- $c = 2 \cdot k + ((c \gg k) \% 2)$.
- $c \rightarrow C_i$

for $r := 5$ downto 3 do:

if $c = r$ then

- $C_{N_i} \rightarrow c'$
- $c' \rightarrow C_i$
- $C_{N_i} \rightarrow c''$
- $c := \min(\{0, 1, 2\} \setminus \{c', c''\})$
- $c \rightarrow C_i$
Coloring a Cycle

Theorem:
A cycle with n nodes could be colored with n processors in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.
Coloring a Cycle

Theorem:
A cycle with n nodes could be colored with n processors in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.

Theorem:
A cycle of n processors may color itself in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.
Coloring a Cycle

Theorem:
A cycle with \(n \) nodes could be colored with \(n \) processors in time \(O(\log^* n) \) with at most 3 colors.

Proof: see above.

Theorem:
A cycle of \(n \) processors may color itself in time \(O(\log^* n) \) with at most 3 colors.

Proof: see above.

Theorem:
A cycle of \(n \) processors needs at least \(\Omega(\log^* n) \) time to color itself with at most 3 colors.

Proof: see V4.
Theorem:
A cycle with n nodes could be colored with n processors in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.

Theorem:
A cycle of n processors may color itself in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.

Theorem:
A cycle of n processors needs at least $\Omega(\log^* n)$ time to color itself with at most 3 colors.

Proof: see V4.
Coloring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
Coloring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
Coloring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i-1)$.
- Register N_i holds $\pi(j-1)$ where j is the father of i.
Coloring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(j - 1)$ where j is the father of i.
- The father of the root r is r.
Coloring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i-1)$.
- Register N_i holds $\pi(j-1)$ where j is the father of i.
- The father of the root r is r.
- In register C_i will be the color of v_{R_i}.
Coloring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(j - 1)$ where j is the father of i.
- The father of the root r is r.
- In register C_i will be the color of v_{R_i}.
- Initialize C_i with i.
Coloring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(j - 1)$ where j is the father of i.
- The father of the root r is r.
- In register C_i will be the color of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colors.
Coloring a Tree

- A processor P_i works on $v_{\pi(i-1)}$ for some permutation π.
- Register R_i holds $\pi(i - 1)$.
- Register N_i holds $\pi(j - 1)$ where j is the father of i.
- The father of the root r is r.
- In register C_i will be the color of v_{R_i}.
- Initialize C_i with i.
- Reduce step by step the number of colors.
- We will use the colors $\{0, 1, \cdots, n\}$.
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i-1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

\[
\text{for all } P_{i+1} \text{ where } 0 \leq i < n \text{ do in parallel}
\]
\[
\begin{align*}
\pi(i - 1) & \rightarrow R_i \\
\pi(i) & \rightarrow N_i \\
c & = i \\
c & \rightarrow C_i
\end{align*}
\]
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$
$\pi(i) \rightarrow N_i$
$c = i$
$c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.

$c = 2 \cdot k + ((c \gg k) \% 2)$.
$c \rightarrow C_i$
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$

$\pi(i) \rightarrow N_i$

$c = i$

$c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.

$c = 2 \cdot k + ((c \gg k) \% 2)$.

$c \rightarrow C_i$
Parallel Coloring Algorithm of (on) a tree (Idea)

- At the start we are using \(n \) colors.
Parallel Coloring Algorithm of (on) a tree (Idea)

- At the start we are using \(n \) colors.
- Within each color-reduction will the coloring stay correct.
Parallel Coloring Algorithm of (on) a tree (Idea)

- At the start we are using n colors.
- Within each color-reduction will the coloring stay correct.
- Within each color reduction will the coloring number be reduced from x to $\log(x) + O(1)$.
Parallel Coloring Algorithm of (on) a tree (Idea)

- At the start we are using n colors.
- Within each color-reduction will the coloring stay correct.
- Within each color reduction will the coloring number be reduced from x to $\log(x) + O(1)$.
- After $\lceil \log^*(n) \rceil$ reductions steps will be the coloring numbers ≤ 5.
Parallel Coloring Algorithm of (on) a tree (Idea)

- At the start we are using n colors.
- Within each color-reduction will the coloring stay correct.
- Within each color reduction will the coloring number be reduced from x to $\log(x) + O(1)$.
- After $\lceil \log^*(n) \rceil$ reductions steps will be the coloring numbers ≤ 5.
- A second reduction of colors will follow now:
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-tree

for all \(P_{i+1} \) where \(0 \leq i < n \) do in parallel

\[
\begin{align*}
\pi(i - 1) & \rightarrow R_i \\
\pi(i) & \rightarrow N_i \\
c & = i \text{ and } c \rightarrow C_i
\end{align*}
\]

repeat \(\lceil \log^*(n) \rceil + 2 \) times

\[
\begin{align*}
C_{N_i} & \rightarrow c' \\
\text{minimal } k \text{ with: } ((c \gg k) \% 2) \neq ((c' \gg k) \% 2). \\
c & = 2 \cdot k + ((c \gg k) \% 2). \\
c & \rightarrow C_i
\end{align*}
\]

for \(r := 5 \) downto 3 do:

if \(c = r \) then

\[
\begin{align*}
C_{N_i} & \rightarrow c' \\
c' & \rightarrow C_i \\
C_{N_i} & \rightarrow c'' \\
c & := \min(\{0, 1, 2\} \setminus \{c', c''\}) \\
c & \rightarrow C_i
\end{align*}
\]
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-tree

for all \(P_{i+1} \) where \(0 \leq i < n \) do in parallel

\[
\pi(i - 1) \rightarrow R_i \\
\pi(i) \rightarrow N_i \\
c = i \text{ and } c \rightarrow C_i
\]

repeat \(\lceil \log^*(n) \rceil + 2 \) times, if \(R_i \neq N_i \)

\[
C_{N_i} \rightarrow c' \\
\text{minimal } k \text{ with: } ((c \gg k) \% 2) \neq ((c' \gg k) \% 2). \\
c = 2 \cdot k + ((c \gg k) \% 2). \\
c \rightarrow C_i
\]

for \(r := 5 \) downto 3 do:

if \(c = r \) then

\[
C_{N_i} \rightarrow c' \\
\rightarrow C_i \\
C_{N_i} \rightarrow c'' \\
c := \min(\{0, 1, 2\} \setminus \{c', c''\}) \\
c \rightarrow C_i
\]
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

\textbf{for all} \ P_{i+1} \ \text{where} \ 0 \leq i < n \ \text{do in parallel}

\begin{align*}
\pi(i - 1) & \rightarrow R_i \\
\pi(j - 1) & \rightarrow N_i \text{ with } j \text{ is father of } i \\
c & = i \text{ and } c \rightarrow C_i
\end{align*}

\textbf{repeat} \ \lceil \log^*(n) \rceil + 2 \ \text{times}

\begin{align*}
C_{N_i} & \rightarrow c' \\
\text{minimal } k \text{ with: } ((c \gg k) \% 2) & \neq ((c' \gg k) \% 2). \\
c & = 2 \cdot k + ((c \gg k) \% 2). \\
c & \rightarrow C_i
\end{align*}
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

$\pi(i - 1) \rightarrow R_i$
$\pi(j - 1) \rightarrow N_i$ with j is father of i
$c = i$ and $c \rightarrow C_i$

repeat $\lceil \log^*(n) \rceil + 2$ times

$C_{N_i} \rightarrow c'$
minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.
$c = 2 \cdot k + ((c \gg k) \% 2)$.
$c \rightarrow C_i$

if $R_i = N_i$ then $c = \min(\{0, 1\} \setminus R_i)$ else $c = C_{N_i}$
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle
for all P_{i+1} where $0 \leq i < n$ do in parallel
\begin{align*}
\pi(i - 1) & \rightarrow R_i \\
\pi(j - 1) & \rightarrow N_i \text{ with } j \text{ is father of } i \\
c & = i \text{ and } c \rightarrow C_i
\end{align*}
repeat $\lceil \log^*(n) \rceil + 2$ times
\begin{align*}
C_{N_i} & \rightarrow c' \\
\text{minimal } k \text{ with: } ((c \gg k)\%2) \neq ((c' \gg k)\%2). \\
c & = 2 \cdot k + ((c \gg k)\%2). \\
c & \rightarrow C_i \\
\text{if } R_i = N_i \text{ then } c = \min(\{0,1\} \setminus R_i) \text{ else } c = C_{N_i} \\
c & \rightarrow C_i
\end{align*}
Parallel Coloring Algorithm of (on) a tree (Idea)

Programm: color-cycle

for all P_{i+1} where $0 \leq i < n$ do in parallel

\[
\pi(i - 1) \rightarrow R_i
\]

\[
\pi(j - 1) \rightarrow N_i \text{ with } j \text{ is father of } i
\]

\[
c = i \text{ and } c \rightarrow C_i
\]

repeat $\lceil \log^*(n) \rceil + 2$ times

\[
C_{N_i} \rightarrow c'
\]

minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$.

\[
c = 2 \cdot k + ((c \gg k) \% 2).
\]

\[
c \rightarrow C_i
\]

if $R_i = N_i$ then $c = \min(\{0, 1\} \setminus R_i)$ else $c = C_{N_i}$

\[
c \rightarrow C_i
\]

for $r := 5$ downto 3 do:

if $c = r$ then

\[
C_{N_i} \rightarrow c'
\]

\[
c' \rightarrow C_i
\]

\[
C_{N_i} \rightarrow c''
\]

\[
c := \min(\{0, 1, 2\} \setminus \{c', c''\})
\]

\[
c \rightarrow C_i
\]
Coloring a Tree

Theorem:
A tree with n nodes could be colored with n processors in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.
Coloring a Tree

Theorem:

A tree with n nodes could be colored with n processors in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.

Theorem:

A tree of n processors may color itself in time $O(\log^* n)$ with at most 3 colors.

Proof: see above.
Eulerian cycle

Definition:

A graph $G = (V, E)$ is called Eulerian, iff there exists a cycle which visits each edge precisely once.
Eulerian cycle

Definition:
A graph $G = (V, E)$ is called Eulerian, iff there exists a cycle which visits each edge precisely once.

Theorem
A non-directed graph $G = (V, E)$ is Eulerian
- G is connected and
- each node of G has even degree.
Eulerian cycle

Definition:
A graph $G = (V, E)$ is called Eulerian, iff there exists a cycle which visits each edge precisely once.

Theorem
A non-directed graph $G = (V, E)$ is Eulerian
- G is connected and
- each node of G has even degree.

Theorem
A directed graph $G = (V, E)$ is Eulerian
- G is strongly connected and
- each node has as many incoming edges as outgoing ones.
Eulerian cycle

Definition:
A graph $G = (V, E)$ is called Eulerian, iff there exists a cycle which visits each edge precisely once.

Theorem
A non-directed graph $G = (V, E)$ is Eulerian
- G is connected and
- each node of G has even degree.

Theorem
A directed graph $G = (V, E)$ is Eulerian
- G is strong connected and
- each node has as many incoming edges as outgoing ones.

Problem: Compute Eulerian cycle on Eulerian graphs.
Idea

- **Non Parallel:**

 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.
 - If G is non-directed, then make a directed version of G.
 - Compute a cover of cycles.
 - Compute an additional cycle which meets each cycle precisely once.
 - Uses these to compute a cycle for G.
 - Delete some edges to get a Eulerian cycle for G.

Walter Unger 29.11.2016 20:11 WS2016/17
Idea

- **Non Parallel:**
 - Start with a free edge and follow free/unused edges till a cycle is closed.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are is some cycle.
 - Join pairs of cycles into a single one.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.

- If \(G \) is non-directed, then make a directed version of \(G \).
Idea

- **Non Parallel:**
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.

- If G is non-directed, then make a directed version of G.
- Compute a cover of cycles.
Idea

- Non Parallel:
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.
- If G is non-directed, then make a directed version of G.
- Compute a cover of cycles.
- Compute an additional cycle which meets each cycle precisely once.
Idea

- **Non Parallel:**
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.

- If G is non-directed, then make a directed version of G.
- Compute a cover of cycles.
- Compute an additional cycle which meets each cycle precisely once.
- **Uses these to compute a cycle for G**
Idea

- **Non Parallel:**
 - Start with a free edge and follow free/unused edges till a cycle is closed.
 - Repeat till all edges are in some cycle.
 - Join pairs of cycles into a single one.
 - Repeat till just one cycle remains.

- If G is non-directed, then make a directed version of G.
- Compute a cover of cycles.
- Compute an additional cycle which meets each cycle precisely once.
- Uses these to compute a cycle for G
- **Delete some edges to get a Eulerian cycle for G.**
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
Colorings I
3:16

Eulerian cycle

Introduction

Matchings

Colorings II

2/8

MIS

Coloring III

Walter Unger 29.11.2016 20:11

Change a non-directed Graph into a directed one
G contain m non-directed edges.
Substitute each non-directed edge with two directed ones:
{i, j} becomes (i, j) and (j, i).

Z

Simulations

WS2016/17


Change a non-directed Graph into a directed one

- G contains m non-directed edges.
- Substitute each non-directed edge with two directed ones: \{i, j\} becomes (i, j) and (j, i).
- Define a successor for each edge:
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
- Substitute each non-directed edge with two directed ones:
 $\{i, j\}$ becomes (i, j) and (j, i).
- Define a successor for each edge:
 - The neighbors of v are: $v_0, v_1, \ldots, v_{d-1}$.
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
- Substitute each non-directed edge with two directed ones:
 \{i, j\} becomes (i, j) and (j, i).
- Define a successor for each edge:
 - The neighbors of v are: $v_0, v_1, \cdots, v_{d-1}$.
 - Then define for all i:

 $Succ((v_i, v)) := (v, v_{(i+1) \mod d})$ und
 $Succ((v_{(i+1) \mod d}, v)) := (v, v_i)$.
Change a non-directed Graph into a directed one

- \(G \) contain \(m \) non-directed edges.
- Substitute each non-directed edge with two directed ones: \(\{i, j\} \) becomes \((i, j)\) and \((j, i)\).
- Define a successor for each edge:
 - The neighbors of \(v \) are: \(v_0, v_1, \ldots, v_{d-1} \).
 - Then define for all \(i \):
 \[
 \text{Succ}((v_i, v)) := (v, v_{(i+1) \mod d}) \quad \text{and} \quad \text{Succ}((v_{(i+1) \mod d}, v)) := (v, v_i).
 \]
- Each directed edge is in precisely one cycle (defined by \(\text{Succ} \)).
Change a non-directed Graph into a directed one

- G contain m non-directed edges.
- Substitute each non-directed edge with two directed ones:
 \[\{i, j\} \text{ becomes } (i, j) \text{ and } (j, i) \].
- Define a successor for each edge:
 - The neighbors of v are: $v_0, v_1, \cdots, v_{d-1}$.
 - Then define for all i:
 \[
 \text{Succ}((v_i, v)) := (v, v_{(i+1) \mod d}) \text{ und } \text{Succ}((v_{(i+1) \mod d}, v)) := (v, v_i).
 \]
- Each directed edge is in precisely one cycle (defined by Succ).
- For each cycle C exists one cycle C', which consists the reverse edges.
Change a non-directed Graph into a directed one

• G contain m non-directed edges.

• Substitute each non-directed edge with two directed ones:
 \{i, j\} becomes (i, j) and (j, i).

• Define a successor for each edge:
 - The neighbors of v are: $v_0, v_1, \cdots, v_{d-1}$.
 - Then define for all i:
 \[\text{Succ}((v_i, v)) := (v, v_{(i+1) \mod d}) \text{ und} \]
 \[\text{Succ}((v_{(i+1) \mod d}, v)) := (v, v_i). \]

• Each directed edge is in precisely one cycle (defined by Succ).

• For each cycle C exists one cycle C', which consists the reverse edges.

• We will now delete one of the two cycles C or C'.
Generating a directed Graph

- Identify the generated cycles:
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min(((i, j), (k, l))) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases} \).
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\text{min}((i,j), (k,l)) := \begin{cases} (i,j) & \text{if } i \leq k \lor i = k \land j < l \\ (k,l) & \text{otherwise} \end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min(((i,j),(k,l))) := \begin{cases} (i,j) & \text{if } i \leq k \lor i = k \land j < l \\ (k,l) & \text{otherwise} \end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
 - For all edges \(e \) repeat \(\log m \) times:
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min(((i, j), (k, l)) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
 - For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\text{min}(((i, j), (k, l)) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
 - For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \text{min}(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
 - \(\text{Succ}(e) = \text{Succ}(\text{Succ}(e)) \).
Generating a directed Graph

- Identify the generated cycles:
 - Let $\text{min}((i, j), (k, l)) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases}$.
 - For each edge e define $\text{Edge}'(e) = e$;
 - For all edges e repeat $\log m$ times:
 - $\text{Edge}'(e) = \text{min}(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e)))$
 - $\text{Succ}(e) = \text{Succ}(\text{Succ}(e))$.
 - For each edge (i, j): if $\text{min}((i, j), (j, i)) \neq (i, j)$ then let $\text{Edge}'(e) = 0$.

Thus we have selected for each non-directed edge a directed one (resp. a direction).

Possible with m in time $O(\log m)$. We consider in the following on directed graphs.
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min((i,j),(k,l)) := \begin{cases}
 (i,j) & \text{if } i \leq k \lor i = k \land j < l \\
 (k,l) & \text{otherwise}
\end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
 - For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
 - \(\text{Succ}(e) = \text{Succ}(\text{Succ}(e)) \).
 - For each edge \((i,j) \): if \(\min((i,j),(j,i)) \neq (i,j) \) then let \(\text{Edge}'(e) = 0 \).
 - Thus we have selected for each non-directed edge a directed one (resp. a direction).
Identify the generated cycles:

- Let \(\min(((i, j), (k, l))) := \begin{cases} (i, j) & \text{if } i \leq k \lor i = k \land j < l \\ (k, l) & \text{otherwise} \end{cases} \).
- For each edge \(e \) define \(\text{Edge}'(e) = e \);
- For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
 - \(\text{Succ}(e) = \text{Succ}(\text{Succ}(e)) \).
- For each edge \((i, j) \): if \(\min(((i, j), (j, i))) \neq (i, j) \) then let \(\text{Edge}'(e) = 0 \).
- Thus we have selected for each non-directed edge a directed one (resp. a direction).
- Possible with \(m \) in time \(O(\log m) \).
Generating a directed Graph

- Identify the generated cycles:
 - Let \(\min(((i,j), (k,l))) := \begin{cases} (i,j) & \text{if } i \leq k \lor i = k \land j < l \\ (k,l) & \text{otherwise} \end{cases} \).
 - For each edge \(e \) define \(\text{Edge}'(e) = e \);
 - For all edges \(e \) repeat \(\log m \) times:
 - \(\text{Edge}'(e) = \min(\text{Edge}'(e), \text{Edge}'(\text{Succ}(e))) \)
 - \(\text{Succ}(e) = \text{Succ}(\text{Succ}(e)) \).
 - For each edge \((i,j) \): if \(\min(((i,j), (j,i))) \neq (i,j) \) then let \(\text{Edge}'(e) = 0 \).
 - Thus we have selected for each non-directed edge a directed one (resp. a direction).
 - Possible with \(m \) in time \(O(\log m) \).
 - We consider in the following on directed graphs.
Step 1

- Let $G = (V, E)$ be a directed graph.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$.
 using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array Edge.
 using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array Succ.
 using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
- We have already defined the cycles:
 Successor of edge $e = \text{Edge}(i)$ is the edge $\text{Succ}(i)$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array Edge.
 using the order: \((i, j) < (k, l) \iff j < l \lor (j = l \land i < k)\).
- Sort the edges into an array Succ.
 using the order: \((i, j) < (k, l) \iff i < k \lor (i = k \land j < l)\).
- We have already defined the cycles:
 Successor of edge $e = \text{Edge}(i)$ is the edge $\text{Succ}(i)$.
- We also store in $P(i)$ the position of $\text{Succ}(i)$ in Edge.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$.
 using the order: $(i, j) < (k, l) \Leftrightarrow j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$.
 using the order: $(i, j) < (k, l) \Leftrightarrow i < k \lor (i = k \land j < l)$.
- We have already defined the cycles:
 Successor of edge $e = Edge(i)$ is the edge $Succ(i)$.
- We also store in $P(i)$ the position of $Succ(i)$ in $Edge$.
- I.e. $Edge(P(i)) = Succ(i)$.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array Edge using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array Succ using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
- We have already defined the cycles: Successor of edge $e = \text{Edge}(i)$ is the edge $\text{Succ}(i)$.
- We also store in $P(i)$ the position of $\text{Succ}(i)$ in Edge.
- I.e. $\text{Edge}(P(i)) = \text{Succ}(i)$.
- This information could be updated during the sorting of Succ.
Step 1

- Let $G = (V, E)$ be a directed graph.
- Sort the edges into an array $Edge$ using the order: $(i, j) < (k, l) \iff j < l \lor (j = l \land i < k)$.
- Sort the edges into an array $Succ$ using the order: $(i, j) < (k, l) \iff i < k \lor (i = k \land j < l)$.
- We have already defined the cycles:
 Successor of edge $e = Edge(i)$ is the edge $Succ(i)$.
- We also store in $P(i)$ the position of $Succ(i)$ in $Edge$.
 I.e. $Edge(P(i)) = Succ(i)$.
- This information could be updated during the sorting of $Succ$.
- This could be done in time $O(\log m)$ using $O(m)$ processors.
Step 2

- **Situation:** We have a directed graph covered by cycles.
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge e the cycles where e belongs to.
Step 2

- **Situation:** We have a directed graph covered by cycles.

- **Problem:** Compute for each edge e the cycles where e belongs to.

- **Solution:** Compute for each cycle the minimal edge $((i, j) < (k, l) \iff i < k \lor (i = k \land j < l))$.
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge \(e \) the cycles where \(e \) belongs to.
- **Solution:** compute for each cycle the minimal edge \(((i, j) < (k, l) \iff i < k \lor (i = k \land j < l)) \).
- **Algorithm:**
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge e the cycles where e belongs to.
- **Solution:** Compute for each cycle the minimal edge $((i, j) < (k, l) \iff i < k \lor (i = k \land j < l))$.
- **Algorithm:**

 Program:

 for all P_i where $1 \leq i \leq m$ do in parallel

 $CycleRep(i) := Succ(i)$

 for $i := 1$ to $\lceil \log m \rceil$ do:

 $CycleRep(i) := \min(CycleRep(i), CycleRep(P(i)))$

 $P(i) := P(P(i))$
Step 2

- **Situation:** We have a directed graph covered by cycles.
- **Problem:** Compute for each edge e the cycles where e belongs to.
- **Solution:** Compute for each cycle the minimal edge $((i, j) < (k, l) \iff i < k \lor (i = k \land j < l))$.
- **Algorithm:**

 Programm:

 for all P_i where $1 \leq i \leq m$ do in parallel

 $\text{CycleRep}(i) := \text{Succ}(i)$

 for $i := 1$ to $\lceil \log m \rceil$ do:

 $\text{CycleRep}(i) := \min(\text{CycleRep}(i), \text{CycleRep}(P(i)))$

 $P(i) := P(P(i))$

- We use again the doubling technique.
Step 2

- Situation: We have a directed graph covered by cycles.
- Problem: Compute for each edge \(e \) the cycles where \(e \) belongs to.
- Solution: compute for each cycle the minimal edge \((i, j) < (k, l) \Leftrightarrow i < k \lor (i = k \land j < l)\).
- Algorithm:

Programm:

```plaintext
for all \( P_i \) where \( 1 \leq i \leq m \) do in parallel
    \( CycleRep(i) := Succ(i) \)
    for \( i := 1 \) to \( \lceil \log m \rceil \) do:
        \( CycleRep(i) := \min(CycleRep(i), CycleRep(P(i))) \)
        \( P(i) := P(P(i)) \)
```

- We use again the doubling technique.
- Possible in time \(O(\log m) \) using \(O(m) \) Processors.
Step 2 (Continued)

- **Situation:** the cycles of the coverage are identified by *CycleRep.*
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by $CycleRep$.
- Problem: join the cycle into a single one.
Step 2 (Continued)

- **Situation:** the cycles of the coverage are identified by $CycleRep$.
- **Problem:** join the cycle into a single one.
- **Solution:** Identify the nodes of the cycle.
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by $CycleRep$.
- Problem: join the cycle into a single one.
- Solution: Identify the nodes of the cycle.
- $C = \{ CycleRep(i) \mid 1 \leq i \leq m \}$. (Note C is a edge set)
Step 2 (Continued)

- **Situation:** the cycles of the coverage are identified by \(\text{CycleRep} \).
- **Problem:** join the cycle into a single one.
- **Solution:** Identify the nodes of the cycle.
- \(C = \{ \text{CycleRep}(i) \mid 1 \leq i \leq m \} \). (Note \(C \) is a edge set)
- \(G' = V \cup C \)
Situation: the cycles of the coverage are identified by CycleRep.

Problem: join the cycle into a single one.

Solution: Identify the nodes of the cycle.

$C = \{ \text{CycleRep}(i) \mid 1 \leq i \leq m \}$. (Note C is a edge set)

$G' = V \cup C$

$E' = \{(u,v) \mid u \in V, v \in C : v \text{ is identified in the cycle by } u\}$
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by \(\text{CycleRep} \).
- Problem: join the cycle into a single one.
- Solution: Identify the nodes of the cycle.

\[C = \{ \text{CycleRep}(i) \mid 1 \leq i \leq m \} \]
(Note \(C \) is a edge set)

\[G' = V \cup C \]

\[E' = \{ (u, v) \mid u \in V, v \in C : v \text{ is identified in the cycle by } u \} \]

Computing of \(E' \):
Step 2 (Continued)

- Situation: the cycles of the coverage are identified by $CycleRep$.
- Problem: join the cycle into a single one.
- Solution: Identify the nodes of the cycle.

 $C = \{CycleRep(i) | 1 \leq i \leq m\}$. (Note C is a edge set)

 $G' = V \cup C$

 $E' = \{(u, v) | u \in V, v \in C : v \text{ is identified in the cycle by } u\}$

 Computing of E':

 Programm:

 for all P_i where $1 \leq i \leq m$ do in parallel

 $(u, v) = Edge(i)$

 $Edge'(2 \cdot i) = (u, CycleRep(i))$

 $Edge'(2 \cdot i + 1) = (v, CycleRep(i))$
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
Step 2 (Continued)

- **Situation:** Cover of cycles and graph G' defined.
- **Problem:** there are multiple edges.
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort Edge'.

Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.
- Programm:

  ```
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
    if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$
  ```
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.

Programm:

```
for all $P_i$ where $1 \leq i \leq m$ do in parallel
    if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$
```

- Sort $Edge'$.
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.
- Program:
 for all P_i where $1 \leq i \leq m$ do in parallel
 if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$
- Sort $Edge'$.
- Consider only the first $|E'|$ elements of $Edge'$.
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.
-
 Programm:

 for all P_i where $1 \leq i \leq m$ do in parallel

 if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$

- Sort $Edge'$.

- Consider only the first $|E'|$ elements of $Edge'$.

- Problem: node u could appear several times in a cycle v.
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.

Programm:

\[
\text{for all } P_i \text{ where } 1 \leq i \leq m \text{ do in parallel}
\]

\[
\text{if } Edge'(i) = Edge'(i + 1) \text{ then } Edge(i) = \infty
\]

- Sort $Edge'$.

- Consider only the first $|E'|$ elements of $Edge'$.
- Problem: node u could appear several times in a cycle v.
- As before we may compute a single representative.
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.
- Program:

  ```
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
    if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$
  ```
- Sort $Edge'$.
- Consider only the first $|E'|$ elements of $Edge'$.
- Problem: node u could appear several times in a cycle v.
- As before we may compute a single representative.
- Let these edge be $(i, u) = Cert(u, v)$.
Step 2 (Continued)

- Situation: Cover of cycles and graph G' defined.
- Problem: there are multiple edges.
- Solution: sort them out.
- Sort $Edge'$.

Programm:

```plaintext
for all $P_i$ where $1 \leq i \leq m$ do in parallel
    if $Edge'(i) = Edge'(i + 1)$ then $Edge(i) = \infty$
```

- Sort $Edge'$.
- Consider only the first $|E'|$ elements of $Edge'$.
- Problem: node u could appear several times in a cycle v.
- As before we may compute a single representative.
- Let these edge be $(i, u) = Cert(u, v)$.
- May be done in time $O(\log m)$ using $O(m)$ processors.
Step 3

- Situation: Covering of the cycles and graph \(G' \) computed.
Step 3

- **Situation:** Covering of the cycles and graph G' computed.
- **Problem:** Compute cycle in G'.
Step 3

- **Situation**: Covering of the cycles and graph G' computed.
- **Problem**: Compute cycle in G'.
- **Solution**: compute spanning tree T for the bipartite Graph G'.
Step 3

- **Situation:** Covering of the cycles and graph G' computed.
- **Problem:** Compute cycle in G'.
- **Solution:** compute spanning tree T for the bipartite Graph G'.
- **To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.**
Step 3

- **Situation**: Covering of the cycles and graph G' computed.
- **Problem**: Compute cycle in G'.
- **Solution**: compute spanning tree T for the bipartite Graph G'.
- To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.
- Then we substitute each edge in T with two directed edges.
Situation: Covering of the cycles and graph G' computed.

Problem: Compute cycle in G'.

Solution: Compute spanning tree T for the bipartite Graph G'.

To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.

Then we substitute each edge in T with two directed edges.

The new graph T' is Eulerian.
Step 3

- **Situation:** Covering of the cycles and graph G' computed.
- **Problem:** Compute cycle in G'.
- **Solution:** compute spanning tee T for the bipartite Graph G'.
- To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.
- Then we substitute each edge in T with two directed edges.
- The new graph T' is Eulerian.
- **The Eulerian cycle is easy to find:**
Step 3

- Situation: Covering of the cycles and graph G' computed.
- Problem: Compute cycle in G'.
- Solution: compute spanning tree T for the bipartite Graph G'.
- To compute spanning tree we need $O(\log^2 m)$ time with $O(m/\log^2 m)$ Processors.
- Then we substitute each edge in T with two directed edges.
- The new graph T' is Eulerian.
- The Eulerian cycle is easy to find:
 - To do so, compute for each node of the tree the order of edges.
Step 3

- Situation: Covering of the cycles and graph \(G' \) computed.
- Problem: Compute cycle in \(G' \).
- Solution: compute spanning tree \(T \) for the bipartite Graph \(G' \).
- To compute spanning tree we need \(O(\log^2 m) \) time with \(O(m/\log^2 m) \) Processors.
- Then we substitute each edge in \(T \) with two directed edges.
- The new graph \(T' \) is Eulerian.
- The Eulerian cycle is easy to find:
- To do so, compute for each node of the tree the order of edges.
- Could be done in time \(O(\log m) \) using \(O(m) \) processors.
Step 4

- **Situation:** We have a cover of cycles for G and T'.
Step 4

- **Situation:** We have a cover of cycles for G and T.
- **Problem:** Find cycle L in G'.

For each cycle v in G, $\text{Cert}(u, v)$ gives us an edge, at which we may exchange between v and the cycle in T'. These points of change will be used to construct a single cycle L. Time $O(1)$ using $O(m)$ Processors.
Step 4

- **Situation:** We have a cover of cycles for G and T'.
- **Problem:** Find cycle L in G'.
- **Solution:** Combine the cycles using $Cert(u, v)$.
Step 4

- **Situation**: We have a cover of cycles for G and T'.
- **Problem**: Find cycle L in G'.
- **Solution**: Combine the cycles using $\text{Cert}(u, v)$.
- L will also contain the Eulerian cycle in G.

Step 4

- **Situation:** We have a cover of cycles for G and T'.
- **Problem:** Find cycle L in G'.
- **Solution:** Combine the cycles using $Cert(u, v)$.
- L will also contain the Eulerian cycle in G.
- For each cycle v in G $Cert(u, v)$ gives us an edge, at which we may exchange between v and the cycle in T'.

Step 4

- **Situation:** We have a cover of cycles for G and T'.

- **Problem:** Find cycle L in G'.

- **Solution:** Combine the cycles using $\text{Cert}(u, v)$.

- L will also contain the Eulerian cycle in G.

- For each cycle v in G $\text{Cert}(u, v)$ gives us an edge, at which we may exchange between v and the cycle in T'.

- These points of change will be used to construct a single cycle L.
Step 4

- **Situation:** We have a cover of cycles for G and T'.
- **Problem:** Find cycle L in G'.
- **Solution:** Combine the cycles using $Cert(u, v)$.
- L will also contain the Eulerian cycle in G.
- For each cycle v in G $Cert(u, v)$ gives us an edge, at which we may exchange between v and the cycle in T'.
- These points of change will be used to construct a single cycle L.
- **Time $O(1)$ using $O(m)$ Processors.**
Step 5

- **Situation:** we have a cycle for G and T'.
Step 5

- **Situation:** we have a cycle for G and T'.
- **Problem:** find cycle in G.

Program:

```
for all $P_i$ where $1 \leq i \leq m$ do in parallel
if $\text{Succ}(i) \in T'$ then
    $\text{Succ}(i) := \text{Succ}(\text{Succ}(i))$
if $\text{Succ}(i) \in T'$ then
    $\text{Succ}(i) := \text{Succ}(\text{Succ}(i))$
```

Uses time $O(1)$ with $O(m)$ processors.

Total time is: $O(\log_2 m)$ using $O(m)$ processors.

Also possible: $O(\log_2 m)$ time using $O(m/\log_2 m)$ processors.
Step 5

- **Situation:** we have a cycle for G and T'.
- **Problem:** find cycle in G.
- **Solution:** delete edges from T'.
Step 5

- **Situation:** we have a cycle for G and T'.
- **Problem:** find cycle in G.
- **Solution:** delete edges from T'.
Step 5

- **Situation**: we have a cycle for G and T'.
- **Problem**: find cycle in G.
- **Solution**: delete edges from T'.
- **Programm**:

 for all P_i where $1 \leq i \leq m$ do in parallel

 if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$

 if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
Step 5

- Situation: we have a cycle for G and T'.
- Problem: find cycle in G.
- Solution: delete edges from T'.
- Program:

  ```plaintext
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
    if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
    if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
  ```

- Uses time $O(1)$ with $O(m)$ processors.
Step 5

• Situation: we have a cycle for G and T'.
• Problem: find cycle in G.
• Solution: delete edges from T'.
• Programm:

 for all P_i where $1 \leq i \leq m$ do in parallel
 if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
 if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$

• Uses time $O(1)$ with $O(m)$ processors.
• Total time is: $O(\log^2 m)$ using $O(m)$ processors.
Step 5

- **Situation**: we have a cycle for G and T.
- **Problem**: find cycle in G.
- **Solution**: delete edges from T.
- **Programm**:

  ```
  for all $P_i$ where $1 \leq i \leq m$ do in parallel
  
  if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
  if $Succ(i) \in T'$ then $Succ(i) := Succ(Succ(i))$
  ```

- Uses time $O(1)$ with $O(m)$ processors.
- Total time is: $O(\log^2 m)$ using $O(m)$ processors.
- Also possible: $O(\log^2 m)$ time using $O(m/\log^2 m)$ processors.
Definition

Let \(G = (V, E) \) be a non-directed graph.
Definition

- Let $G = (V, E)$ be a non-directed graph.
- $M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
Definition

Let $G = (V, E)$ be a non-directed graph.

$M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.

M is called maximal matching, iff $\nexists e \in E : M \cup \{e\}$ is a matching.
Definition

Let $G = (V, E)$ be a non-directed graph.

- $M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\nexists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.
Definition

- Let $G = (V, E)$ be a non-directed graph.
- $M \subseteq E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\not\exists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.

Sequential: $O(m \log m)$ for maximal matching.
Definition

- Let $G = (V, E)$ be a non-directed graph.
- $M \subseteq E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\nexists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.

- Sequential: $O(m \log m)$ for maximal matching.
- Idea: Choose any free edge and delete all incident edges.
Definition

Let $G = (V, E)$ be a non-directed graph.

- $M \subseteq E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\not\exists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.

- Sequential: $O(m \log m)$ for maximal matching.
- Idea: Choose any free edge and delete all incident edges.
- Sequential: $O(m^3)$ for maximum matching.
Definition

Let $G = (V, E)$ be a non-directed graph.

- $M \subset E$ is called a matching, iff $\forall e, e' \in M : e \cap e' = \emptyset$.
- M is called maximal matching, iff $\nexists e \in E : M \cup \{e\}$ is a matching.
- M is called maximum matching, iff for all matchings M' we have $|M'| \leq |M|$.

Sequential: $O(m \log m)$ for maximal matching.

Idea: Choose any free edge and delete all incident edges.

Sequential: $O(m^3)$ for maximum matching.

Idea: enlarging alternating pathes.
Idea

- Let $\Delta(G)$ be the maximal degree of G.

...
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{\frac{3}{2}} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-th phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure DegreeSplit $(1 + \log(\Delta(G)))$-times.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure $DegreeSplit$ $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure $DegreeSplit$ $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
- We denote with $G(i,j)$ the graph considered in the j-th Step of the i-th phase.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure DegreeSplit $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
- We denote with $G(i, j)$ the graph considered in the j-th Step of the i-th phase.
- We will describe the procedure DegreeSplit.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\bigcup M_i$.
- Within each phase F_i we will call the procedure $DegreeSplit$ $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
- We denote with $G(i, j)$ the graph considered in the j-th Step of the i-th phase.
- We will describe the procedure $DegreeSplit$.
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1}$.
Idea

- Let $\Delta(G)$ be the maximal degree of G.
- Enlarge the matching step by step by several edges.
- There will be $O(\log_{3/2} n)$ phases.
- i-te phase F_i has G_i as input and will output M_i.
- $G_1 = G$ and final result: $\cup M_i$.
- Within each phase F_i we will call the procedure $DegreeSplit$ $(1 + \log(\Delta(G)))$-times.
- Within each step within a phase we will half the node degree.
- We denote with $G(i, j)$ the graph considered in the j-th Step of the i-th phase.
- We will describe the procedure $DegreeSplit$.
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1}$.
- We will call all nodes v with $\delta(v) \geq 2^k$ active.
Step 1

1. Compute all active nodes of $G(i,j)$
Step 1

- Compute all active nodes of $G(i, j)$
 - Determine the degree in time $O(\log \Delta(G(i, j)))$ with $O(m)$ processors.
Step 1

- Compute all active nodes of $G(i, j)$
 - Determine the degree in time $O(\log \Delta(G(i, j)))$ with $O(m)$ processors.
 - Determine the maximum degree in time $O(\log n)$ with $O(n)$ processors.
Step 1

- Compute all active nodes of $G(i,j)$
 - Determine the degree in time $O(\log \Delta(G(i,j)))$ with $O(m)$ processors.
 - Determine the maximum degree in time $O(\log n)$ with $O(n)$ processors.
 - Then the active nodes are known in time $O(1)$ using $O(n)$ processors.
Step 1

- Compute all active nodes of $G(i,j)$
 - Determine the degree in time $O(\log \Delta(G(i,j)))$ with $O(m)$ processors.
 - Determine the maximum degree in time $O(\log n)$ with $O(n)$ processors.
 - Then the active nodes are known in time $O(1)$ using $O(n)$ processors.

- **Total running time:** $O(\log n)$ using $O(m)$ processors.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
Step 2

- Compute the graph $G^*(i, j)$ as follows:
 - Compute all nodes that are incident to active nodes.
Step 2

- Compute the graph $G^*(i, j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.
Step 2

- Compute the graph $G^*(i, j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.

- Total running time: $O(\log n)$ using $O(m)$ processors.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.

- Total running time: $O(\log n)$ using $O(m)$ processors.

- $G^*(i,j)$ might not be connected.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.

- Total running time: $O(\log n)$ using $O(m)$ processors.
- $G^*(i,j)$ might not be connected.
- Each component of $G^*(i,j)$ contains an Eulerian cycle.
Step 2

- Compute the graph $G^*(i,j)$ as follows:
 - Compute all nodes that are incident to active nodes.
 - Determine the new node degree.
 - If there are nodes with odd degree connect them to a new node v.

- Total running time: $O(\log n)$ using $O(m)$ processors.
- $G^*(i,j)$ might not be connected.
- Each component of $G^*(i,j)$ contains an Eulerian cycle.
- Note that each node v has even degree.
Step 3

Compute an Eulerian cycle on each component of $G^*(i,j)$.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i, j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
- For the component with the additional node v start with v using label 0.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
- For the component with the additional node v start with v using label 0.
- For all other components start at an arbitrary node with label 1.
Step 3

- Compute an Eulerian cycle on each component of $G^*(i,j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
- For the component with the additional node v start with v using label 0.
- For all other components start at an arbitrary node with label 1.
- Running time: $O(\log n)$ with $O(m + n)$ processors.
Step 3

- Compute an Eulerian cycle on each component of $G^* (i, j)$.
- This needs time $O(\log^2 n)$ with $O(m + n)$ processors.
- Note that the additional n processors result from the additional edges.
- Label the edges from the Eulerian cycle alternating with 0 and 1.
- For the component with the additional node v start with v using label 0.
- For all other components start at an arbitrary node with label 1.
- Running time: $O(\log n)$ with $O(m + n)$ processors.
- Use Parallel Prefix to compute the labels.
Step 4

- Delete all edges with label 0.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i, j)$ is not a matching then $G(i, j + 1) = G^{**}(i, j) \setminus \{v\}$.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i, j)$ is not a matching then $G(i, j + 1) = G^{**}(i, j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i, j)$ is a matching then $M_i = E(G^{**}(i, j))$.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i,j)$ is not a matching then
 $G(i, j + 1) = G^{**}(i, j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i, j)$ is a matching then $M_i = E(G^{**}(i, j))$.
- Running time: $O(1)$ with $O(m + n)$ processors.
Step 4

- Delete all edges with label 0.
- If the remaining graph \(G^{**}(i,j) \) is not a matching then
 \[G(i,j + 1) = G^{**}(i,j) \setminus \{v\}. \]
- If the remaining graph \(G^{**}(i,j) \) is a matching then \(M_i = E(G^{**}(i,j)) \).
- Running time: \(O(1) \) with \(O(m + n) \) processors.
- Running time of the procedure \(\text{DegreeSplit} \): \(O(\log^2 n) \) with \(O(m + n) \) processors.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i, j)$ is not a matching then $G(i, j + 1) = G^{**}(i, j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i, j)$ is a matching then $M_i = E(G^{**}(i, j))$.
- Running time: $O(1)$ with $O(m + n)$ processors.
- Running time of the procedure $DegreeSplit$: $O(\log^2 n)$ with $O(m + n)$ processors.
- It remains to show: After at most $1 + \log(\Delta(G(i, j)))$ steps $DegreeSplit$ computes a matching.
Step 4

- Delete all edges with label 0.
- If the remaining graph $G^{**}(i, j)$ is not a matching then $G(i, j + 1) = G^{**}(i, j) \setminus \{v\}$.
- If the remaining graph $G^{**}(i, j)$ is a matching then $M_i = E(G^{**}(i, j))$.
- Running time: $O(1)$ with $O(m + n)$ processors.
- Running time of the procedure $DegreeSplit$: $O(\log^2 n)$ with $O(m + n)$ processors.
- It remains to show: After at most $1 + \log(\Delta(G(i, j)))$ steps $DegreeSplit$ computes a matching.
- It remains to show: After at most $O(\log_{3/2} n)$ phases the matching is optimal.
Inner loop

Lemma:
Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.
Inner loop

Lemma:
Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
Inner loop

Lemma:
Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Ket G_1 be the result of an iteration.
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
Inner loop

Lemma:
Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:
- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lfloor \delta_G(v)/2 \rfloor + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
 - Then v stays active in G_1.

Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lceil \delta_G(v)/2 \rceil + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
 - Then v stays active in G_1.
- Hence the degree is halved in every step.
Inner loop

Lemma:

Let G be the input of DegreeSplit, then DegreeSplit will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lfloor \delta_G(v)/2 \rfloor + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
 - Then v stays active in G_1.
- Hence the degree is halved in every step.
- There exists a $k' \leq k$ such that $G_{k'}$ has a degree of 3.
Inner loop

Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Ket G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lfloor \delta_G(v)/2 \rfloor + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
- Then v stays active in G_1.
- Hence the degree is halved in every step.
- There exists a $k' \leq k$ such that $G_{k'}$ has a degree of 3.
- After two more iterations the degree is at most one.
Lemma:

Let G be the input of $DegreeSplit$, then $DegreeSplit$ will compute a matching after $1 + \log(\Delta(G))$ iterations.

Proof:

- Let k be the smallest number with $2^k \leq \Delta(G) \leq 2^{k+1} + 1$.
- Let G_1 be the result of an iteration.
- Let v be active in G. It holds:
 - $2^k \leq \delta_G(v)$.
 - $\lfloor \delta_G(v)/2 \rfloor \leq \delta_{G_1}(v) \leq \lfloor \delta_G(v)/2 \rfloor + 1$.
 - $2^{k-1} \leq \delta_{G_1}(v) \leq 2^k + 1$.
- Hence the degree is halved in every step.
- There exists a $k' \leq k$ such that $G_{k'}$ has a degree of 3.
- After two more iterations the degree is at most one.
- So a matching is found.
Lemma:

A logarithmic number of phases is enough to compute a maximum matching.
Lemma:
A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
Lemma:

A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
Lemma:

A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
- ($C \subseteq V$ is a vertex cover if $\forall e \in E : e \cap C \neq \emptyset$)
Lemma:

A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
- $(C \subset V$ is a vertex cover if $\forall e \in E : e \cap C \neq \emptyset)$
- We show the following;
Lemma:

A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
- $(C \subseteq V$ is a vertex cover if $\forall e \in E : e \cap C \neq \emptyset)$
- We show the following;
 - Half of the nodes in a vertex cover A_i can be made incident to edges from M_i.
Lemma:

A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.

$(C \subseteq V$ is a vertex cover if $\forall e \in E : e \cap C \neq \emptyset)$

- We show the following:
 - Half of the nodes in a vertex cover A_i can be made incident to edges from M_i.
 - This means it holds: $|A_i/G_{i+1}| \leq |A_i|/2$.
 with A_i/G_{i+1} the nodes of A_i in G_{i+1}
Lemma:

A logarithmic number of phases is enough to compute a maximum matching.

Proof:

- Let A_i be the nodes that are active in phase F_i.
- Then A_i is a vertex cover of G_i.
- ($C \subset V$ is a vertex cover if $\forall e \in E : e \cap C \neq \emptyset$)
- We show the following;
 - Half of the nodes in a vertex cover A_i can be made incident to edges from M_i.
 - This means it holds: $|A_i/G_{i+1}| \leq |A_i|/2$.
 with A_i/G_{i+1} the nodes of A_i in G_{i+1}
 - There are vertex covers C_i: $|C_{i+1}| \leq 2 \cdot |C_i|/3$.

Outer loop (Proof)

- Let $G_k = (V, E_k)$ be the graph in the third to last loop of $DegreeSplit$.
Outer loop (Proof)

- Let $G_k = (V, E_k)$ be the graph in the third to last loop of $DegreeSplit$.
- W.l.o.g. G_k is connected with degree ≤ 3.
Outer loop (Proof)

- Let $G_k = (V, E_k)$ be the graph in the third to last loop of $DegreeSplit$.
- W.l.o.g. G_k is connected with degree ≤ 3.
- $DegreeSplit$ can w.l.o.g. remove the smallest set of edges.
Outer loop (Proof)

- Let $G_k = (V, E_k)$ be the graph in the third to last loop of $DegreeSplit$.
- W.l.o.g. G_k is connected with degree ≤ 3.
- $DegreeSplit$ can w.l.o.g. remove the smallest set of edges.
- Hence it holds $|M_i| \geq |E_k|/4$.

Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
 - at least half of them are incident to M_i.
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
 - at least half of them are incident to M_i.

- If $|E_k| < |A_i|$ then G_k is a tree.
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
 - at least half of them are incident to M_i.

- If $|E_k| < |A_i|$ then G_k is a tree.
 - We remove edges from G_k that have a leaf as one of its end points.
Outer loop (Proof)

- If $|E_k| \geq |A_i|$ then M_i contains at least $|A_i|/4$ edges.
 - Both end points of an edge from A_i belong to A_i and
 - at least half of them are incident to M_i.

- If $|E_k| < |A_i|$ then G_k is a tree.
 - We remove edges from G_k that have a leaf as one of its end points.
 - Furthermore the incident edges are removed.
Outer loop (Proof)

Because $\Delta(G_k) \leq 3$ at most 2 trees T_1 and T_2 remain (with $n_1 + n_2$ nodes).
Outer loop (Proof)

- Because $\Delta(G_k) \leq 3$ at most 2 trees T_1 and T_2 remain (with $n_1 + n_2$ nodes).
- Then $((n_1 - 1) + (n_2 - 1))/4$ edges are added to M_i.
Outer loop (Proof)

- Because $\Delta(G_k) \leq 3$ at most 2 trees T_1 and T_2 remain (with $n_1 + n_2$ nodes).
- Then $((n_1 - 1) + (n_2 - 1))/4$ edges are added to M_i.
- Then M_i contains $|A_i|/2$ nodes.
Outer loop (Proof)

- Because $\Delta(G_k) \leq 3$ at most 2 trees T_1 and T_2 remain (with $n_1 + n_2$ nodes).
- Then $((n_1 - 1) + (n_2 - 1))/4$ edges are added to M_i.
- Then M_i contains $|A_i|/2$ nodes.
- Then it holds: $|A_i/G_{i+1}| \leq |A_i|/2$.

$|M_i| \geq |E_k|/4$
We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{-1}|V|$.
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i |V|$.

- We will show that $|C_{i+1}| \leq 2|C_i|/3$.

\[
|M_i| \geq |E_k|/4 \\
|A_i/G_{i+1}| \leq |A_i|/2
\]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.

\[
|M_i| \geq |E_k|/4 \quad |A_i / G_{i+1}| \leq |A_i|/2
\]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.

$$|M_i| \geq |E_k|/4$$
$$|A_i/G_{i+1}| \leq |A_i|/2$$
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.

\[|M_i| \geq |E_k|/4 \]
\[|A_i/G_{i+1}| \leq |A_i|/2 \]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i |V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.

We will show that $|C_{i+1}| \leq 2|C_i|/3$.

Basis: $i = 1$: Choose $C_1 = V$.

Case 1: $|A_i| \leq 4|C_i|/3$.

- In phase i half of the nodes are removed from A_i.
- A_i/G_{i+1} is a vertex cover from G_{i+1}.
- $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.

\[|M_i| \geq |E_k|/4 \]
\[|A_i/G_{i+1}| \leq |A_i|/2 \]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i \leq |V|$.

- We will show that $|C_{i+1}| \leq 2|C_i|/3$.

- Basis: $i = 1$: Choose $C_1 = V$.

- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i / G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.

- Case 2: $|A_i| > 4|C_i|/3$.
Outer loop (Proof)

We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.

We will show that $|C_{i+1}| \leq 2|C_i|/3$.

Basis: $i = 1$: Choose $C_1 = V$.

Case 1: $|A_i| \leq 4|C_i|/3$.

 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.

Case 2: $|A_i| > 4|C_i|/3$.

 - Half of the nodes from A_i are removed.
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.

\[|M_i| \geq |E_k|/4 \]
\[|A_i/G_{i+1}| \leq |A_i|/2 \]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.
 - C_i is a vertex cover of G_i.

\[|M_i| \geq |E_k|/4 \]
\[|A_i/G_{i+1}| \leq |A_i|/2 \]
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.
 - C_i is a vertex cover of G_i.
 - Then every edge has at least one end point in C_i.

$|M_i| \geq |E_k|/4$
$|A_i/G_{i+1}| \leq |A_i|/2$
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.

Case 1: $|A_i| \leq 4|C_i|/3$.

- In phase i half of the nodes are removed from A_i.
- A_i/G_{i+1} is a vertex cover from G_{i+1}.
- $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.

Case 2: $|A_i| > 4|C_i|/3$.

- Half of the nodes from A_i are removed.
- These have end points in M_i.
- C_i is a vertex cover of G_i.
- Then every edge has at least one end point in C_i.
- At least $1/4$ of the edges in A_i are contained in C_i.
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^{i-1}|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.
 - C_i is a vertex cover of G_i.
 - Then every edge has at least one end point in C_i.
 - At least $1/4$ of the edges in A_i are contained in C_i.
 - C_i/G_{i+1} is a vertex cover of G_{i+1}.
Outer loop (Proof)

- We show using induction that G_i contains a vertex cover C_i with $|C_i| \leq (2/3)^i - 1|V|$.
- We will show that $|C_{i+1}| \leq 2|C_i|/3$.
- Basis: $i = 1$: Choose $C_1 = V$.
- Case 1: $|A_i| \leq 4|C_i|/3$.
 - In phase i half of the nodes are removed from A_i.
 - A_i/G_{i+1} is a vertex cover from G_{i+1}.
 - $|A_i|/2 \leq (4|C_i|/3)/2 = 2|C_i|/3$.
- Case 2: $|A_i| > 4|C_i|/3$.
 - Half of the nodes from A_i are removed.
 - These have end points in M_i.
 - C_i is a vertex cover of G_i.
 - Then every edge has at least one end point in C_i.
 - At least $1/4$ of the edges in A_i are contained in C_i.
 - C_i/G_{i+1} is a vertex cover of G_{i+1}.
 - $|C_i/G_{i+1}| \leq |C_i| - |A_i|/4 \leq |C_i| - (4|C_i|/3)/4 = 2|C_i|/3$.

$|M_i| \geq |E_k|/4$

$|A_i/G_{i+1}| \leq |A_i|/2$
Summary

Theorem:

A maximal vertex cover can be computed in time $O(\log^4 n)$ using $O(n + m)$ processors.

$|M_i| \geq \frac{|E_k|}{4}$

$\frac{|A_i|}{G_{i+1}} \leq \frac{|A_i|}{2}$
Summary

Theorem:

A maximal vertex cover can be computed in time $O(\log^4 n)$ using $O(n + m)$ processors.

Proof:

- Outer loop: $O(\log n)$
Summary

Theorem:

A maximal vertex cover can be computed in time $O(\log^4 n)$ using $O(n + m)$ processors.

Proof:

- Outer loop: $O(\log n)$
- Inner loop: $O(\log n)$
A maximal vertex cover can be computed in time $O(\log^4 n)$ using $O(n + m)$ processors.

Proof:

- Outer loop: $O(\log n)$
- Inner loop: $O(\log n)$
- Running time of *DegreeSplit*: $O(\log^2 n)$.
Bipartite graphs

A graph $G = (A, B, E)$ with $E \subseteq A \times B$ is called bipartite graph.
Bipartite graphs

A graph $G = (A, B, E)$ with $E \subseteq A \times B$ is called bipartite graph.

Directed line graph

Let $G = (V, E)$ be a directed graph, then $G^2 = (E, F)$ with $F = \{((a, b), (b, c)) \mid (a, b), (b, c) \in E\}$ is the line graph of G.

Edge coloring of bipartite graphs

Compute a k-coloring of G^2.

3:38 Bipartite graphs 2/5

Walter Unger 29.11.2016 20:11 WS2016/17
Edge coloring of bipartite graphs

Bipartite graphs

A graph $G = (A, B, E)$ with $E \subset A \times B$ is called bipartite graph.

directed line graph

Let $G = (V, E)$ be a directed graph, then $G^2 = (E, F)$ with $F = \{((a, b), (b, c)) \mid (a, b), (b, c) \in E \}$ is the line graph of G.

undirected line graph

Let $G = (V, E)$ be an undirected graph, then $G^2 = (E, F)$ with $F = \{ \{a, b\}, \{b, c\}\} \mid \{a, b\}, \{b, c\} \in E \}$ is the line graph of G.
Bipartite graphs
A graph \(G = (A, B, E) \) with \(E \subset A \times B \) is called bipartite graph.

directed line graph
Let \(G = (V, E) \) be a directed graph, then \(G^2 = (E, F) \) with
\[
F = \{((a, b), (b, c)) \mid (a, b), (b, c) \in E\}
\] is the line graph of \(G \).

undirected line graph
Let \(G = (V, E) \) be an undirected graph, then \(G^2 = (E, F) \) with
\[
F = \{\{\{a, b\}, \{b, c\}\} \mid \{a, b\}, \{b, c\} \in E\}
\] is the line graph of \(G \).

Edge coloring
- Let \(G = (V, E) \) be an undirected graph and \(k \in \mathbb{N} \).
Edge coloring of bipartite graphs

Bipartite graphs

A graph $G = (A, B, E)$ with $E \subseteq A \times B$ is called bipartite graph.

directed line graph

Let $G = (V, E)$ be a directed graph, then $G^2 = (E, F)$ with $F = \{((a, b), (b, c)) \mid (a, b), (b, c) \in E\}$ is the line graph of G.

undirected line graph

Let $G = (V, E)$ be an undirected graph, then $G^2 = (E, F)$ with $F = \{\{\{a, b\}, \{b, c\}\} \mid \{a, b\}, \{b, c\} \in E\}$ is the line graph of G.

Edge coloring

- Let $G = (V, E)$ be an undirected graph and $k \in \mathbb{N}$.
- Compute $\exists k$-coloring of G^2.
Introduction

- Let \(G = (V, E) \) be an undirected graph.
Introduction

- Let $G = (V, E)$ be an undirected graph.
- It is NP-complete to find a $\Delta(G)$ edge coloring.
Let $G = (V, E)$ be an undirected graph.

It is NP-complete to find a $\Delta(G)$ edge coloring.

There is always a $\Delta(G) + 1$ edge coloring.
Introduction

- Let $G = (V, E)$ be an undirected graph.
- It is NP-complete to find a $\Delta(G)$ edge coloring.
- There is always a $\Delta(G) + 1$ edge coloring.
- A bipartite graph G is $\Delta(G)$ edge colorable.
Introduction

- Let $G = (V, E)$ be an undirected graph.
- It is NP-complete to find a $\Delta(G)$ edge coloring.
- There is always a $\Delta(G) + 1$ edge coloring.
- A bipartite graph G is $\Delta(G)$ edge colorable.
- Or: A bipartite graph G can be covered with $\Delta(G)$ matchings.
Introduction

- Let $G = (V, E)$ be an undirected graph.
- It is NP-complete to find a $\Delta(G)$ edge coloring.
- There is always a $\Delta(G) + 1$ edge coloring.
- A bipartite graph G is $\Delta(G)$ edge colorable.
- Or: A bipartite graph G can be covered with $\Delta(G)$ matchings.
- Here: Parallel edge coloring of a bipartite graph.
Introduction

- Let $G = (V, E)$ be an undirected graph.
- It is NP-complete to find a $\Delta(G)$ edge coloring.
- There is always a $\Delta(G) + 1$ edge coloring.
- A bipartite graph G is $\Delta(G)$ edge colorable.
- Or: A bipartite graph G can be covered with $\Delta(G)$ matchings.
- Here: Parallel edge coloring of a bipartite graph.
- 1.Step: $\Delta(G) = 2^k$ for some $k \in \mathbb{N}$.
Method for $\Delta(G) = 2^k$

- Idea: Cover the edges of G with cycles and paths.
Method for $\Delta(G) = 2^k$

- Idea: Cover the edges of G with cycles and paths.
- Color edges alternating with 0 and 1.
Method for $\Delta(G) = 2^k$

- Idea: Cover the edges of G with cycles and paths.
- Color edges alternating with 0 and 1.
- This computes a partition of G in G_0 and G_1 with $\Delta(G_0) = \Delta(G_1) = 2^{k-1}$.
Method for $\Delta(G) = 2^k$

- Idea: Cover the edges of G with cycles and paths.
- Color edges alternating with 0 and 1.
- This computes a partition of G in G_0 and G_1 with $\Delta(G_0) = \Delta(G_1) = 2^{k-1}$.
- All steps can be done in time $O(\log n)$ with $O(m)$ processors.
Method for $\Delta(G) = 2^k$

- Idea: Cover the edges of G with cycles and paths.
- Color edges alternating with 0 and 1.
- This computes a partition of G in G_0 and G_1 with $\Delta(G_0) = \Delta(G_1) = 2^{k-1}$.
- All steps can be done in time $O(\log n)$ with $O(m)$ processors.
- Continue recursively.
Method for $\Delta(G) = 2^k$

- Idea: Cover the edges of G with cycles and paths.
- Color edges alternating with 0 and 1.
- This computes a partition of G in G_0 and G_1 with $\Delta(G_0) = \Delta(G_1) = 2^{k-1}$.
- All steps can be done in time $O(\log n)$ with $O(m)$ processors.
- Continue recursively.
- Total running time: $O(\log^2 n)$ with $O(m)$ processors.
Example
Example

[Graph representation of a bipartite graph with colored edges]
Example
Method for $\Delta(G) < 2^k$ (Idea)

- Color as many edges as possible in the sub graph G' with $\Delta(G') = 2^k$.
Method for $\Delta(G) < 2^k$ (Idea)

- Color as many edges as possible in the sub graph G' with $\Delta(G') = 2^{k'}$.
- Allow double coloring of edges, i.e. (i,j) is colored α at i and β at j.
Method for $\Delta(G) < 2^k$ (Idea)

- Color as many edges as possible in the subgraph G' with $\Delta(G') = 2^{k'}$.
- Allow double coloring of edges, i.e. (i, j) is colored α at i and β at j.
- Within each step it holds:
Method for $\Delta(G) < 2^k$ (Idea)

- Color as many edges as possible in the sub graph G' with $\Delta(G') = 2^{k'}$.
- Allow double coloring of edges, i.e. (i, j) is colored α at i and β at j.
- Within each step it holds:
 - There are correctly colored edges and double colored edges.
Method for $\Delta(G) < 2^k$ (Idea)

- Color as many edges as possible in the sub graph G' with $\Delta(G') = 2^{k'}$.
- Allow double coloring of edges, i.e. (i, j) is colored α at i and β at j.
- Within each step it holds:
 - There are correctly colored edges and double colored edges.
 - The set of colors S is chosen such that the number of double colored edges is as big as possible,
Method for $\Delta(G) < 2^k$ (Idea)

- Color as many edges as possible in the sub graph G' with $\Delta(G') = 2^k'$.

- Allow double coloring of edges, i.e. (i, j) is colored α at i and β at j.

- Within each step it holds:
 - There are correctly colored edges and double colored edges.
 - The set of colors S is chosen such that the number of double colored edges is as big as possible,
 - These edges become colored correctly.
Method for $\Delta(G) < 2^k$ (Idea)

- Color as many edges as possible in the sub graph G' with $\Delta(G') = 2^{k'}$.
- Allow double coloring of edges, i.e. (i, j) is colored α at i and β at j.
- Within each step it holds:
 - There are correctly colored edges and double colored edges.
 - The set of colors S is chosen such that the number of double colored edges is as big as possible.
 - These edges become colored correctly.
 - This happens in the extended sub graph with $\Delta(G') = 2^{k'}$.
Method for $\Delta(G) < 2^k$ (Idea)

- Let $k': 2^{k'} < \Delta(G) < 2^{k'+1}$, $C = \emptyset$ and $U = E$.

Total running time: $O(\log 3 n)$ with $O(m)$ processors.
Method for $\Delta(G) < 2^k$ (Idea)

- Let $k': 2^{k'} < \Delta(G) < 2^{k'+1}$, $C = \emptyset$ and $U = E$.
- Partition $F = \{0, 1, 2, \cdots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.

\[\text{Total running time: } O(\log_3 n) \text{ with } O(m) \text{ processors.} \]
Method for $\Delta(G) < 2^k$ (Idea)

- Let $k': 2^{k'} < \Delta(G) < 2^{k'} + 1$, $C = \emptyset$ and $U = E$.
- Partition $F = \{0, 1, 2, \cdots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.
- Repeat until all edges are colored correctly:
Method for \(\Delta(G) < 2^k \) (Idea)

- Let \(k' : 2^{k'} < \Delta(G) < 2^{k'+1} \), \(C = \emptyset \) and \(U = E \).
- Partition \(F = \{0, 1, 2, \ldots, \Delta(G) - 1\} \) into four sets of almost the same size \(S_1, S_2, S_3, S_4 \).
- Repeat until all edges are colored correctly:
 - Choose double coloring of the edges from \(U \).
Method for $\Delta(G) < 2^k$ (Idea)

- Let $k': 2^{k'} < \Delta(G) < 2^{k'+1}$, $C = \emptyset$ and $U = E$.
- Partition $F = \{0, 1, 2, \ldots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.
- Repeat until all edges are colored correctly:
 - Choose double coloring of the edges from U.
 - Chose i, j with: As many edges as possible from U are colored with only $S_i \cup S_j$.

Method for $\Delta(G) < 2^k$ (Idea)

- Let $k': 2^{k'} < \Delta(G) < 2^{k'+1}$, $C = \emptyset$ and $U = E$.
- Partition $F = \{0, 1, 2, \ldots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.
- Repeat until all edges are colored correctly:
 - Choose double coloring of the edges from U.
 - Chose i, j with: As many edges as possible from U are colored with only $S_i \cup S_j$.
 - Let U' be those edges.
Method for $\Delta(G) < 2^k$ (Idea)

1. Let $k': 2^{k'} < \Delta(G) < 2^{k'+1}$, $C = \emptyset$ and $U = E$.

2. Partition $F = \{0, 1, 2, \ldots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.

3. Repeat until all edges are colored correctly:
 - Choose double coloring of the edges from U.
 - Chose i, j with: As many edges as possible from U are colored with only $S_i \cup S_j$.
 - Let U' be those edges.
 - It holds: $|U'| \geq |U|/6$ and $U' \leq 2^{k'}$.
Method for $\Delta(G) < 2^k$ (Idea)

Let $k': 2^k' < \Delta(G) < 2^{k'+1}$, $C = \emptyset$ and $U = E$.

Partition $F = \{0, 1, 2, \ldots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.

Repeat until all edges are colored correctly:

- Choose double coloring of the edges from U.
- Chose i, j with: As many edges as possible from U are colored with only $S_i \cup S_j$.
- Let U' be those edges.
- It holds: $|U'| \geq |U|/6$ and $U' \leq 2^{k'}$.
- Let H be those edges that only use colors from $S_i \cup S_j$.
Method for $\Delta(G) < 2^k$ (Idea)

- Let k': $2^{k'} < \Delta(G) < 2^{k'+1}$, $C = \emptyset$ and $U = E$.
- Partition $F = \{0, 1, 2, \ldots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.
- Repeat until all edges are colored correctly:
 - Choose double coloring of the edges from U.
 - Chose i, j with: As many edges as possible from U are colored with only $S_i \cup S_j$.
 - Let U' be those edges.
 - It holds: $|U'| \geq |U|/6$ and $U' \leq 2^{k'}$.
 - Let H be those edges that only use colors from $S_i \cup S_j$.
 - Let $G' = (V, H)$, extend G' such that $\Delta(G') = 2^{k'}$.
Method for $\Delta(G) < 2^k$ (Idea)

- Let $k': 2^{k'} < \Delta(G) < 2^{k'+1}$, $C = \emptyset$ and $U = E$.
- Partition $F = \{0, 1, 2, \ldots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.
- Repeat until all edges are colored correctly:
 - Choose double coloring of the edges from U.
 - Chose i, j with: As many edges as possible from U are colored with only $S_i \cup S_j$.
 - Let U' be those edges.
 - It holds: $|U'| \geq |U|/6$ and $U' \leq 2^{k'}$.
 - Let H be those edges that only use colors from $S_i \cup S_j$.
 - Let $G' = (V, H)$, extend G' such that $\Delta(G') = 2^{k'}$.
 - Color G' using the method from above.
Method for $\Delta(G) < 2^k$ (Idea)

- Let $k': 2^{k'} < \Delta(G) < 2^{k'} + 1$, $C = \emptyset$ and $U = E$.

- Partition $F = \{0, 1, 2, \ldots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.

- Repeat until all edges are colored correctly:
 - Choose double coloring of the edges from U.
 - Chose i, j with: As many edges as possible from U are colored with only $S_i \cup S_j$.
 - Let U' be those edges.
 - It holds: $|U'| \geq |U|/6$ and $U' \leq 2^{k'}$.
 - Let H be those edges that only use colors from $S_i \cup S_j$.
 - Let $G' = (V, H)$, extend G' such that $\Delta(G') = 2^{k'}$.
 - Color G' using the method from above.
 - Set $C = C \cup H$, these are the correctly colored edges.
Method for $\Delta(G) < 2^k$ (Idea)

- Let $k' : 2^k' < \Delta(G) < 2^{k'+1}$, $C = \emptyset$ and $U = E$.
- Partition $F = \{0, 1, 2, \cdots, \Delta(G) - 1\}$ into four sets of almost the same size S_1, S_2, S_3, S_4.
- Repeat until all edges are colored correctly:
 - Choose double coloring of the edges from U.
 - Chose i, j with: As many edges as possible from U are colored with only $S_i \cup S_j$.
 - Let U' be those edges.
 - It holds: $|U'| \geq |U|/6$ and $U' \leq 2^{k'}$.
 - Let H be those edges that only use colors from $S_i \cup S_j$.
 - Let $G' = (V, H)$, extend G' such that $\Delta(G') = 2^{k'}$.
 - Color G' using the method from above.
 - Set $C = C \cup H$, these are the correctly colored edges.

- Total running time: $O(\log^3 n)$ with $O(m)$ processors.
Example (1. round)
Example (1. round)
Example (1. round)
Example (1. round)
Example (2. round)
Example (3. round)
Example (result)
Theorem:

A bipartite graph G with $\Delta(G) = 2^k$ can be edge colored with $\Delta(G)$ colors in time $O(\log^2 n)$ with $O(m)$ processors.

Proof: See above.

Theorem:

A bipartite graph G can be edge colored with $\Delta(G)$ colors in time $O(\log^3 n)$ with $O(m)$ processors.

Proof: See above.
Results without proof

Lemma

Any graph \(G = (V, E) \) with maximal degree \(\Delta \) is \(\Delta + 1 \) colorable.
Results without proof

Lemma

Any graph $G = (V, E)$ with maximal degree Δ is $\Delta + 1$ colorable.

Lemma

Any graph $G = (V, E)$, which is not a clique nor a odd cycle is Δ colorable.
Results without proof

Lemma

Any graph $G = (V, E)$ with maximal degree Δ is $\Delta + 1$ colorable.

Lemma

Any graph $G = (V, E)$, which is not a clique nor a odd cycle is Δ colorable.

- Idea of distributed/parallel algorithm:
Results without proof

Lemma

Any graph $G = (V, E)$ with maximal degree Δ is $\Delta + 1$ colorable.

Lemma

Any graph $G = (V, E)$, which is not a clique nor an odd cycle is Δ colorable.

- Idea of distributed/parallel algorithm:
- Reduce recursively the colors.
Results without proof

Lemma

Any graph \(G = (V, E) \) with maximal degree \(\Delta \) is \(\Delta + 1 \) colorable.

Lemma

Any graph \(G = (V, E) \), which is not a clique nor a odd cycle is \(\Delta \) colorable.

- Idea of distributed/parallel algorithm:
 - Reduce recursively the colors.
 - Double the size of correctly colored sub-graphs.
Results without proof

Lemma

Any graph $G = (V, E)$ with maximal degree Δ is $\Delta + 1$ colorable.

Lemma

Any graph $G = (V, E)$, which is not a clique nor a odd cycle is Δ colorable.

- Idea of distributed/parallel algorithm:
 - Reduce recursively the colors.
 - Double the size of correctly colored sub-graphs.
 - Or use the idea for trees to bounded degree graphs.
Recall and Idea 1

Theorem:

A tree with n nodes could be colored with n processors in time $O(\log^*n)$ with at most 3 colors.
Recall and Idea 1

Theorem:

A tree with \(n \) nodes could be colored with \(n \) processors in time \(O(\log^* n) \) with at most 3 colors.

- Recall: choose minimal \(k \) with: \((c \gg k) \mod 2 \neq (c' \gg k) \mod 2\) and
Recall and Idea 1

Theorem:
A tree with \(n \) nodes could be colored with \(n \) processors in time \(O(\log^* n) \) with at most 3 colors.

- Recall: choose minimal \(k \) with: \((c \gg k) \% 2 \neq (c' \gg k) \% 2 \) and
- set \(c = 2 \cdot k + ((c \gg k) \% 2) \).
Recall and Idea 1

Theorem:
A tree with \(n \) nodes could be colored with \(n \) processors in time \(O(\log^* n) \) with at most 3 colors.

- Recall: choose minimal \(k \) with: \(((c \gg k) \% 2) \neq ((c' \gg k) \% 2) \) and
- set \(c = 2 \cdot k + ((c \gg k) \% 2) \).
- This did produce a 6-coloring on trees.
Recall and Idea 1

Theorem:
A tree with n nodes could be colored with n processors in time $O(\log^* n)$ with at most 3 colors.

- Recall: choose minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$ and
- set $c = 2 \cdot k + ((c \gg k) \% 2)$.
- This did produce a 6-coloring on trees.
- On a bounded degree graph use this idea on a vector of length Δ.
choose minimal \(k \) with: \((c \gg k) \% 2 \neq (c' \gg k) \% 2 \) and set \(c = 2 \cdot k + (c \gg k) \% 2 \)

1. Let \(v_1, v_2, \ldots, v_d \) the \(d \leq \Delta \) neighbors of \(v \)
Algorithm 1

choose minimal k with: $((c \gg k) \mod 2) \neq ((c' \gg k) \mod 2)$ and set $c = 2 \cdot k + ((c \gg k) \mod 2)$

1. Let v_1, v_2, \ldots, v_d the $d \leq \Delta$ neighbors of v
2. Let c_1, c_2, \ldots, c_d the colors v_i and c the color of v.
Algorithm 1

choose minimal k with: $((c \gg k) \mod 2) \neq ((c' \gg k) \mod 2)$ and set $c = 2 \cdot k + ((c \gg k) \mod 2)$

1. Let $v_1, v_2, ..., v_d$ the $d \leq \Delta$ neighbors of v
2. Let $c_1, c_2, ..., c_d$ the colors v_i and c the color of v.
3. For each i ($1 \leq i \leq d$) do

 As before, the coloring stays valid. Like before, a x-bit coloring becomes a $\Delta(\log x + 1)$-bit coloring. Like before, we may reduce the colors to $\Delta + 1$ colors. For unbounded degree, the running time becomes $O(\log^* n + 2\Delta)$.

Algorithm 1

choose minimal k with: $((c \gg k) \mod 2) \neq ((c' \gg k) \mod 2)$ and set $c = 2 \cdot k + ((c \gg k) \mod 2)$

1. Let v_1, v_2, \ldots, v_d the $d \leq \Delta$ neighbors of v
2. Let c_1, c_2, \ldots, c_d the colors v_i and c the color of v.
3. For each i ($1 \leq i \leq d$) do
 1. choose minimal k_i with: $((c \gg k_i) \mod 2) \neq ((c_i \gg k_i) \mod 2)$ and
Algorithm 1

choose minimal k with: $((c \gg k) \mod 2) \neq ((c' \gg k) \mod 2)$ and set $c = 2 \cdot k + ((c \gg k) \mod 2)$

1. Let v_1, v_2, \ldots, v_d the $d \leq \Delta$ neighbors of v
2. Let c_1, c_2, \ldots, c_d the colors v_i and c the color of v.
3. For each i ($1 \leq i \leq d$) do
 1. choose minimal k_i with: $((c \gg k_i) \mod 2) \neq ((c_i \gg k_i) \mod 2)$ and
 2. set $b_i = 2 \cdot k_i + ((c \gg k_i) \mod 2)$.

As before, the coloring stays valid.

Like before, a x-bit coloring becomes a $\Delta(\log x + 1)$-bit coloring.

Like before, we may reduce the colors to $\Delta + 1$ colors.

For unbounded degree the running time becomes: $O(\log^* n + 2 \Delta)$.

Algorithm 1

choose minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$ and set $c = 2 \cdot k + ((c \gg k)\%2)$

1. Let $v_1, v_2, ..., v_d$ the $d \leq \Delta$ neighbors of v
2. Let $c_1, c_2, ..., c_d$ the colors v_i and c the color of v.
3. For each i ($1 \leq i \leq d$) do
 1. choose minimal k_i with: $((c \gg k_i)\%2) \neq ((c_i \gg k_i)\%2)$ and
 2. set $b_i = 2 \cdot k_i + ((c \gg k_i)\%2)$.
4. Choose new color for v: $(b_1, b_2, ..., b_d)$.
Algorithm 1

choose minimal \(k \) with: \(((c \gg k)\%2) \neq ((c' \gg k)\%2) \) and set \(c = 2 \cdot k + ((c \gg k)\%2) \)

1. Let \(v_1, v_2, \ldots, v_d \) the \(d \leq \Delta \) neighbors of \(v \)
2. Let \(c_1, c_2, \ldots, c_d \) the colors \(v_i \) and \(c \) the color of \(v \).
3. For each \(i \, (1 \leq i \leq d) \) do
 1. choose minimal \(k_i \) with: \(((c \gg k_i)\%2) \neq ((c_i \gg k_i)\%2) \) and
 2. set \(b_i = 2 \cdot k_i + ((c \gg k_i)\%2) \).
4. Choose new color for \(v \): \((b_1, b_2, \ldots, b_d) \).
Algorithm 1

choose minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$ and set $c = 2 \cdot k + ((c \gg k)\%2)$

1. Let v_1, v_2, \ldots, v_d the $d \leq \Delta$ neighbors of v

2. Let c_1, c_2, \ldots, c_d the colors v_i and c the color of v.

3. For each i ($1 \leq i \leq d$) do
 1. choose minimal k_i with: $((c \gg k_i)\%2) \neq ((c_i \gg k_i)\%2)$ and
 2. set $b_i = 2 \cdot k_i + ((c \gg k_i)\%2)$.

4. Choose new color for v: (b_1, b_2, \ldots, b_d).

- As before, the coloring stays valid.
Algorithm 1

choose minimal \(k \) with: \(((c \gg k)\%2) \neq ((c' \gg k)\%2) \) and set \(c = 2 \cdot k + ((c \gg k)\%2) \)

1. Let \(v_1, v_2, ..., v_d \) the \(d \leq \Delta \) neighbors of \(v \)
2. Let \(c_1, c_2, ..., c_d \) the colors \(v_i \) and \(c \) the color of \(v \).
3. For each \(i \) (\(1 \leq i \leq d \)) do
 1. choose minimal \(k_i \) with: \(((c \gg k_i)\%2) \neq ((c_i \gg k_i)\%2) \) and
 2. set \(b_i = 2 \cdot k_i + ((c \gg k_i)\%2) \).
4. Choose new color for \(v \): \((b_1, b_2, ..., b_d) \).

- As before, the coloring stays valid.
- Like before, a \(x \)-bit coloring becomes a \(\Delta(\log x + 1) \)-bit coloring.
Algorithm 1

choose minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$ and set $c = 2 \cdot k + ((c \gg k) \% 2)$

1. Let v_1, v_2, \ldots, v_d the $d \leq \Delta$ neighbors of v
2. Let c_1, c_2, \ldots, c_d the colors v_i and c the color of v.
3. For each i $(1 \leq i \leq d)$ do
 1. choose minimal k_i with: $((c \gg k_i) \% 2) \neq ((c_i \gg k_i) \% 2)$ and
 2. set $b_i = 2 \cdot k_i + ((c \gg k_i) \% 2)$.
4. Choose new color for v: (b_1, b_2, \ldots, b_d).

- As before, the coloring stays valid.
- Like before, a x-bit coloring becomes a $\Delta(\log x + 1)$-bit coloring.
- Like before, we may reduce the colors to $\Delta + 1$ colors.
Algorithm 1

choose minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$ and set $c = 2 \cdot k + ((c \gg k)\%2)$

1. Let $v_1, v_2, ..., v_d$ the $d \leq \Delta$ neighbors of v
2. Let $c_1, c_2, ..., c_d$ the colors v_i and c the color of v.
3. For each i (1 $\leq i \leq d$) do
 1. choose minimal k_i with: $((c \gg k_i)\%2) \neq ((c_i \gg k_i)\%2)$ and
 2. set $b_i = 2 \cdot k_i + ((c \gg k_i)\%2)$.
4. Choose new color for v: $(b_1, b_2, ..., b_d)$.

- As before, the coloring stays valid.
- Like before, a x-bit coloring becomes a $\Delta(\log x + 1)$-bit coloring.
- Like before, we may reduce the colors to $\Delta + 1$ colors.
- For unbounded degree the running time becomes: $O(\log^* n + 2^\Delta)$.
Theorem 1

A constant degree graph may be colored with $\Delta + 1$ colors in time $O(\log^* n)$ on a distributed system.

choose minimal k with: $((c \gg k) \mod 2) \neq ((c' \gg k) \mod 2)$ and set $c = 2 \cdot k + ((c \gg k) \mod 2)$
Theorem

A constant degree graph may be colored with $\Delta + 1$ colors in time $O(\log^* n)$ on a distributed system.

Theorem

A constant degree graph may be colored with $\Delta + 1$ colors in time $O(\log^* n)$ on a parallel system using n processors.
Notations and Idea 2

choose minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$ and set $c = 2 \cdot k + ((c \gg k) \% 2)$

- x will be a binary string with up to k bits.
choose minimal k with: $((c \gg k) \% 2) \neq ((c' \gg k) \% 2)$ and set $c = 2 \cdot k + ((c \gg k) \% 2)$

- x will be a binary string with up to k bits.
- Define $U_x = \{(a_1, a_2, \ldots a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$.
Notations and Idea 2

choose minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$ and set $c = 2 \cdot k + ((c \gg k)\%2)$

- x will be a binary string with up to k bits.
- Define $U_x = \{(a_1, a_2, \ldots a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$.
- The procedure RecurseColor will color U_x with $\Delta + 1$ colors.
Notations and Idea 2

choose minimal k with: $(c \gg k) \% 2 \neq (c' \gg k) \% 2$ and set $c = 2 \cdot k + (c \gg k) \% 2$

- x will be a binary string with up to k bits.
- Define $U_x = \{(a_1, a_2, ... a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$.
- The procedure RecurseColor will color U_x with $\Delta + 1$ colors.
- Idea:
Notations and Idea 2

choose minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$ and set $c = 2 \cdot k + ((c \gg k)\%2)$

- x will be a binary string with up to k bits.
- Define $U_x = \{ (a_1, a_2, ... a_{k-|x|}, x) \mid a_i \in \{0, 1\} \}$.
- The procedure RecurseColor will color U_x with $\Delta + 1$ colors.
- Idea:
 - Having colored U_x with $\Delta + 1$ colors,
Notations and Idea 2

choose minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$ and set $c = 2 \cdot k + ((c \gg k)\%2)$

- x will be a binary string with up to k bits.
- Define $U_x = \{(a_1, a_2, ... a_{k-|x|}, x) | a_i \in \{0, 1\}\}$.
- The procedure RecurseColor will color U_x with $\Delta + 1$ colors.
- Idea:
 - Having colored U_x with $\Delta + 1$ colors,
 - Recolor U_{1x} such that U_{0x} and U_{1x} are colored correctly.
Notations and Idea 2

choose minimal k with: $((c \gg k)\%2) \neq ((c' \gg k)\%2)$ and set $c = 2 \cdot k + ((c \gg k)\%2)$

- x will be a binary string with up to k bits.
- Define $U_x = \{(a_1, a_2, ... a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$.
- The procedure RecurseColor will color U_x with $\Delta + 1$ colors.
- Idea:
 - Having colored U_x with $\Delta + 1$ colors,
 - Recolor U_{1x} such that U_{0x} and U_{1x} are colored correctly.
 - This doubles the size of correctly colored sub-graphs.
Recursive Algorithm

RecurseColor(x) (initial with $x = \varepsilon$):

1. Let $ID = (a_1, a_2, ..., a_k)$ be a vector of bits, which identify the node/prozessor v.

$$U_x = \{(a_1, a_2, ..., a_k-|x|, x) \mid a_i \in \{0, 1\}\}$$

Theorem

A graph of degree Δ may be colored with $\Delta + 1$ colors in time $O(\Delta \log n)$ on a distributed/parallel system.
Recursive Algorithm

RecurseColor(x) (initial with $x = \varepsilon$):

1. Let $ID = (a_1, a_2, ..., a_k)$ be a vector of bits, which identify the node/prozessor v.
2. Set $l = |x|$.

Let $ID = (a_1, a_2, ..., a_k)$ be a vector of bits, which identify the node/prozessor v.

Set $l = |x|$.

Theorem

A graph of degree Δ may be colored with $\Delta + 1$ colors in time $O(\Delta \log n)$ on a distributed/parallel system.
Recursive Algorithm

RecureColor(x) (initial with x = 0):

1. Let ID = (a₁, a₂, ..., aₖ) be a vector of bits, which identify the node/prozessor v.
2. Set l = |x|.
3. If l = k then set c(v) = 1 and return.

\[U_x = \{(a_1, a_2, ..., a_k - |x|, x) \mid a_i \in \{0, 1\}\} \]

Theorem

A graph of degree Δ may be colored with Δ + 1 colors in time \(O(\Delta \log n)\) on a distributed/parallel system.
Recursive Algorithm

RecurseColor(x) (initial with x = ε):

1. Let ID = (a₁, a₂, ..., aₖ) be a vector of bits, which identify the node/prozessor v.
2. Set l = |x|.
3. If l = k then set c(v) = 1 and return.
4. Set b = aₖ−l.

\[U_x = \{(a_1, a_2, ..., a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

A graph of degree \(\Delta \) may be colored with \(\Delta + 1 \) colors in time \(O(\Delta \log n) \) on a distributed/parallel system.
Recursive Algorithm

RecurseColor(x) (initial with $x = \varepsilon$):

1. Let $ID = (a_1, a_2, \ldots, a_k)$ be a vector of bits, which identify the node/prozessor v.
2. Set $l = |x|$.
3. If $l = k$ then set $c(v) = 1$ and return.
4. Set $b = a_{k-l}$.
5. Set $c(v) = \text{RecurseColor}(bx)$.

Theorem

A graph of degree Δ may be colored with $\Delta + 1$ colors in time $O(\Delta \log n)$ on a distributed/parallel system.
Recursive Algorithm

RecurseColor(x) (initial with x = ε):

1. Let ID = (a_1, a_2, ..., a_k) be a vector of bits, which identify the node/prozessor v.
2. Set l = |x|.
3. If l = k then set c(v) = 1 and return.
4. Set b = a_{k-1}.
5. Set c(v) = RecurseColor(bx).
6. If b = 0 then return.

\[U_x = \{(a_1, a_2, ...a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

A graph of degree Δ may be colored with $\Delta + 1$ colors in time $O(\Delta \log n)$ on a distributed/parallel system.
Recursive Algorithm

RecurseColor(x) (initial with x = ε):

1. Let ID = (a₁, a₂, ..., aₖ) be a vector of bits, which identify the node/prozessor v.
2. Set l = |x|.
3. If l = k then set c(v) = 1 and return.
4. Set b = aₖ−l.
5. Set c(v) = RecurseColor(bx).
6. If b = 0 then return.
7. For round i from 1 to Δ + 1 do

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

A graph of degree Δ may be colored with Δ + 1 colors in time \(O(Δ \log n)\) on a distributed/parallel system.
Recursive Algorithm

RecurseColor(x) (initial with $x = \epsilon$):

1. Let $ID = (a_1, a_2, ..., a_k)$ be a vector of bits, which identify the node/prozessor v.
2. Set $l = |x|$.
3. If $l = k$ then set $c(v) = 1$ and return.
4. Set $b = a_k - l$.
5. Set $c(v) = \text{RecurseColor}(bx)$.
6. If $b = 0$ then return.
7. For round i from 1 to $\Delta + 1$ do
 1. if $c(v) = i$ then $c(v) = \min\{1, 2, ..., \Delta + 1\} \cup \{v\} \cup \{c(a)\}$

Theorem

A graph of degree Δ may be colored with $\Delta + 1$ colors in time $O(\Delta \log n)$ on a distributed/parallel system.
Independent Set

\[U_x = \{ (a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\} \} \]

- \(V' \subset V \) with \(\forall a, b \in V' : (a, b) \not\in E \) is called independent set.
Independent Set

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- \(V' \subset V \) with \(\forall a, b \in V' : (a, b) \not\in E \) is called independent set.
- \(\alpha(G) = \max\{ |V'| ; V' \subset V \land \forall a, b \in V' : (a, b) \not\in E \} \).
Independent Set

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- \(V' \subset V \) with \(\forall a, b \in V' : (a, b) \notin E \) is called independent set.

- \(\alpha(G) = \max\{ |V'| : V' \subset V \land \forall a, b \in V' : (a, b) \notin E \} \).

- The problem of finding an independent set of size \(n/2 \) is NP-complete.
Independent Set

\[U_x = \{ (a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\} \} \]

- \(V' \subset V \) with \(\forall a, b \in V' : (a, b) \notin E \) is called independent set.
- \(\alpha(G) = \max \{ |V'| ; V' \subset V \land \forall a, b \in V' : (a, b) \notin E \} \).
- The problem of finding an independent set of size \(n/2 \) is NP-complete.
- A independent set \(I \) is call maximal iff there is no larger independent set containing \(I \).
Independent Set

- \(V' \subset V \) with \(\forall a, b \in V' : (a, b) \notin E \) is called independent set.
- \(\alpha(G) = \max\{ |V'| ; \ V' \subset V \ \land \ \forall a, b \in V' : (a, b) \notin E \} \).
- The problem of finding an independent set of size \(n/2 \) is NP-complete.
- A independent set \(I \) is call maximal iff there is no larger independent set containing \(I \).
- This is called MIS.
Independent Set

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- \(V' \subset V \) with \(\forall a, b \in V' : (a, b) \notin E \) is called independent set.

- \(\alpha(G) = \max \{ |V'| \mid V' \subset V \land \forall a, b \in V' : (a, b) \notin E \} \).

- The problem of finding an independent set of size \(n/2 \) is NP-complete.

- A independent set \(I \) is call maximal iff there is no larger independent set containing \(I \).

- This is called MIS.

- Finding the lexicographical first MIS is P-complete.
Independent Set

- \(V' \subseteq V \) with \(\forall a, b \in V' : (a, b) \notin E \) is called independent set.
- \(\alpha(G) = \max \{ |V'| ; \ V' \subseteq V \land \forall a, b \in V' : (a, b) \notin E \} \).
- The problem of finding an independent set of size \(n/2 \) is \(\text{NP-complete} \).
- A independent set \(I \) is call maximal iff there is no larger independent set containing \(I \).
- This is called MIS.
- Finding the lexicographical first MIS is \(\text{P-complete} \).
- Coloring and independent set have some relationship.
Independent Set

$U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$

- $V' \subset V$ with $\forall a, b \in V' : (a, b) \notin E$ is called independent set.
- $\alpha(G) = \max\{ |V'| ; \ V' \subset V \land \forall a, b \in V' : (a, b) \notin E \}$.
- The problem of finding an independent set of size $n/2$ is NP-complete.
- A independent set I is call maximal iff there is no larger independent set containing I.
- This is called MIS.
- Finding the lexicographical first MIS is P-complete.
- Coloring and independent set have some relationship.
- The nodes of one color form an independent set.
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots a_{k-|x|}, x) \mid a_i \in \{0, 1\} \} \]

- Idea: use a coloring to compute a MIS:
Independent Set and Coloring

- Idea: use a coloring to compute a MIS:
 1. For all nodes set $b(v) = 0$.

$$U_k = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$$
Independent Set and Coloring

- Idea: use a coloring to compute a MIS:
 1. For all nodes set $b(v) = 0$.
 2. For all i from 1 to $\chi(G)$ do

$U_x = \{(a_1, a_2, \ldots, a_k - |x|, x) \mid a_i \in \{0, 1\}\}$
Independent Set and Coloring

- Idea: use a coloring to compute a MIS:
 1. For all nodes set $b(v) = 0$.
 2. For all i from 1 to $\chi(G)$ do
 - if $b(v) = 0$ then set $b(v) = 1$.

$$U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\}$$
Idea: use a coloring to compute a MIS:

1. For all nodes set $b(v) = 0$.
2. For all i from 1 to $\chi(G)$ do
 - if $b(v) = 0$ then set $b(v) = 1$.
 - if some neighbor of v has $b(v) = 1$ then set $b(v) = -1$.

$U_x = \{(a_1, a_2, \ldots, a_k - |x|, x) | a_i \in \{0, 1\}\}$
Independent Set and Coloring

- Idea: use a coloring to compute a MIS:
 1. For all nodes set $b(v) = 0$.
 2. For all i from 1 to $\chi(G)$ do
 1. if $b(v) = 0$ then set $b(v) = 1$.
 2. if some neighbor of v has $b(v) = 1$ then set $b(v) = -1$.

- This will produce in time is $O(\chi(G))$.

$U_x = \{(a_1, a_2, ..., a_{|x|}, x) \mid a_i \in \{0, 1\}\}$
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots, a_k - |x|, x) \mid a_i \in \{0, 1\}\} \]

Theorem

There is a deterministic \(O(\log^* n) \) time algorithm for MIS on cycles, trees and bounded degree graphs of \(n \) processors.
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

There is a deterministic \(O(\log^* n) \) time algorithm for MIS on cycles, trees and bounded degree graphs of \(n \) processors.

Theorem

There is a deterministic \(O(\Delta \log n) \) time algorithm for MIS on any graph of \(n \) processors.
Independent Set and Coloring

Theorem

There is a deterministic $O(\log^* n)$ time algorithm for MIS on cycles, trees and bounded degree graphs of n processors.

Theorem

There is a deterministic $O(\Delta \log n)$ time algorithm for MIS on any graph of n processors.

Theorem

Any deterministic distributed algorithm needs at least $1/2(\log^* n - 1)$ rounds to color a cycle of length n with 3 colors.
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots a_{|x|-1}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

There is a deterministic \(O(\log^ n)\) time algorithm for MIS on cycles, trees and bounded degree graphs of \(n\) processors.*

Theorem

There is a deterministic \(O(\Delta \log n)\) time algorithm for MIS on any graph of \(n\) processors.

Theorem

Any deterministic distributed algorithm needs at least \(1/2(\log^ n − 1)\) rounds to color a cycle of length \(n\) with 3 colors.*

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n\) uses \(1/2(\log^ n − 3)\) rounds.*
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots, a_{k - |x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(\frac{1}{2}(\log^* n - 3) \) rounds.

- We have a lower bound of \(\frac{1}{2}(\log^* n - 1) \) for 3-coloring a cycle of length \(n \).
Independent Set and Coloring

\[U_x = \{ (a_1, a_2, \ldots a_{k - |x|}, x) | a_i \in \{0, 1\} \} \]

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(1/2 (\log^* n - 3) \) rounds.

- We have a lower bound of \(1/2 (\log^* n - 1) \) for 3-coloring a cycle of length \(n \).
- We have to show, given a MIS we may color the cycle in just one more round.
Independent Set and Coloring

\[
U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}
\]

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(1/2(\log^ n - 3) \) rounds.*

- We have a lower bound of \(1/2(\log^* n - 1) \) for 3-coloring a cycle of length \(n \).
- We have to show, given a MIS we may color the cycle in just one more round.
- We may assume we have some cyclic order on the nodes.
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(1/2(\log^* n - 3) \) rounds.

- We have a lower bound of \(1/2(\log^* n - 1) \) for 3-coloring a cycle of length \(n \).
- We have to show, given a MIS we may color the cycle in just one more round.
- We may assume we have some cyclic order on the nodes.
- Each node which is in the MIS colors itself with color 1.
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(1/2(\log^* n - 3) \) rounds.

- We have a lower bound of \(1/2(\log^* n - 1) \) for 3-coloring a cycle of length \(n \).
- We have to show, given a MIS we may color the cycle in just one more round.
- We may assume we have some cyclic order on the nodes.
- Each node which is in the MIS colors itself with color 1.
- Each node which is in the MIS sends a 2 to the neighbor to the right.
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots, a_k - |x|, x) \mid a_i \in \{0, 1\}\} \]

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(1/2(\log^ n - 3) \) rounds.*

- We have a lower bound of \(1/2(\log^* n - 1) \) for 3-coloring a cycle of length \(n \).
- We have to show, given a MIS we may color the cycle in just one more round.
- We may assume we have some cyclic order on the nodes.
- Each node which is in the MIS colors itself with color 1.
- Each node which is in the MIS sends a 2 to the neighbor to the right.
- Each node receiving a 2 colors itself with color 2.
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(1/2(\log^* n - 3) \) rounds.

- We have a lower bound of \(1/2(\log^* n - 1) \) for 3-coloring a cycle of length \(n \).
- We have to show, given a MIS we may color the cycle in just one more round.
- We may assume we have some cyclic order on the nodes.
- Each node which is in the MIS colors itself with color 1.
- Each node which is in the MIS sends a 2 to the neighbor to the right.
- Each node receiving a 2 colors itself with color 2.
- Each node not receiving a 2 colors itself with color 3.
Independent Set and Coloring

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem

Any deterministic distributed MIS algorithm on a cycle of length \(n \) uses \(1/2(\log^ n - 3) \) rounds.*

- We have a lower bound of \(1/2(\log^* n - 1) \) for 3-coloring a cycle of length \(n \).
- We have to show, given a MIS we may color the cycle in just one more round.
- We may assume we have some cyclic order on the nodes.
- Each node which is in the MIS colors itself with color 1.
- Each node which is in the MIS sends a 2 to the neighbor to the right.
- Each node receiving a 2 colors itself with color 2.
- Each node not receiving a 2 colors itself with color 3.
- There are no non-colored nodes (see definition of MIS).
Planar graphs

\[U_x = \{(a_1, a_2, \ldots, a_k - |x|, x) \mid a_i \in \{0, 1\}\} \]

Definition

A graph \(G = (V, E) \) is called planar if there is an embedding into the plane without crossings.

- It holds for planar graphs that \(|E| \leq 3 \cdot |V| - 6. \)
Planar graphs

Definition

A graph $G = (V, E)$ is called planar if there is an embedding into the plane without crossings.

- It holds for planar graphs that $|E| \leq 3 \cdot |V| - 6$.
- $K_{3,3}$ and K_5 are not planar.
Planar graphs

Definition

A graph $G = (V, E)$ is called planar if there is an embedding into the plane without crossings.

- It holds for planar graphs that $|E| \leq 3 \cdot |V| - 6$.
- $K_{3,3}$ and K_5 are not planar.
- Planar graphs have nodes of degree ≤ 5.

$U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\}$
Planar graphs

Definition

A graph $G = (V, E)$ is called planar if there is an embedding into the plane without crossings.

- It holds for planar graphs that $|E| \leq 3 \cdot |V| - 6$.
- $K_{3,3}$ and K_5 are not planar.
- Planar graphs have nodes of degree ≤ 5.
- Planar graphs are 4 colorable.
Planar graphs

\[U_x = \{(a_1, a_2, \ldots a_{k-\lvert x\rvert}, x) \mid a_i \in \{0, 1\}\} \]

Definition

A graph \(G = (V, E) \) is called planar if there is an embedding into the plane without crossings.

- It holds for planar graphs that \(\lvert E \rvert \leq 3 \cdot \lvert V \rvert - 6 \).
- \(K_{3,3} \) and \(K_5 \) are not planar.
- Planar graphs have nodes of degree \(\leq 5 \).
- Planar graphs are 4 colorable.
- A window is a closed region which is limited by a path.
Outer planar graphs

Definition
A graph $G = (V, E)$ is outerplanar if there is an embedding into the plane without crossings such that all nodes lie on the outer window.

- It holds for outerplanar graphs that $|E| \leq 2 \cdot |V| - 3$.

$$U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\}$$
Outer planar graphs

Definition

A graph $G = (V, E)$ is outerplanar if there is an embedding into the plane without crossings such that all nodes lie on the outer window.

- It holds for outerplanar graphs that $|E| \leq 2 \cdot |V| - 3$.
- $K_{2,3}$ and K_4 are outerplanar.
Outer planar graphs

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

Definition

A graph \(G = (V, E) \) is outerplanar if there is an embedding into the plane without crossings such that all nodes lie on the outer window.

- It holds for outerplanar graphs that \(|E| \leq 2 \cdot |V| - 3\).
- \(K_{2,3} \) and \(K_4 \) are outerplanar.
- **Outer planar graphs have nodes with degree \(\leq 2 \).**
Outer planar graphs

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

Definition

A graph \(G = (V, E) \) is outerplanar if there is an embedding into the plane without crossings such that all nodes lie on the outer window.

- It holds for outerplanar graphs that \(|E| \leq 2 \cdot |V| - 3\).
- \(K_{2,3} \) and \(K_4 \) are outerplanar.
- Outer planar graphs have nodes with degree \(\leq 2 \).
- Outer planar graphs are 3 colorable.
Outer planar graphs

A graph $G = (V, E)$ is outerplanar if there is an embedding into the plane without crossings such that all nodes lie on the outer window.

- It holds for outerplanar graphs that $|E| \leq 2 \cdot |V| - 3$.
- $K_{2,3}$ and K_4 are outerplanar.
- Outer planar graphs have nodes with degree ≤ 2.
- Outer planar graphs are 3 colorable.
- The inner windows form a tree.
Overview of the Algorithm

Let G be a connected outerplanar graph.
Overview of the Algorithm

- Let G be a connected outerplanar graph.
- Compute the outer edges.

Let G be a connected outerplanar graph.

$$U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$$
Overview of the Algorithm

- Let G be a connected outerplanar graph.
- Compute the outer edges.
- Direct the outer edges such that they form a cycle.

\[U_x = \{(a_1, a_2, \ldots a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]
Overview of the Algorithm

Let G be a connected outerplanar graph.

- Compute the outer edges.
- Direct the outer edges such that they form a cycle.
- Determine the location and orientation of the inner edges and double those to two directed edges.
Overview of the Algorithm

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

Let \(G \) be a connected outerplanar graph.

- Compute the outer edges.
- Direct the outer edges such that they form a cycle.
- Determine the location and orientation of the inner edges and double those to two directed edges.
- Compute a directed cycle for every window.
Overview of the Algorithm

Let G be a connected outerplanar graph.

- Compute the outer edges.
- Direct the outer edges such that they form a cycle.
- Determine the location and orientation of the inner edges and double those to two directed edges.
- Compute a directed cycle for every window.
- Color every window independently.

\[
U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\}
\]
Overview of the Algorithm

- Let G be a connected outerplanar graph.
- Compute the outer edges.
- Direct the outer edges such that they form a cycle.
- Determine the location and orientation of the inner edges and double those to two directed edges.
- Compute a directed cycle for every window.
- Color every window independently.
- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.

$$U_x = \{(a_1, a_2, …a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$$
Overview of the Algorithm

Let G be a connected outerplanar graph.

- Compute the outer edges.
- Direct the outer edges such that they form a cycle.
- Determine the location and orientation of the inner edges and double those to two directed edges.
- Compute a directed cycle for every window.
- Color every window independently.
- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
- Combine the cycles into pairs of layers of bigger correctly colored objects.

$$U_x = \{(a_1, a_2, ..., a_k-|x|), x) \mid a_i \in \{0, 1\}\}$$
Overview of the Algorithm

Let G be a connected outerplanar graph.

- Compute the outer edges.
- Direct the outer edges such that they form a cycle.
- Determine the location and orientation of the inner edges and double those to two directed edges.
- Compute a directed cycle for every window.
- Color every window independently.
- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
- Combine the cycles into pairs of layers of bigger correctly colored objects.
- Repeat the last step until the whole graph is colored correctly.

$$U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$$
Details of the algorithm.

- Compute the outer edges.

\[U_x = \{ (a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\} \} \]
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Compute the outer edges.
 - Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
Details of the algorithm.

\[U_x = \{(a_1, a_2, ..., a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Compute the outer edges.
 - Test for edge \{v, w\} if \(G \setminus \{v, w\} \) separates.
 - A test: \(O(\log^2 n) \) time using \(O(n^2 / \log^2 n) \) processors.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Compute the outer edges.
 - Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
 - A test: \(O(\log^2 n) \) time using \(O(n^2 / \log^2 n) \) processors.
 - Total: \(O(\log^2 n) \) time with \(O(n^3 / \log^2 n) \) processors.
Details of the algorithm.

- Compute the outer edges.
 - Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
 - A test: \(O(\log^2 n) \) time using \(O(n^2/\log^2 n) \) processors.
 - Total: \(O(\log^2 n) \) time with \(O(n^3/\log^2 n) \) processors.

- Direct the outer edges such that they form a cycle.

\[
U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}
\]
Details of the algorithm.

Let \(U_x = \{(a_1, a_2, \ldots, a_k - |x|, x) \mid a_i \in \{0, 1\}\} \)

- Compute the outer edges.
 - Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
 - A test: \(O(\log^2 n) \) time using \(O(n^2 / \log^2 n) \) processors.
 - Total: \(O(\log^2 n) \) time with \(O(n^3 / \log^2 n) \) processors.

- Direct the outer edges such that they form a cycle.
 - Create for every outer edge two opposing directed edges.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Compute the outer edges.
 - Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
 - A test: \(O(\log^2 n) \) time using \(O(n^2 / \log^2 n) \) processors.
 - Total: \(O(\log^2 n) \) time with \(O(n^3 / \log^2 n) \) processors.

- Direct the outer edges such that they form a cycle.
 - Create for every outer edge two opposing directed edges.
 - Sort the edges lexicographical in \(K_1, K_2, \ldots, K_{2.m} \).
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Compute the outer edges.
 - Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
 - A test: \(O(\log^2 n) \) time using \(O(n^2 / \log^2 n) \) processors.
 - Total: \(O(\log^2 n) \) time with \(O(n^3 / \log^2 n) \) processors.

- Direct the outer edges such that they form a cycle.
 - Create for every outer edge two opposing directed edges.
 - Sort the edges lexicographical in \(K_1, K_2, \ldots, K_{2 \cdot m} \).
 - Successor of \(K_x = (i, j) \) is \(K_{2 \cdot j} = (r, s) \) if \(s \neq i \).
Details of the algorithm.

\[U_x = \{ (a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\} \} \]

- Compute the outer edges.
 - Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
 - A test: \(O(\log^2 n) \) time using \(O(n^2 / \log^2 n) \) processors.
 - Total: \(O(\log^2 n) \) time with \(O(n^3 / \log^2 n) \) processors.

- Direct the outer edges such that they form a cycle.
 - Create for every outer edge two opposing directed edges.
 - Sort the edges lexicographical in \(K_1, K_2, \ldots, K_{2^m} \).
 - Successor of \(K_x = (i, j) \) is \(K_{2^j} = (r, s) \) if \(s \neq i \).
 - Successor of \(K_x = (i, j) \) is \(K_{2^j+1} = (r, s) \) if \(s \neq i \).
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Compute the outer edges.
 - Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
 - A test: \(O(\log^2 n) \) time using \(O(n^2 / \log^2 n) \) processors.
 - Total: \(O(\log^2 n) \) time with \(O(n^3 / \log^2 n) \) processors.

- Direct the outer edges such that they form a cycle.
 - Create for every outer edge two opposing directed edges.
 - Sort the edges lexicographical in \(K_1, K_2, \ldots, K_{2m} \).
 - Successor of \(K_x = (i, j) \) is \(K_{2j} = (r, s) \) if \(s \neq i \).
 - Successor of \(K_x = (i, j) \) is \(K_{2j+1} = (r, s) \) if \(s \neq i \).
 - Choose a cycle.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}\]

- Compute the outer edges.
 - Test for edge \(\{v, w\}\) if \(G \setminus \{v, w\}\) separates.
 - A test: \(O(\log^2 n)\) time using \(O(n^2 / \log^2 n)\) processors.
 - Total: \(O(\log^2 n)\) time with \(O(n^3 / \log^2 n)\) processors.

- Direct the outer edges such that they form a cycle.
 - Create for every outer edge two opposing directed edges.
 - Sort the edges lexicographical in \(K_1, K_2, \ldots, K_{2 \cdot m}\).
 - Successor of \(K_x = (i, j)\) is \(K_{2 \cdot j} = (r, s)\) if \(s \neq i\).
 - Successor of \(K_x = (i, j)\) is \(K_{2 \cdot j+1} = (r, s)\) if \(s \neq i\).
 - Choose a cycle.
 - Determine the position of every node on the cycle.
Details of the algorithm.

Compute the outer edges.

- Test for edge \(\{v, w\} \) if \(G \setminus \{v, w\} \) separates.
- A test: \(O(\log^2 n) \) time using \(O(n^2 / \log^2 n) \) processors.
- Total: \(O(\log^2 n) \) time with \(O(n^3 / \log^2 n) \) processors.

Direct the outer edges such that they form a cycle.

- Create for every outer edge two opposing directed edges.
- Sort the edges lexicographical in \(K_1, K_2, \cdots, K_{2m} \).
- Successor of \(K_x = (i, j) \) is \(K_{2j} = (r, s) \) if \(s \neq i \).
- Successor of \(K_x = (i, j) \) is \(K_{2j+1} = (r, s) \) if \(s \neq i \).
- Choose a cycle.
- Determine the position of every node on the cycle.
- Total running time: \(O(\log n) \) time with \(O(n) \) processors.

\[
U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\}
\]
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0,1\}\} \]

- Determine the location and orientation of the inner node.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Determine the location and orientation of the inner node.
 - Sort the inner edges \{a, a_1\}, \{a, a_2\}, \{a, a_3\}, \cdots at the node a is given by the location of the nodes a_1, a_2, \cdots on the cycle.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Determine the location and orientation of the inner node.
 - Sort the inner edges \(\{a, a_1\}, \{a, a_2\}, \{a, a_3\}, \cdots \) at the node \(a \) is given by the location of the nodes \(a_1, a_2, \cdots \) on the cycle.
 - Total running time: \(O(\log n) \) time with \(O(n) \) processors.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Determine the location and orientation of the inner node.
 - Sort the inner edges \(\{a, a_1\}, \{a, a_2\}, \{a, a_3\}, \ldots \) at the node \(a \) is given by the location of the nodes \(a_1, a_2, \ldots \) on the cycle.
 - Total running time: \(O(\log n) \) time with \(O(n) \) processors.

- Create for every outer edge two opposing directed edges.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Determine the location and orientation of the inner node.
 - Sort the inner edges \(\{a, a_1\}, \{a, a_2\}, \{a, a_3\}, \ldots \) at the node \(a \) is given by the location of the nodes \(a_1, a_2, \ldots \) on the cycle.
 - Total running time: \(O(\log n) \) time with \(O(n) \) processors.

- Create for every outer edge two opposing directed edges.
- Determine the directed cycle in every window.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Determine the location and orientation of the inner node.
 - Sort the inner edges \{a, a_1\}, \{a, a_2\}, \{a, a_3\}, \cdots at the node \(a\) is given by the location of the nodes \(a_1, a_2, \cdots\) on the cycle.
 - Total running time: \(O(\log n)\) time with \(O(n)\) processors.

- Create for every outer edge two opposing directed edges.

- Determine the directed cycle in every window.
 - Compute new successors using the order of the edges at every node.
Details of the algorithm.

\[U_x = \left\{ (a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\} \right\} \]

- Determine the location and orientation of the inner node.
 - Sort the inner edges \(\{a, a_1\}, \{a, a_2\}, \{a, a_3\}, \cdots \) at the node \(a \) is given by the location of the nodes \(a_1, a_2, \cdots \) on the cycle.
 - Total running time: \(O(\log n) \) time with \(O(n) \) processors.

- Create for every outer edge two opposing directed edges.

- Determine the directed cycle in every window.
 - Compute new successors using the order of the edges at every node.
 - Compute new cycles and representatives.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Determine the location and orientation of the inner node.
 - Sort the inner edges \(\{a, a_1\}, \{a, a_2\}, \{a, a_3\}, \ldots \) at the node \(a \) is given by the location of the nodes \(a_1, a_2, \ldots \) on the cycle.
 - Total running time: \(O(\log n) \) time with \(O(n) \) processors.

- Create for every outer edge two opposing directed edges.

- Determine the directed cycle in every window.
 - Compute new successors using the order of the edges at every node.
 - Compute new cycles and representatives.
 - Total running time: \(O(\log n) \) with \(O(n) \) processors.
Details of the algorithm.

\[U_x = \{ (a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\} \} \]

- Color every window independently.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Color every window independently.
- Total running time: \(O(\log^* n) \) with \(O(n) \) processors.
Details of the algorithm.

- Color every window independently.
 - Total running time: $O(\log^* n)$ with $O(n)$ processors.

- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.

\[U_x = \{ (a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\} \} \]
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_k - |x|), x) \mid a_i \in \{0, 1\}\]
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Color every window independently.
 - Total running time: \(O(\log^* n) \) with \(O(n) \) processors.

- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
 - Using the inner edges the neighborhood can be read directly.
 - The depth of the nodes can be computed using the ranking in the list.
Details of the algorithm.

- Color every window independently.
 - Total running time: $O(\log^* n)$ with $O(n)$ processors.
- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
 - Using the inner edges the neighborhood can be read directly.
 - The depth of the nodes can be computed using the ranking in the list.
 - Total running time: $O(\log n)$ using $O(n)$ processors.

$$U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\}$$
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots a_k, x) \mid a_i \in \{0, 1\}\} \]

- Color every window independently.
 - Total running time: \(O(\log^* n)\) with \(O(n)\) processors.
- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
 - Using the inner edges the neighborhood can be read directly.
 - The depth of the nodes can be computed using the ranking in the list.
 - Total running time: \(O(\log n)\) using \(O(n)\) processors.
- Combine the cycles into pairs of layers of bigger correctly colored objects.
Details of the algorithm.

- Color every window independently.
 - Total running time: $O(\log^* n)$ with $O(n)$ processors.

- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
 - Using the inner edges the neighborhood can be read directly.
 - The depth of the nodes can be computed using the ranking in the list.
 - Total running time: $O(\log n)$ using $O(n)$ processors.

- Combine the cycles into pairs of layers of bigger correctly colored objects.
 - The child cycle orients itself to the coloring of the parent cycle.
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Color every window independently.
 - Total running time: \(O(\log^* n)\) with \(O(n)\) processors.

- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
 - Using the inner edges the neighborhood can be read directly.
 - The depth of the nodes can be computed using the ranking in the list.
 - Total running time: \(O(\log n)\) using \(O(n)\) processors.

- Combine the cycles into pairs of layers of bigger correctly colored objects.
 - The child cycle orients itself to the coloring of the parent cycle.
 - Total: \(O(1)\) time with \(O(n)\) processors.
Details of the algorithm.

- Color every window independently.
 - Total running time: \(O(\log^* n) \) with \(O(n) \) processors.

- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
 - Using the inner edges the neighborhood can be read directly.
 - The depth of the nodes can be computed using the ranking in the list.
 - Total running time: \(O(\log n) \) using \(O(n) \) processors.

- Combine the cycles into pairs of layers of bigger correctly colored objects.
 - The child cycle orients itself to the coloring of the parent cycle.
 - Total: \(O(1) \) time with \(O(n) \) processors.

- Repeat the last step until the whole graph is colored correctly.

\[
U_x = \{(a_1, a_2, \ldots, a_{|x|-1}, x) \mid a_i \in \{0, 1\}\}
\]
Details of the algorithm.

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

- Color every window independently.
 - Total running time: \(O(\log^* n) \) with \(O(n) \) processors.

- Determine the tree structure of the windows i.e. every cycle corresponds to nodes in the tree.
 - Using the inner edges the neighborhood can be read directly.
 - The depth of the nodes can be computed using the ranking in the list.
 - Total running time: \(O(\log n) \) using \(O(n) \) processors.

- Combine the cycles into pairs of layers of bigger correctly colored objects.
 - The child cycle orients itself to the coloring of the parent cycle.
 - Total: \(O(1) \) time with \(O(n) \) processors.

- Repeat the last step until the whole graph is colored correctly.
 - Total: \(O(\log n) \) time with \(O(n) \) processors.
Facts

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem:

A two-connected outerplanar graph can be colored with three colors using time \(O(\log^2 n)\) and \(O(n^3/\log^2 n)\) processors.

Proof: See above.
Facts

\[U_x = \{(a_1, a_2, \ldots, a_k, x) \mid a_i \in \{0, 1\}\} \]

Theorem:

A two-connected outerplanar graph can be colored with three colors using time \(O(\log^2 n) \) and \(O(n^3 / \log^2 n) \) processors.

Proof: See above.

Theorem:

An outerplanar graph can be colored with three colors using time \(O(\log^2 n) \) and \(O(n^3 / \log^2 n) \) processors.

Proof: Use similarly the tree structure of the two connected components.
Facts

$U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\}$

Theorem:

A two-connected outerplanar graph can be colored with three colors using time $O(\log^2 n)$ and $O(n^3 / \log^2 n)$ processors.

Proof: See above.

Theorem:

An outerplanar graph can be colored with three colors using time $O(\log^2 n)$ and $O(n^3 / \log^2 n)$ processors.

Proof: Use similarly the tree structure of the two connected components.

Theorem:

A planar graph can be colored with six colors in time $O(\log^2 n)$ with $O(n)$ processors.

Proof: See exercise.
Results without proof

Theorem:
The edges of an outerplanar graph G with $\Delta(G) \leq 3$ and known embedding in the plane can be colored using three colors in time $O(\log^2 n)$ with $O(n^2)$ processors.

Idea if the proof: Similar procedure then above.
Results without proof

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem:

The edges of an outerplanar graph \(G \) with \(\Delta(G) \leq 3 \) and known embedding in the plane can be colored using three colors in time \(O(\log^2 n) \) with \(O(n^2) \) processors.

Idea if the proof: Similar procedure then above.

Theorem:

The edges of an outerplanar graph \(G \) with known embedding in the plane can be colored with three colors in time \(O(\log^3 n) \) with \(O(n^2) \) colors.

Proof: See literature.
Simulations

Theorem:

A program A for a CREW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an EREW PRAM with $P_A(n)^2$ processors in time $O(T_A(n) \log n)$.

$U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\}$
Simulations

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem:
A program \(A \) for a CREW PRAM with \(P_A(n) \) processors and running time \(T_A(n) \) can be simulated with an EREW PRAM with \(P_A(n)^2 \) processors in time \(O(T_A(n) \log n) \).

Theorem:
A program \(A \) for a CRCW PRAM with \(P_A(n) \) processors and running time \(T_A(n) \) can be simulated with an CREW PRAM with \(P_A(n)^2 \) processors in time \(O(T_A(n) \log n) \).
Simulations

\[U_x = \{(a_1, a_2, \ldots, a_{k-|x|}, x) \mid a_i \in \{0, 1\}\} \]

Theorem:
A program \(A \) for a CREW PRAM with \(P_A(n) \) processors and running time \(T_A(n) \) can be simulated with an EREW PRAM with \(P_A(n)^2 \) processors in time \(O(T_A(n) \log n) \).

Theorem:
A program \(A \) for a CRCW PRAM with \(P_A(n) \) processors and running time \(T_A(n) \) can be simulated with an CREW PRAM with \(P_A(n)^2 \) processors in time \(O(T_A(n) \log n) \).

Theorem:
A program \(A \) for a CRCW PRAM with \(P_A(n) \) processors and running time \(T_A(n) \) can be simulated with an EREW PRAM with \(P_A(n)^2 \) processors in time \(O(T_A(n) \log n) \).
Simulations II

Theorem:

A program A for a CREW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an EREW PRAM with $P_A(n)$ processors in time $O(T_A(n) \log n)$.
Theorem:
A program A for a CREW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an EREW PRAM with $P_A(n)$ processors in time $O(T_A(n) \log n)$.

Theorem:
A program A for a CRCW PRAM with $P_A(n)$ processors and running time $T_A(n)$ can be simulated with an CREW PRAM with $P_A(n)$ processors in time $O(T_A(n) \log n)$.

$U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\}$
Simulations II

\[U_x = \{(a_1, a_2, \ldots, a_k, x), x) \mid a_i \in \{0, 1\}\} \]

Theorem:
A program \(A \) for a CREW PRAM with \(P_A(n) \) processors and running time \(T_A(n) \) can be simulated with an EREW PRAM with \(P_A(n) \) processors in time \(O(T_A(n) \log n) \).

Theorem:
A program \(A \) for a CRCW PRAM with \(P_A(n) \) processors and running time \(T_A(n) \) can be simulated with an CREW PRAM with \(P_A(n) \) processors in time \(O(T_A(n) \log n) \).

Theorem:
A program \(A \) for a CRCW PRAM with \(P_A(n) \) processors and running time \(T_A(n) \) can be simulated with an EREW PRAM with \(P_A(n) \) processors in time \(O(T_A(n) \log n) \).
$U_x = \{(a_1, a_2, \ldots, a_{|x|}, x) \mid a_i \in \{0, 1\}\}$

Literature: