Exercises appear at the i1 homepage (http://algo.rwth-aachen.de/en/Lehre/SS17/Online.php) on Friday.

You have seven days to create a solution and it must be done in a group of two or three students.

Write the name, group number and enrollment number of each group member on every sheet that you hand in.

To achieve the permission for the exam you must earn 50% of the sum of all points and present one of your solutions at least once.

You can earn 50% bonus points by presenting your solution. At the beginning of every exercise session, you can mark the exercises that you want to present.

If a student is not able to present a correct solution although he/she marked the exercise as presentable, he/she will lose all of his/her points on the exercise sheet.

Exercise 1 (6 points)

Assume you have a randomized adversary and an instances set $I = \{I_i|1 \leq i \leq k + 1\}$. We have two deterministic algorithms A_1 and A_2 that try to maximize their gain. We define $h(j, i) = \frac{\text{gain}(\text{OPT}(I_i))}{\text{gain}(A_j(I_i))}$. The table below is filled with the corresponding $h(j, i)$. Thus, the table gives $\forall j, i : \text{gain}(A_j(I_i))$ and $\text{gain}(\text{OPT}(I_i))$. The adversary chooses the following probability distribution. Instance I_i with $i < k$ is chosen with a probability of $\frac{1}{2^i+1}$. Instance I_{k+1} is chosen with a probability of $\frac{1}{2^k}$ and for I_k remains a probability of $\frac{1}{2^k}$.

<table>
<thead>
<tr>
<th></th>
<th>I_1</th>
<th>I_2</th>
<th>I_3</th>
<th>...</th>
<th>I_i</th>
<th>...</th>
<th>I_k</th>
<th>I_{k+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{k}{2}$</td>
<td>$\frac{k}{3}$</td>
<td>...</td>
<td>$\frac{k}{i}$</td>
<td>...</td>
<td>$\frac{k}{k}$</td>
<td>$\frac{2k}{2k}$</td>
</tr>
<tr>
<td>A_2</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{k}{2}$</td>
<td>$\frac{k}{3}$</td>
<td>...</td>
<td>$\frac{k}{i}$</td>
<td>...</td>
<td>$\frac{k}{k}$</td>
<td>$\frac{2k}{2k}$</td>
</tr>
</tbody>
</table>

Use Yao’s principle to derive a lower bound for an arbitrary randomized algorithm A_R.

Exercise 2 (4 points)

The cow wants to help the cats on the farm. They are fighting every day about the sleeping places S. The cow knows that the number of cats $|C|$ is equal to the number of sleeping places $|S|$. Moreover the cow knows that it is possible that every cat has a sleeping place and is happy (perfect Matching). As a cow, she does the obvious. She creates a list of sleeping places S and asks every cat $c_i \in C$ independent of each other which sleeping places $S_i \subseteq S$ are acceptable.

The cow chooses now arbitrarily for each cat c_i, one of the acceptable sleeping places $s_i \in S_i$. Then the sleeping place is removed from the list of sleeping places S. If a cat c_j cannot be assigned to a sleeping place because it was assigned to a different cat c_i, with $i < j$, the cat is allowed to sleep on the back of a cow. The problem is that there are only half as many cows as cats.

a) The cats are worried that this approach will not work. Can you give a proof that the cow will always find a sleeping place for at least $\frac{|C|}{2}$ cats?

b) The cats realized that it is much more comfortable on the back of a cow than in any sleeping place. They try to trick the cow. They change their order in which they get assigned by the cow and lie about their favored sleeping places. What will the cats do? Make sure that your approach works for arbitrary many cats (more than one). Prove that it is possible that at most $\frac{|C|}{2}$ cats have a sleeping place.

c) Do you see a connection to the one-sided online matching problem for graphs with a perfect matching? Write one sentence with a short explanation.
Exercise 3 (3 points)

a) Use the method from the lecture to encode the numbers 4, 13 and 17 like on the advice tape.

b) Assume a different way to encode the advice string: Three consecutive bits are interpreted as one sign. The sign 111 denotes the end of the advice string. Argue why this approach is not superior to the method from the lecture.

c) Derive a method that uses $2\lceil \log(m) \rceil$ bits to encode the number m.

Exercise 4 (3 points)

Think of sorting as an online problem. The deterministic online algorithm knows the length of the instance n. A number $a_i \in \mathbb{N}$ arrives in time step i and needs an index $k_i \in \{1, \ldots, n\}$ such that $a_{k_i} < a_{k_j}$ for $k_i < k_j$ holds. If a number a_i gets a wrong index, the algorithm has to pay a penalty of 1.

a) Analyze the strict competitive ratio for this problem.

b) How many bits of advice are necessary to solve the problem optimal? Try to minimize the number of required bits.