Chapter 00: The friendship theorem

(Combinatorial Graph Theory, SS 2019)

Gerhard Woeginger

SS 2019, RWTH
Announcements

Lecture times:
- Monday, 12:30-14:00, room AH3
- Friday, 12:30-14:00, room AH3

Lecture: Gerhard Woeginger (E1, room 4024)
Instructions: Tim Hartmann (E1, room 4020)

Web-page:
https://algo.rwth-aachen.de/Lehre/SS19/KG/KG.py
The friendship theorem
The friendship theorem

Theorem (Erdős, Rényi, Sós, 1966)

Let $G = (V, E)$ be an undirected graph, in which every two (distinct) vertices have exactly one neighbor in common. Then there exists a vertex that is adjacent to all other vertices.

- G contains no C_4
- If $u, v \in V$ not adjacent, then $\deg(u) = \deg(v)$
- If $u, v \in V$ adjacent, then $\deg(u) = \deg(v)$
- G is k-regular and $n = |V| = k^2 - k + 1$
- $k \geq 3$
- Adjacency matrix A of G satisfies $A^2 = (k - 1)I + J$
- A^2 has Eigenvalues $k - 1$ (multiplicity $n - 1$) and k^2 (multiplicity 1)
- A has Eigenvalues $\pm k$ (multiplicity 1), $+\sqrt{k - 1}$ (multiplicity r); $-\sqrt{k - 1}$ (multiplicity s), where $r + s = n - 1$
Second proof by Craig Huneke (2002)

- G is k-regular and $n = |V| = k^2 - k + 1$
- For $v \in V$ let $f_v(\ell)$ denote the number of walks $v = v_0, v_1, v_2, \ldots, v_{\ell-2}, v_{\ell-1}, v_\ell = v$
- $f_v(\ell) = (k - 1) \cdot f_v(\ell - 2) + k^{\ell-2}$

For a prime divisor p of $k - 1$,
- let N denote the number of closed walks of length p in G
- N is a multiple of p
- $f_v(\ell) \equiv 1 \mod p$ and $N \equiv 1 \mod p$
A graph $G = (V, E)$ is an ℓ-friendship graph, if every pair of vertices is connected by precisely one (simple) path of length ℓ.

Conjecture (Anton Kotzig, 1977)

For $\ell \geq 3$, there are no ℓ-friendship graphs.

This conjecture has been proved for $3 \leq \ell \leq 33$.
Exercise

In a group of n persons, every pair is either friends or enemies. The group satisfies the following properties:

- Every person in the group has exactly three enemies.
- For every person, an enemy of a friend is automatically an enemy.

Find all possible values for n.