Chapter 07: Connectivity

(Combinatorial Graph Theory, SS 2019)

Gerhard Woeginger

SS 2019, RWTH
Lecture times:
- Monday, 12:30-14:00, room AH3
- Friday, 12:30-14:00, room AH3

Lecture: Gerhard Woeginger (E1, room 4024)
Instructions: Tim Hartmann (E1, room 4020)

Web-page:
https://algo.rwth-aachen.de/Lehre/SS19/KG/KG.py
Basic definitions (1)

Definition

Let $G = (V, E)$ be a graph.

- A subset $S \subseteq V$ is a **vertex-cut** (also called: cut-set, or separating set), if the graph $G - S$ is not connected.
- G is **k-connected**, if every vertex-cut contains at least k vertices.
- The **connectivity** $\kappa(G)$ of graph G is the largest k so that G is k-connected.
- The connectivity of K_n is $n - 1$.

- What is $\kappa(T)$ for a tree T?
- What is $\kappa(C_n)$?
- What is $\kappa(K_{s,t})$?
Definition

- Two paths are **independent**, if they share no common vertices, with the possible exception of their end-vertices.
- Two paths are **strictly independent**, if they share no common vertices.

Let $G = (V, E)$ be a graph, and let $X, Y \subseteq V$.

Definition

- An **X-Y-path** starts in X, traverses part of $V - (X \cup Y)$, and ends in Y.
- Sets X and Y are **linked** to each other, if $|X| = |Y|$ and there exist $|X|$ strictly independent X-Y-paths.
- A subset $Z \subseteq V$ **detaches** X from Y, if $G - Z$ contains no X-Y-path.
The linking theorem (1)

Let $G = (V, E)$ be a graph, and let $X, Y \subseteq V$.
Let $Z \subseteq V$ with $|Z| = k \geq 1$ be a smallest set that detaches X from Y.

Then there exist $X_0 \subseteq X$ and $Y_0 \subseteq Y$ with $|X_0| = |Y_0| = k$, so that X_0 is linked to Y_0.

Proof: by induction on the cardinality $|E|$.
In the first case, every k-element detaching set is X or Y.

- Without loss of generality $|X| = k$ and $X \not\subseteq Y$.
- Pick $x_0 \in X - Y$. There exists an edge $e_0 = \{x_0, v_0\}$ with $v_0 \notin X$.
- Define $G_0 = G - e_0$. Let $Z_0 \subseteq V$ be a smallest detaching set in G_0.
Assume $|Z_0| = k - 1$.

- $Z_0 \cup \{x_0\}$ and $Z_0 \cup \{v_0\}$ are detaching sets in G.
 Then $Z_0 \cup \{x_0\} = X$, since $x_0 \in X - Y$.
 Then $Z_0 \cup \{v_0\} = Y$, since $v_0 \notin X$.

ComGra/SS 2019
In the **second case**, there exists a k-element detaching set $Z \subseteq V$ with $Z \neq X$ and $Z \neq Y$.

- Let G_1 be subgraph induced by vertices on X-Z-paths.
 - Let G_2 be subgraph induced by vertices on Y-Z-paths.
- In G_1, one needs at least k vertices to detach X from Z.
 - By inductive hypothesis, there exists k-element $X_0 \subseteq X$ that is linked to Z in G_1.
- In G_2, one needs at least k vertices to detach Y from Z.
 - By inductive hypothesis, there exists k-element $Y_0 \subseteq Y$ that is linked to Z in G_2.
- Glue the paths in G_1 and in G_2 together.
Menger’s theorem

Theorem (Karl Menger, 1927)

Let $G = (V, E)$ be a graph, and let $x, y \in V$ with $\{x, y\} \notin E$. Let k be the maximum number of independent x-y-paths in G. Let ℓ be the minimum number of vertices in a vertex-cut that isolates x from y.

Then $k = \ell$.

Edge-version of Menger’s theorem:

- Let k be the maximum number of edge-disjoint x-y-paths
- Let ℓ be the cardinality of smallest isolating edge-cut
Hall’s theorem (Marriage theorem)

Theorem (Philip Hall, 1935)

Let \(G = (X \cup Y, E) \) be a bipartite graph that satisfies the Hall condition

\[
\forall A \subseteq X : |\Gamma(A)| \geq |A|
\]

Then \(G \) contains a matching of size \(|X|\).
k-connected graphs

Auxiliary lemma

Let $G = (V, E)$ be a k-connected graph.
Let H result from G by adding a new vertex y and connecting it to at least k vertices.

Then H is k-connected.

Theorem

Let $G = (V, E)$ be a graph with $|V| \geq k + 1$.
Then the following three statements are pairwise equivalent.

(a) G is k-connected

(b) Between any two vertices, there are at least k independent paths

(c) For every k-element subset $U \subseteq V$ and for every vertex $v \in V - U$, there exist k independent $x-U$-paths
Two-connected graphs

Theorem

Let \(G = (V, E) \) be a graph with \(|V| \geq 3\).
Then the following five statements are pairwise equivalent.

(a) \(G \) is 2-connected
(b) \(G \) has no cut-vertex
(c) For any two vertices, there is a cycle containing them
(d) For any vertex and any edge, there is a cycle containing them
(e) For any two edges, there is a cycle containing them
Some exercises

Exercise
Prove or disprove:
A graph $G = (V, E)$ is 3-connected, if and only if for any three vertices $x, y, z \in V$ there exists a cycle containing them.

Exercise
Prove or disprove:
If the graph $G = (V, E)$ is k-connected, then for any k vertices there exists a cycle containing them.