Announcements

Lecture times:
- Monday, 12:30-14:00, room AH3
- Friday, 12:30-14:00, room AH3

Lecture: Gerhard Woeginger (E1, room 4024)
Instructions: Tim Hartmann (E1, room 4020)

Web-page:
https://algo.rwth-aachen.de/Lehre/SS19/KG/KG.py

No lecture on Monday, June 17.
Lecture on Friday, June 21.
Basic knowledge (1)

Definition

- **A proper vertex coloring** for a graph \(G = (V, E) \) is a function \(f : V \rightarrow \mathbb{N} \), so that \(f(u) \neq f(v) \) for all edges \(\{u, v\} \in E \).

- A graph \(G = (V, E) \) is **k-colorable**, if there exists a proper vertex coloring \(f : V \rightarrow \{1, \ldots, k\} \).

- The **chromatic number** \(\chi(G) \) of a graph is the smallest integer \(k \) so that \(G \) is \(k \)-colorable.
Basic knowledge (1)

Definition

- A **proper vertex coloring** for a graph $G = (V, E)$ is a function $f : V \rightarrow \mathbb{N}$, so that $f(u) \neq f(v)$ for all edges $\{u, v\} \in E$.

- A graph $G = (V, E)$ is **k-colorable**, if there exists a proper vertex coloring $f : V \rightarrow \{1, \ldots, k\}$.

- The **chromatic number** $\chi(G)$ of a graph is the smallest integer k so that G is k-colorable.

- What is $\chi(K_n)$?
Definition

- A **proper vertex coloring** for a graph \(G = (V, E) \) is a function \(f : V \to \mathbb{N} \), so that \(f(u) \neq f(v) \) for all edges \(\{u, v\} \in E \).
- A graph \(G = (V, E) \) is **k-colorable**, if there exists a proper vertex coloring \(f : V \to \{1, \ldots, k\} \).
- The **chromatic number** \(\chi(G) \) of a graph is the smallest integer \(k \) so that \(G \) is \(k \)-colorable.

- What is \(\chi(K_n) \)?
- What is \(\chi(T) \) for a tree \(T \)?
Basic knowledge (1)

Definition

- **A proper vertex coloring** for a graph \(G = (V, E) \) is a function \(f : V \to \mathbb{N} \), so that \(f(u) \neq f(v) \) for all edges \(\{u, v\} \in E \).
- A graph \(G = (V, E) \) is **\(k \)-colorable**, if there exists a proper vertex coloring \(f : V \to \{1, \ldots, k\} \).
- The **chromatic number** \(\chi(G) \) of a graph is the smallest integer \(k \) so that \(G \) is \(k \)-colorable.

- What is \(\chi(K_n) \)?
- What is \(\chi(T) \) for a tree \(T \)?
- What is \(\chi(K_{s,t}) \)?
Basic knowledge (1)

Definition

- A **proper vertex coloring** for a graph $G = (V, E)$ is a function $f : V \rightarrow \mathbb{N}$, so that $f(u) \neq f(v)$ for all edges $\{u, v\} \in E$.
- A graph $G = (V, E)$ is **k-colorable**, if there exists a proper vertex coloring $f : V \rightarrow \{1, \ldots, k\}$.
- The **chromatic number** $\chi(G)$ of a graph is the smallest integer k so that G is k-colorable.

- What is $\chi(K_n)$?
- What is $\chi(T)$ for a tree T?
- What is $\chi(K_{s,t})$?
- What is $\chi(C_{11})$?
Lemma

Every graph G satisfies $\chi(G) \geq \omega(G)$.
Basic knowledge (2)

Lemma
Every graph G satisfies $\chi(G) \geq \omega(G)$.

Lemma
Every graph G satisfies $\chi(G) \leq \Delta(G) + 1$.
Theorem (Rowland Leonard Brooks, 1941)

Let G be a connected graph with $\Delta(G) \geq 3$ and G not complete. Then $\chi(G) \leq \Delta(G)$.

The exceptional cases:

- If $G = C_{2k+1}$, then $\Delta(G) = 2$ and $\chi(G) = 3$.
- If $G = K_k$, then $\Delta(G) = k - 1$ and $\chi(G) = k$.
- G not connected, and one of the components is a clique or an odd cycle.
Proof for theorem of Brooks

- Consider smallest counter-example $G = (V, E)$. Let $x \in V$ with $\Gamma(x) = \{x_1, \ldots, x_d\}$, where $d \leq \Delta$. Remove x from G and consider remaining (Δ-colorable) graph H.

$\Delta = \Delta$, and in every Δ-coloring of H the neighbors x_1, \ldots, x_Δ receive pairwise distinct colors.

Without loss of generality: x_i colored with color i.

H_{ij} is subgraph induced by color classes i and j.

For all $i < j$: vertices x_i and x_j are in same component C_{ij} of H_{ij}.

For all $i < j$: component C_{ij} is path from x_i to x_j.

For all $j \neq k$: components C_{ij} and C_{ik} have only vertex x_i in common.
Proof for theorem of Brooks

- Consider smallest counter-example $G = (V, E)$.
 - Let $x \in V$ with $\Gamma(x) = \{x_1, \ldots, x_d\}$, where $d \leq \Delta$.
 - Remove x from G and consider remaining (Δ-colorable) graph H.

- $d = \Delta$, and in every Δ-coloring of H the neighbors x_1, \ldots, x_Δ receive pairwise distinct colors.

- Without loss of generality: x_i colored with color i.
 - H_{ij} is subgraph induced by color classes i and j.
Proof for theorem of Brooks

- Consider smallest counter-example \(G = (V, E) \).
 Let \(x \in V \) with \(\Gamma(x) = \{x_1, \ldots, x_d\} \), where \(d \leq \Delta \).
 Remove \(x \) from \(G \) and consider remaining (\(\Delta \)-colorable) graph \(H \).

- \(d = \Delta \), and in every \(\Delta \)-coloring of \(H \) the neighbors \(x_1, \ldots, x_\Delta \) receive pairwise distinct colors.

- Without loss of generality: \(x_i \) colored with color \(i \).
 \(H_{ij} \) is subgraph induced by color classes \(i \) and \(j \).

- For all \(i < j \): vertices \(x_i \) and \(x_j \) are in same component \(C_{ij} \) of \(H_{ij} \).
Proof for theorem of Brooks

- Consider smallest counter-example \(G = (V, E) \). Let \(x \in V \) with \(\Gamma(x) = \{x_1, \ldots, x_d\} \), where \(d \leq \Delta \). Remove \(x \) from \(G \) and consider remaining (\(\Delta \)-colorable) graph \(H \).

- \(d = \Delta \), and in every \(\Delta \)-coloring of \(H \) the neighbors \(x_1, \ldots, x_\Delta \) receive pairwise distinct colors.

- Without loss of generality: \(x_i \) colored with color \(i \). \(H_{ij} \) is subgraph induced by color classes \(i \) and \(j \).

- For all \(i < j \): vertices \(x_i \) and \(x_j \) are in same component \(C_{ij} \) of \(H_{ij} \).

- For all \(i < j \): component \(C_{ij} \) is path from \(x_i \) to \(x_j \).
Consider smallest counter-example $G = (V, E)$. Let $x \in V$ with $\Gamma(x) = \{x_1, \ldots, x_d\}$, where $d \leq \Delta$. Remove x from G and consider remaining (Δ-colorable) graph H.

$d = \Delta$, and in every Δ-coloring of H the neighbors x_1, \ldots, x_Δ receive pairwise distinct colors.

Without loss of generality: x_i colored with color i. H_{ij} is subgraph induced by color classes i and j.

For all $i < j$: vertices x_i and x_j are in same component C_{ij} of H_{ij}.

For all $i < j$: component C_{ij} is path from x_i to x_j.

For all $j \neq k$: components C_{ij} and C_{ik} have only vertex x_i in common.
As every planar graph contains a vertex of degree at most 5, we have

Lemma

Every planar graph G satisfies $\chi(G) \leq 6$.

Theorem (Alfred Bray Kempe, 1879)

Every planar graph G satisfies $\chi(G) \leq 5$.

Kempe actually claimed $\chi(G) \leq 4$.

In 1890, Percy Heawood found a mistake in Kempe's argument and restructured the proof to yield the weaker bound.

In 1977, Kenneth Ira Appel and Wolfgang Haken finally proved $\chi(G) \leq 4$.

In 2005, Benjamin Werner and Georges Gonthier formulated a proof in the Coq proof assistant (an interactive theorem prover).
As every planar graph contains a vertex of degree at most 5, we have

Lemma

Every planar graph G satisfies $\chi(G) \leq 6$.

Theorem (Alfred Bray Kempe, 1879)

Every planar graph G satisfies $\chi(G) \leq 5$.

- Kempe actually claimed $\chi(G) \leq 4$.
- In 1890, Percy Heawood found a mistake in Kempe’s argument and restructured the proof to yield the weaker bound.
- In 1977, Kenneth Ira Appel and Wolfgang Haken finally proved $\chi(G) \leq 4$.
- In 2005, Benjamin Werner and Georges Gonthier formulated a proof in the Coq proof assistant (an interactive theorem prover).
For a vertex \(v \in V \), a **k-list** \(L(v) \) is a \(k \)-element subset of \(\mathbb{N} \).

Definition

A graph \(G = (V, E) \) is **5-choosable**, if for every system of 5-lists \(L(v) \) for the vertices \(v \in V \), there exists a proper coloring \(f : V \rightarrow \mathbb{N} \) that satisfies \(f(v) \in L(v) \) for all \(v \in V \).

Theorem (Carsten Thomassen, 1994)

Every planar graph \(G \) is 5-choosable.
Definition (Jan Mycielski 1955)

For a graph $G = (V, E)$, the corresponding Mycielskian graph $M(G)$ is defined as follows:

- The vertex set is $V \cup \{v' | v \in V\} \cup \{z\}$.
- The edge set contains all edges $\{u, v\} \in E$, together with all edges $\{z, v'\}$ with $v \in V$, together with all edges $\{u, v'\}$ with $\{u, v\} \in E$.
Definition (Jan Mycielski 1955)

For a graph $G = (V, E)$, the corresponding Mycielskian graph $M(G)$ is defined as follows:

- The vertex set is $V \cup \{v'|v \in V\} \cup \{z\}$.
- The edge set contains all edges $\{u, v\} \in E$, together with all edges $\{z, v'\}$ with $v \in V$, together with all edges $\{u, v'\}$ with $\{u, v\} \in E$.

Lemma 1

If $\chi(G) = k$, then $\chi(M(G)) = k + 1$.

Lemma 2

If $g(G) \geq 4$, then $g(M(G)) \geq 4$.
An immediate consequence of the preceding two lemmas:

Theorem (Jan Mycielski 1955)

For all $k \geq 2$, there exists a triangle-free graph G with $\chi(G) > k$.

Theorem (Pál Erdős, 1959)

For all $k \geq 2$, there exists a graph G with $\chi(G) > k$ and $g(G) > k$.

Auxiliary lemma (Markov inequality)

Let X be a non-negative random variable, and let $a > 0$ be a real number. Then $\text{Prob}[X \geq a] \leq \mathbb{E}[X]/a$.
Proof for the theorem of Erdős

- Let n be a huge integer, and let $V = \{v_1, \ldots, v_n\}$.
 Let $p = n^{-k/(k+1)}$.

- Note that for n sufficiently large $n^{1/(k+1)} > 6k \cdot \ln n$ and hence $p > 6k \cdot \ln n/n$.

Proof for the theorem of Erdős

- Let n be a huge integer, and let $V = \{v_1, \ldots, v_n\}$. Let $p = n^{-k/(k+1)}$.
- Note that for n sufficiently large $n^{1/(k+1)} > 6k \cdot \ln n$ and hence $p > 6k \cdot \ln n/n$.
- The probability space $G(n, p)$ contains every graph over V. Every edge occurs with probability p.
Proof for the theorem of Erdős

- Let n be a huge integer, and let $V = \{v_1, \ldots, v_n\}$. Let $p = n^{-k/(k+1)}$.
- Note that for n sufficiently large $n^{1/(k+1)} > 6k \cdot \ln n$ and hence $p > 6k \cdot \ln n/n$.
- The probability space $\mathcal{G}(n, p)$ contains every graph over V. Every edge occurs with probability p.

We show for n sufficiently large:

There exists a graph G in $\mathcal{G}(n, p)$

1. with independence number $\alpha(G) \leq r := n/(2k)$
2. with at most $n/2$ cycles of length k or shorter.