Exercise 2.1 (4 points)

Discuss the security of the following protocol. A wants to send a message m to B. For this, A and B generate n strings of length $|m|$. Then, they send the following messages:

\[
\begin{array}{c}
A \\
m, a_1, \ldots, a_n \\
\hline
m \oplus a_1 \\
m \oplus a_1 \oplus b_1 \\
m \oplus a_2 \oplus b_1 \\
m \oplus a_2 \oplus b_2 \\
\vdots \\
m \oplus a_n \oplus b_{n-1} \\
m \oplus a_n \oplus b_n \\
\hline
B \\
b_1, \ldots, b_n
\end{array}
\]

The protocol is an extension of the protocol without secure key-exchange presented in the lecture. Is this protocol for $n \geq 2$ secure?

Exercise 2.2 (4 points)

Construct a public-key system based on the following NP-complete problem:

SUBSET PRODUCT

Input: $A = (a_1, \ldots, a_n) \in \mathbb{N}^n$ and $b \in \mathbb{N}$.

Problem: Is there a subset $I \subseteq \{1, \ldots, n\}$ with $\prod_{i \in I} a_i = b$?

Hint: Add to the plaintext, coded as 0-1-sequence, an appropriated padding in order to ensure a necessary condition on the number of ones in the sequence.

Exercise 2.3 (4 points)

Let p_1, \ldots, p_n be distinct prime numbers, $P = \prod_{i=1}^n p_i$, and $A = (a_1, \ldots, a_n)$, where $a_i = P/p_i$.

Prove: The knapsack problem with input (A, α) can be solved efficiently for all $\alpha \in \mathbb{N}$.
Exercise 2.4 (4 points)
A number $\alpha \in \mathbb{N}$ is called representable by a knapsack vector A if the knapsack problem with input (A, α) is solvable.

Prove:
(a) Each knapsack vector B of length n has at least as many representable numbers as the knapsack vector $A_n = (1, 2, 3, 4, \ldots, n)$, for all $n \in \mathbb{N}$.
(b) Each knapsack vector B of length n has at most as many representable numbers as the knapsack vector $A'_n = (1, 2, 4, 8, \ldots, 2^{n-1})$, for all $n \in \mathbb{N}$.

Note: In a knapsack vector $A = (a_1, \ldots, a_n)$ all numbers a_i are distinct.

Deadline: Thursday, November 7, 2013, 10:15 a.m.,
in the lecture or in the letterbox in front of i1.
Please fill in your name and your student number and mark the exercises that you can present. Then staple this page in front of your solution sheet.

<table>
<thead>
<tr>
<th>Name</th>
<th>Student Number</th>
<th>E 2.1</th>
<th>E 2.2</th>
<th>E 2.3</th>
<th>E 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>