There exists planar graph that is not 4-choosable

Proof: $G(\alpha, \beta)$ with $\alpha = \{5, 6, 7, 8\}$

$\beta = \{9, 10, 11, 12\}$

Claim: $G(\alpha, \beta)$ has no compatible list-coloring

Take 16 graphs $G(\alpha, \beta)$

identify α-vertices $L = \{5, 6, 7, 8\}$

identify β-vertices $L = \{9, 10, 11, 12\}$

Theorem

Every outer-planar graph is 3-choosable

Proof by induction on $|V|$

- Every outer-planar graph has vertex of degree ≤ 2
- Color $G - v$ inductively, put v back & pick color

Ramsey theory

Message = "total chaos is impossible"

="every very large, very irregular structure contains a large regular substructure"

Warm-up #1: Among any six persons, there are three pairwise friends or three pairwise enemies.

Warm-up #2: Every sequence of $n^2 + 1$ reals contains monotone subsequence of length $n + 1$

Proof: Consider sequence a_{1}, \ldots, a_{n^2}
• Let $x_i(y_j)$ denote the length of largest increasing (decreasing) sub-sequence that ends with x_i.
• $(x_i, y_j) \neq (x_j, y_j)$ for $i \neq j$.
• There are n^2 pairs over $1, \ldots, n$.

Def For integers $a, b \geq 1$, $R(a, b)$ is the smallest integer N so that every red-blue coloring of the edges of K_N contains red K_a or blue K_b.

Ex $R(a, b) = R(b, a)$
• $R(a, 1) = R(1, a) = 1$
• $R(a, 2) = R(2, a) = a$
• $R(3, 3) = 6$

Thm (Ramsey, 1930)
$R(a, b)$ exists for all $a, b \geq 1$.

Proof by induction on $a+b$.
• Consider $a, b \geq 3$ and let $N' = R(a, b-1) + R(a-1, b)$.
• Consider arbitrary red-blue coloring of K_N.
• Pick vertex v of $N-1$ incident edges $R(a, b-1)$ have color blue or $R(a-1, b)$ have color red.
• Wlog $R(a, b-1)$ edges of color blue.
• Consider the subgraph induced by "blue neighbours" of v.
• By inductive assumption, this subgraph contains red K_a or blue K_{b-1}.

Lemma $R(a, b) \leq \left(\frac{a+b-2}{a-1} \right) 2^{a+b-2}$.

Thm (Erdős, 1947)
If $\binom{n}{a} < 2^{\frac{a-1}{2}}$, then $R(a, a) > n$.
Proof: Color edges of K_n randomly and independently with $\Pr(e=\text{blue}) = \frac{1}{2}$

- For $T \in V$ with $|T|=a$, define event A_T's clique over T is monochromatic.
- $\Pr[A_T] = \frac{2 \cdot 3^{a-1}}{2(3)^a} = \frac{1}{2} \cdot \frac{3^a}{3^a}$
- $\Pr[\text{at least one } A_T] = \sum_T \Pr[A_T] = 2^{a-1} \cdot \frac{3^a}{3^a} = \frac{3^a}{2^a} < 1$ \quad \Box

Lemma: $R(a,a) > 2^{a/2}$ for $a \geq 3$

Proof: For $n = 2^{a/2}$ we have $\binom{n}{a} \cdot 2^{1-\frac{a}{2}} \leq \frac{n^a}{a!} \cdot 2^{1-\frac{a}{2}} = \frac{1}{a!} 2^{\frac{a}{2}} 2^{1-\frac{a}{2}} < 1$ \quad \Box
\[R(a, b) \leq R(a, b-1) + R(a-1, b) \]

Ramsey bounds

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>25</td>
<td>36/41</td>
<td>49/61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>43/49</td>
<td>58/87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ Lower + Upper Bounds

Theorem (Kim, 1995)

\[R(a, 3) = \Theta \left(\frac{a^2}{\log a} \right) \]

Proof (Lower Bound)

Red edges in \(K_8 \)

(i) No red triangle \(K_3 \)

(ii) No \(K_4 \)

\[\Rightarrow R(3, 4) \leq 9 \]

(Upper Bound)

\[R(a, 5) \neq R(3, 4) \leq R(3, 3) + R(2, 4) = 10 \]

Consider vertex \(v \) in \(K_3 \)

- \(R(2, 4) = 4 \Rightarrow v \) has \(< 4 \) red edges
- \(R(3, 3) = 6 \Rightarrow v \) has \(< 6 \) blue edges

Remaining case: Every \(v \) is incident to 3 red edges

Variant

\[R(a, b, c) \]

Why do these values exist?

\[R(a, b, c) \leq R(a, R(b, c)) \]
Def: For integer $r \geq 1$ and finite set S, let $(S)_r$ denote the system of r-element subsets of S.

- Let $f : (S)_r \to \{1, \ldots, k\}$ be a k-coloring. A subset $T \subseteq S$ is called **mono-chromatic** under f if all $X, Y \in (S)_r$ have $f(X) = f(Y)$.

Def: For integers r and p_1, p_2, \ldots, p_r, the **Ramsey number** $R_r(p_1, p_2, \ldots, p_r)$ is the smallest integer N s.t. for every k-coloring of $(S)_r$ with $|S| = N$, there exists an i and $T \subseteq S$ s.t. $|T| = p_i$ and T is mono-chromatic under f.

Example:

- $r = 2$
- $r = 1$

\[R_1(p_1, \ldots, p_r) = \sum p_i - (k - 1) \]

\[R_1(a, b) = a + b - 1 \]

Theorem: $R_r(a, b)$ exists for $r \geq 2$

Proof: Outer induction on r and inner induction on ab

- $r = 2$ done
- Cases with $(a < r)$ or $(b < r)$ trivial

- $R_r(r, x) = R_r(x, r) = x$

Inductive step:

- Let $x = R_r(a - 1, b)$
- $y = R_r(a, b - 1)$
- Let $N = 2^{R-1}(x, y) + 1$
- Consider set S with $|S| = N$
- Let $f : (S') \rightarrow \{\text{red, blue}\}$
- Let $v \in S$
- Define $S' = S - v$
- Define $f' : (S') \rightarrow \{\text{red, blue}\}$ via $f'(T) = f(T \cup v)$
- Inductive hypothesis yields
 red, x-set on
 blue, y-set of S' under f'
- W.l.o.g. $T' \subset S'$ with $|T'| = x$ and T' is red under f'.
- Consider $(T') \subset S$ under f
 By inductive hypothesis there is
 (i) red subset of size $a - 1$ under f or
 (ii) blue subset of size b under f.
- Case (ii) settles the theorem.
- Case (i) yields a red set $T'' \subset T'$ of size $a - 1$ under f.
 All $(R - 1)$-subsets of T'' are red under f'
 \Rightarrow all R-subsets of $T'' \cup v$ that contain v are red under f.
 \Rightarrow all R-subsets of $T'' \cup v$ are red under f.

\[\square\]
Def: $R_k(3) = \frac{R_k(3)}{k \text{ times}}$

Ex: $R_2(3) = 6$

Thm: $R_k(3) \leq k \cdot (R_{k-1}(3) - 1) + 2$ for $k \geq 3$

Proof: Consider some fixed vertex v in k-coloring of edges of complete graph on $N = k \cdot (R_{k-1}(3) - 1) + 2$
- There are $N - 1$ incident edges
- One color occurs on at least $\frac{N-1}{k} = R_{k-1}(3)$ edges

Let S be set of (other) end vertices of these edges.
(Case 1) S spans a red edge \rightarrow edge tv forms red triangle
(Case 2) S only spans non-red edges then $R_{k-1}(3)$ vertices, edges $(k-1)$-colored \rightarrow monochromatic triangle in S

Lem: $R_k(3) \leq L \cdot k! \cdot \left\lfloor \frac{k}{2} \right\rfloor$ for $k \geq 3$

Proof: $L \cdot k! \cdot \left\lfloor \frac{k}{2} \right\rfloor = L \cdot k! \sum_{j=0}^{\left\lfloor \frac{k}{2} \right\rfloor} \frac{1}{j!} = L \cdot \frac{k!}{0!} + \sum_{j=0}^{\left\lfloor \frac{k}{2} \right\rfloor - 1} \frac{1}{j!} = 1 + k \cdot \frac{1}{0!} \cdot \left\lfloor \frac{k}{2} \right\rfloor$

Ex: $R_3(3) \leq 3 \cdot (6 - 1) + 2 = 17$

Known: $R_3(3) = 17$
- The edges of K_{16} can be partitioned into three copies of Paley graph

(Ex 4)

Def: For $k \geq 2$, let $S(k)$ denote smallest integer so that:
- in every k-coloring of the integers $\{1, 2, ..., S(k)\}$, there exist x, y, z with same color and $x + y = z$ "Schur Number"

Ex: $S(2) = 4 \quad 5 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$

\begin{align*}
1 + 2 &= 3 \\
2 + 2 &= 4 \\
1 + 3 &= 4 \\
1 + 4 &= 5 = 5 \\
\end{align*}

Thm (Schur 1946)
- $S(k)$ exists for $k \geq 1$
Proof Let \(n = \bar{R}_4(3) \)

- Consider \(k \)-coloring \(c \) of \(S(1, 2, \ldots, n) \)
- Consider \(K_n \) on \(S(1, 2, \ldots, n) \)
 - Color edge \([i, j] \) by color \(c([i, j]) \)
- Ramsey yields existence of monochromatic triangle \(i,j,k \)
 - Edges \([i, j], [i, k], [j, k] \) have same color
 - Integers \(i-j, i-k, j-k \) have same color

WLOG \(i > j \geq k \) Then \(i-k = [i-j-j] + [j-k-k] \)

Theorem \(S(k) \geq 3S(k-1) - 1 \) for \(k \geq 2 \)

Proof by induction on \(k \)

- \(S(2) = 5 \) and \(S(4) = 2 \)
- Inductive step \(t = S(k-1) \)

1. **2** \(\ldots \), \(t-1 \)

- \(k-1 \) colors no such triple

- \(1, 2 \ldots, t-1 \), \(2t+1 \), \(2t-1 \), \(3 \ldots, 3+2 \)

- \(k-1 \) colors new color \((k-1) \)-coloring shifted by \(2 \times 2 \)

Claim New \(k \)-coloring has no monochromatic solution of \(x + y = 2 \)

- Color \(k \): \(x, y \geq t \) if \(x \leq 2t-1 \)
- Color \(c \leq k-1 \)

 \[L + L = L + L \leq 2t+2 \]

 \[R + R = R + R \geq 4 + 4 \]

 \[L + R = R \rightarrow \text{triple in } L \]

Example

- \(S(3) = 14 \)
- \(S(4) = 45 \)
- \(160 \times S(5) = 315 \)

Definition Point set \(P \subseteq \mathbb{R}^2 \) is in general position if no three points on common line.

Observation (Esther Klein, 1935)

Every \(5 \)-element point set contains convex quadrangle

Proof
Theorem (Erdős, Szekeres, 1935)
For every \(k \geq 4 \), there exists \(N(k) \) so that every \(N(k) \)-element point set contains a convex \(k \)-gon.

Proof. Let \(N = R_4(k,5) \)
Consider point set \(P \) with \(|P| = N \) color every 4-element subset \(S \subseteq P \) blue if \(S \) convex, red if \(S \) not convex.
- Ramsey \(\Rightarrow \) red subset of size 5 or blue subset of size \(k \)
 (Case 1) Red subset of size 5 \(\frac{5}{2} \) (Klein)
 (Case 2) Blue subset of size \(k \) \(\Rightarrow \) \(k \)-gon convex

Conjectured \(N(k) = 2^{k+2} + 1 \)
Known \(\geq \) and \(k = 4, k = 5 \)
Thm \[N(5) = 9 \]

Proof \((L o w e r \ B o u n d) \)

\[N(5) > 8 \]

(Upper Bound)

Consider \(P \subseteq \mathbb{R}^2 \) with \(|P| = 3 \). Wlog \(\text{conv} \{P\} \leq 4 \).

(Case 1) Convex hull \(H \) is 4-gon. Consider \(P-H \). Wlog \(P-H \) not convex.

- three regions
- one Region has \(\geq 2 \) points of \(H \)

 Together with \(\triangle \), done.

(Case 2) Convex hull \(H \) is 3-gon. Consider convex hull \(H' \) of 6 interior pts. Wlog \(|H'| \leq 4 \).

(Case 2a) \(H' \) has 4 points

- trivial

(Case 2b) \(|H'| = 3 \)

- \(\Delta PQG \) no point of \(H \) (only 3 left)
- \(\Delta PQF \) no point of \(H \) otherwise 5-gon
- \(\Delta FQG \) \(\leq 1 \) pt of \(H \)
- \(\Delta EPI \) \(\leq 2 \) pts of \(H \)

Conj \[N(6) \geq 14 \]

\(\geq 14 \) Known
Def: For graphs G_1, \ldots, G_k, the graph-Ramsey-number $R(G_1, \ldots, G_k)$ is the smallest integer N, so that
\every \ k-coloring of \ edges \ of \ K_N \ contains \ copy \ of \ G_i \ in \ color \ i \ for \ some \ i.

Existence clear.

Ex: $R(K_3, K_3) = 6$
\[R(G_4, G_4) = 6 \] \Rightarrow

Tool: Let T be a tree with k edges.
\[\text{Every graph} \ G \ \text{with} \ \delta(G) \geq k \ \text{contains copy of} \ T. \]

Proof (by induction on k ($k=1$ trivial))

- Inductive step: Consider tree T on $k+1$ edges. Let l be leaf of T.
 Remove l and incident edge $[l,v]$ from T. Apply inductive statement to rest-tree T' and G. Put back l and $[l,v]$. \[\blacksquare \]

Thm: Let T be a tree on b vertices.
\[\text{Then} \ R(K_{a,1}) = (a-1)(b-1)+1 \]

Proof (Lower bound)
Take $a-1$ copies of K_{b-1}. All remaining edges are red.

(Upper bound) by induction on $a \geq 1$
Consider red-blue coloring of $K_{a-1}(b-1)+1$
- Consider vertex v.
(Case 2) v has $\geq (a-2)(b-1)+1$ incident red edges.
By inductive statement red neighborhood of v contains a blue T or red K_{a-1} ($K_{a-1}uv$ is red).

In remaining cases, every $v \in V$ has $\geq (a-1)(b-1)-(a-2)(b-1) = b-1$ blue neighbours. Done since T has $b-1$ edges, use tool \[\blacksquare \]

H2 Random graphs
Def (Erdős, Rényi 1959; Gilbert 1959)
The Erdős-Rényi random graph $G(n,p)$ has n vertices. Every edge occurs (indep.)
with probability p.

Random graphs
- $G(n, p)$
- Markov inequality

Tool 1 Let $X \geq 0$ be integer, then \[\Pr[X = 0] \geq 1 - \mathbb{E}[X] \]

Theorem For every $\varepsilon > 0$, \[\lim_{n \to \infty} \Pr[X(G(n, \frac{1}{2}) \leq (1 + \varepsilon) \log n)] = 1 \]

Proof Let $k = (2 + \varepsilon) \log n$.
- Let X_k count the number of k-cliques in $G(n, \frac{1}{2})$.
- $\mathbb{E}[X_k] \leq \binom{n}{k} 2^{\binom{k}{2}} \leq n^k 2^{k^2 - \binom{k}{2}} = 2^\frac{k}{2} (2 \log n - k + 1) = 2^\frac{k}{2} (-\varepsilon \log n + 1) \to -\infty$

Hence $\mathbb{E}[X_k] \to 0$ and $\Pr[X_k = 0] \to 1$. \qed

Lemma Chebyshev inequality

Let X be RV with $\mathbb{E}[X] = \mu$ and $\text{Var}[X]$.

Then $\Pr[|X - \mu| \geq b] \leq \frac{\text{Var}[X]}{b^2}$

Proof Markov for RV $(X - \mu)^2$? \[\Pr[(X - \mu)^2 \geq b^2] \leq \mathbb{E}[(X - \mu)^2] / b^2 \]

Tool 2 Let $X \geq 0$ be integer-valued RV, then $\Pr[X = 0] \leq \frac{\text{Var}[X]}{\mathbb{E}[X]}$ (set $b = \mu$ then $X = 0$ is subcase)

"Second moment method"

Lemma (Technical) Let $n \geq 1$ and $k = (2 + \varepsilon) \log n$. As $n \to \infty$, sum \[\frac{k}{\varepsilon^2} \left(\frac{n}{e^2} \right)^{n-k} \to 0 \]

Proof We use the bounds \[\binom{n}{k} \leq k^k \text{ and } \binom{n-k}{n-k} \leq \frac{(n-k)^n}{n!} \]

Then the sum S can be bounded \[S \leq \sum_{k=2}^{n-1} \frac{k^k}{\varepsilon^2} \left(\frac{n}{e^2} \right)^{n-k} \leq \frac{k^k}{\varepsilon^2} \left(\frac{n}{e^2} \right)^{n-k} 2^k \leq \frac{k^k}{\varepsilon^2} \left(\frac{k^2}{2} \left(\frac{n}{e^2} \right)^{n-k} \right) \leq \frac{k^k}{\varepsilon^2} \left(\frac{k^2}{2} \left(\frac{n}{e^2} \right)^{n-k} \right) \]

Then \[\frac{2k^k}{n} \frac{2k^2}{n} \leq \frac{2k^k}{n} \frac{2k^2}{n} \left(\frac{n}{e^2} \right)^{n-k} \leq \frac{2k^k}{n} \frac{2k^2}{n} \left(\frac{n}{e^2} \right)^{n-k} \leq \frac{2k^k}{n} \frac{2k^2}{n} \left(\frac{n}{e^2} \right)^{n-k} \]

Then \[S \leq \frac{k^k}{\varepsilon^2} \left(\frac{n}{e^2} \right)^{n-k} \leq k \cdot n^{-\varepsilon/4} = (2 - \varepsilon) \log n \cdot n^{-\varepsilon/4} \to 0 \]
Thm. For every $\varepsilon > 0$,

$$
\lim_{n \to \infty} \text{Prob}\left[\omega(G(n, \frac{\varepsilon}{2})) \geq (2 - \varepsilon) \log n \right] \to 1
$$

Proof: Let $h = (2 - \varepsilon) \log n$

- For h-element $S \subseteq V$, let X be indicator RV of event "S is clique".
- RV $X_h = \sum \sum X_{ij}$ counts h-cliques

(1) $E[X_h] = \binom{\frac{n}{2}}{h} 2^{-h}$

We bound the variance of X_h as follows.

$$
\text{Var}[X_h] = E[X_h^2] - [E[X_h]]^2
$$

$$
= \sum \sum \sum \sum E[X_{ij}X_{kl}] - [E[X_{ij}]E[X_{kl}]]^2
$$

$$
\leq \sum \sum \sum E[X_{ij}X_{kl}]
$$

For fixed l, there are

- $\binom{n}{h}$ choices for S

- $\binom{l}{h}$ choices for $T_n S$

- $\binom{n - l}{h - l}$ choices for $T - S$

Hence:

$$
\text{Var}[X_h] \leq \sum \sum \binom{n}{h} \binom{l}{h} \binom{n - l}{h - l} \cdot 2^{-h} \cdot \binom{n}{h} \binom{l}{h} \binom{n - l}{h - l}
$$

$$
= \sum \sum \binom{n}{h} \binom{l}{h} \binom{n - l}{h - l} \cdot 2^{-h} \cdot \binom{n}{h} \binom{l}{h} \binom{n - l}{h - l}
$$

(2)

We use (1) and (2) in Chebyshev tool.

$$
\text{Prob}[X_h = 0] \leq \frac{\text{Var}[X_h]}{E^2[X_h]} \leq \sum \sum \binom{n}{h} \binom{l}{h} \binom{n - l}{h - l} \cdot 2^{-h} \cdot \binom{n}{h} \binom{l}{h} \binom{n - l}{h - l}
$$

$$
\leq \binom{n}{h} \binom{l}{h} \binom{n - l}{h - l} \cdot 2^{-h} \cdot \binom{n}{h} \binom{l}{h} \binom{n - l}{h - l}
$$

$$
\rightarrow 0
$$
• Clique number of $G(n,\frac{\alpha}{e})$ is $2\log n$
• Chromatic number of $G(n,\frac{\alpha}{e})$ is $\frac{n}{2\log n}$ (since $\alpha=\omega=2\log n$)
• For $G(n,p)$ with $p=1-\frac{\omega}{n}$ with $\omega\geq 1$
 $\omega=2\cdot\log_\omega(n)$
 $\omega=\frac{n}{2\log n}$

Thm. As n goes to ∞, $\Pr[\text{has diam } 2T]$ goes to 1.

Proof. For $u,v \in V$, let X_{uv} be indicator RV that u and v have common neighbor
• Let $X=\sum X_{uv}$ count number of vertex pairs without common neighbor
• $\Pr[X_{uv}=1]=(1-\frac{1}{4})^{n-2}$
• $E(X)=\binom{n}{2}(\frac{3}{4})^{n-2} \rightarrow 0$

• $G(n,\frac{\alpha}{e})$ is connected

Thm. As n goes to ∞, probability that bandwidth of $G(n,\frac{\alpha}{e})$ is at least $n-6\log n$ tends to 1.

Proof. We show that almost every graph has the following property:
For any choice of S and T, $S, T \subseteq V$, $S \cap T = \emptyset$, $|S|=|T|=3\log n = k$
there is an edge between S and T
• $\Pr[\text{no edge between } S \text{ and } T] = \left(\frac{1}{2}\right)^{n-k}$
• $E[\# \text{ edges between } S \text{ and } T] = \binom{n}{k} (\frac{1}{2})^{n-k} = n^{n-k} (\frac{1}{2})^{k} = 2^{2k} \log n - k^2 \rightarrow 0$
 since $6\log^2 n - 3\log^2 n \rightarrow -\infty$
• Markov $\Rightarrow \Pr[\text{all } S, T \text{ are good }] \rightarrow 1$
• For bandwidth, consider embedding and let S contain first $3\log n$ vertices and T
 contain last $3\log n$ vertices. The bandwidth is $n-6\log n$.
 $n-6\log n + \epsilon$ possible
Thm. (Caro 1979)

A graph G with degree sequence $d_1 \leq d_2 \leq \ldots \leq d_n$ satisfies

$$\alpha(G) \geq \sum_{i=1}^{n} \frac{1}{d_i + 1}$$

Proof: Order vertices uniformly at random. Construct independent set S by sweeping over the ordering. Vertex v is included in ind. set S if v occurs before all its neighbors.

- Hence S is independent
- $\mathbb{E}[\mid S \mid] = \sum_{v_i \in S} \frac{1}{d_i + 1}$
- $\mathbb{E}[\mid S \mid] \geq \sum_{i=1}^{n} \frac{1}{d_i + 1}$

Thm. (Alon 1990)

Let G be a graph, $\delta(G) = k$. Then G has dominating set of size

$$n \cdot \frac{\ln (k+1)}{k+1}$$

Proof: Let $p = \frac{\ln (k+1)}{k+1}$. Pick every vertex $v \in V$ with probability p to get random subset $S \subseteq V$.

- Let $T = V - (S \cup N(S))$
- $\mathbb{E}[\mid S \mid] = np$
- $\mathbb{E}[\mid T \mid] = \mathbb{E}[\text{no neighbor of } S \text{ in } S] \leq (1-p)^k$
- $\mathbb{E}[\mid T \mid] \leq n \cdot (1-p)^k$
- $\mathbb{E}[\mid S \cup T \mid] \leq n \cdot (p \cdot (1-p)^k) + \frac{\ln \frac{\epsilon}{n \cdot (1-p)^k}}{\ln (k+1)}$
 $$\leq np + ne^{-p(k+1)} = n \cdot \frac{\ln (k+1)}{k+1} + ne^{-\ln (k+1)}$$
A tournament is a digraph \((V, A)\) with exactly one arc between any two vertices.

• A \(S\) is a winning set if there is no \(v \in V \setminus S\) with \(v \notin A\) for all \(s \in S\).

Theorem For any \(k \geq 1\), there exists a winning set of size \(k\).

Proof In (undirected) \(K_n\), every edge is oriented in either direction with probability \(\frac{1}{2}\).

• For \(k\)-element \(S \subseteq V\), \(\text{Prob}\left[S \text{ winning}\right] = \left(1 - \frac{1}{2^k}\right)^{n-k} \leq e^{-2^k(n-k)}

• The probability that a tournament has a winning set is \(\leq \binom{n}{k} e^{-2^k(n-k)} = e^{O(n^2) - 2^k(n-k)}\) \(\xrightarrow{n \to \infty} 0\).

First order theory of graphs

• Boolean operators \(\land, \lor, \neg, \Rightarrow\)

• Existential, universal quantifiers

• Variables represent vertices

• Equality \((u = v, u \neq v)\), adjacency \(u \sim v\) (symmetric, anti-refl)

Example \(G\) contains a path of length 3

\[\exists a, b, c, d : (a \rightarrow b) \land (b \rightarrow c) \land (c \rightarrow d)\]

• Every edge is contained in a triangle

\[\forall x, y : (x \sim y) \Rightarrow \exists e : (2 \sim x) \land (2 \sim y)\]

• \(G\) is connected

• \(G\) is planar

• \(G\) is Hamiltonian

Theorem (Fagin, 1976) "zero-one-law"

For every first order statement \(S\)

\[\lim_{n \to \infty} \text{Prob}\left[G(n, \frac{1}{2}) \text{ satisfies } S\right] = 0 \text{ or } 1\]

Proof For \(k = 1\), statement \(\text{Ans}\) says "For any pairwise distinct vertices \(x_1, \ldots, x_k\) and \(y_1, \ldots, y_k\), there exists another vertex \(z\) that is adjacent to all \(x_i\) and \(y_i\) for \(i = 1, \ldots, k\)."
non-adjacent to all y_i.

(2) For all $r, s \geq 1$, \[\lim_{n \to \infty} \Pr [\text{G}(n, \frac{1}{2}) \text{ has } A_{r,s}] = 1 \]

(3) There exists a countable graph G on vertex set \mathbb{N} that satisfies $A_{r,s}$ for all $r, s \geq 1$.

Proof by inductive construction

- Start with a single vertex A.
- Let V_i be the set of vertices constructed in the first i phases.
- For every $X \subseteq V_i$ for every $Y \subseteq V_i$, so that $X \neq \emptyset$, $Y \neq \emptyset$, $X \cap Y = \emptyset$, create a new vertex v_i with $v_i \in X \forall x \in X$ and $v_i \in Y \forall y \in Y$.

(4) If two countable graphs G' and G'' satisfy $A_{r,s}$ for all $r, s \geq 1$, then G' and G'' are isomorphic.

Proof by construction of bijection

- Define $f(i), f^*(i), f(i), f^{-1}(i)$ for all i.
- $f(i) = A_i$
- When $f(i)$ has to be determined, f has already been specified on V_i.
- Set $f(i) = g \in G''$, so that $\forall v_i, v'_i \in G'' \Leftrightarrow f(v_i), f(v'_i) \in G''$ for all $v_i \in V_i$.
- Existence due to $A_{r,s}$ for all $r, s \geq 1$.
- $f^{-1}(i)$ equivalent.

(5) The system consisting of all $A_{r,s}$ with $r, s \geq 1$ is complete (for every FO statement B, either B or $\neg B$ is provable).

Proof: Suppose adding B gives theory T', suppose adding $\neg B$ gives theory T''.

- Gödel's Completeness Theorem yields countable model for consistent T' and consistent T''.
- Model G' for T' and model G'' for T'' are isomorphic G.

(6) Let B be any FO statement, provable from $A_{r,s}$ with $r, s \geq 1$.

Proofs are finite \Rightarrow B is provable from a finite subset of $A_{r,s}$.

\[\lim_{n \to \infty} \Pr [\text{G}(n, \frac{1}{2}) \text{ does not satisfy } B] \leq \sum_{A_{r,s}} \Pr [\text{G}(n, \frac{1}{2}) \text{ does not satisfy } A_{r,s}] \to 0 \Rightarrow \text{G}(n, \frac{1}{2}) \text{ satisfies } B \text{ with probability } 1 \text{ as } n \to \infty. \]