Inhalt I

1 Introduction
 - Problems
 - Types of Communication
 - Notations
 - Basics

2 Broadcast
 - Lower Bound
 - First Results
 - Trees
 - First Results
 - CCC
 - SE
 - BF
 - DB
 - Lower Bounds
 - Disjoint Path Modes

3 Gossip
 - Results
 - Introduction
 - First Results
 - Lines
 - Trees
 - Cycles
 - HQ
 - Hypercube
 - CCC and BF
 - Telephone-Mode
 - Odd Number of Nodes
 - Telegraph-Mode
 - Lower Bound
 - Summary
 - Telegraph-Mode
 - Edge Disjoint Path Mode
Definition of a Broadcasts and Accumulation

Definition of Broadcast:

Given are $G = (V, E)$ and $v \in V$.

- v has information $I(v)$
- no node from $V \setminus \{v\}$ knows $I(v)$.
- Each node of $V \setminus \{v\}$ has to receive information $I(v)$.

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Broadcasts and Accumulation

Definition of Broadcast:
Given are $G = (V, E)$ and $v \in V$.

- v has information $I(v)$ and
- no node from $V \setminus \{v\}$ knows $I(v)$.
- Each node of $V \setminus \{v\}$ has to receive information $I(v)$.

Definition of Accumulation:
Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Broadcasts and Accumulation

Definition of Broadcast:
Given are $G = (V, E)$ and $v \in V$.
- v has information $I(v)$ and
- no node from $V \setminus \{v\}$ knows $I(v)$.
- Each node of $V \setminus \{v\}$ has to receive information $I(v)$.

Definition of Accumulation:
Given are $G = (V, E)$ and $v \in V$.
- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Broadcasts and Accumulation

Definition of Broadcast:
Given are $G = (V, E)$ and $v \in V$.
- v has information $I(v)$ and
- no node from $V \setminus \{v\}$ knows $I(v)$.
- Each node of $V \setminus \{v\}$ has to receive information $I(v)$.

Definition of Accumulation:
Given are $G = (V, E)$ and $v \in V$.
- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Broadcasts and Accumulation

Definition of Broadcast:

Given are $G = (V, E)$ and $v \in V$.

- v has information $I(v)$ and
- no node from $V \setminus \{v\}$ knows $I(v)$.
- Each node of $V \setminus \{v\}$ has to receive information $I(v)$.

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Broadcasts and Accumulation

Definition of Broadcast:

Given are $G = (V, E)$ and $v \in V$.

- v has information $I(v)$ and
- no node from $V \setminus \{v\}$ knows $I(v)$.
- Each node of $V \setminus \{v\}$ has to receive information $I(v)$.

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$ and
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Broadcasts and Accumulation

Definition of Broadcast:

Given are $G = (V, E)$ and $v \in V$.

- v has information $I(v)$ and
- no node from $V \setminus \{v\}$ knows $I(v)$.
- Each node of $V \setminus \{v\}$ has to receive information $I(v)$.

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$ and
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\cup_{w \in V} I(w)$.
Definition of a Gossip

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.

Definition (Gossip):

Given is $G = (V, E)$.

- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Each node of $v \in V$ should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Gossip

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$
- No node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.

Definition (Gossip):

Given is $G = (V, E)$.

- Each node of $w \in V$ has information $I(w)$
- No node from $V \setminus \{w\}$ knows $I(w)$.
- Each node of $v \in V$ should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Gossip

Definition of Accumulation:

Given are \(G = (V, E) \) and \(v \in V \).

- Each node of \(w \in V \) has information \(I(w) \).
- No node from \(V \setminus \{w\} \) knows \(I(w) \).
- Node \(v \) should receive the information \(\bigcup_{w \in V} I(w) \).

Definition (Gossip):

Given is \(G = (V, E) \).

- Each node of \(w \in V \) has information \(I(w) \).
- No node from \(V \setminus \{w\} \) knows \(I(w) \).
- Each node of \(v \in V \) should receive the information \(\bigcup_{w \in V} I(w) \).
Definition of a Gossip

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.

Definition (Gossip):

Given is $G = (V, E)$.

- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Each node of $v \in V$ should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Gossip

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.
- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.

Definition (Gossip):

Given is $G = (V, E)$.
- Each node of $w \in V$ has information $I(w)$
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Each node of $v \in V$ should receive the information $\bigcup_{w \in V} I(w)$.
Definition of a Gossip

Definition of Accumulation:

Given are \(G = (V, E)\) and \(v \in V\).
- Each node of \(w \in V\) has information \(I(w)\) and
- no node from \(V \setminus \{w\}\) knows \(I(w)\).
- Node \(v\) should receive the information \(\bigcup_{w \in V} I(w)\).

Definition (Gossip):

Given is \(G = (V, E)\).
- Each node of \(w \in V\) has information \(I(w)\) and
- no node from \(V \setminus \{w\}\) knows \(I(w)\).
- Each node of \(v \in V\) should receive the information \(\bigcup_{w \in V} I(w)\).
Definition of a Gossip

Definition of Accumulation:

Given are $G = (V, E)$ and $v \in V$.

- Each node of $w \in V$ has information $I(w)$ and
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Node v should receive the information $\bigcup_{w \in V} I(w)$.

Definition (Gossip):

Given is $G = (V, E)$.

- Each node of $w \in V$ has information $I(w)$ and
- no node from $V \setminus \{w\}$ knows $I(w)$.
- Each node of $v \in V$ should receive the information $\bigcup_{w \in V} I(w)$.
Types of Communication

- **Telegraph-Mode**: Communication is directed.
 - Is also called one-way communication.
- **Telephone-Mode**: Information is exchanged.
 - Is also called two-way communication.
- Communication only between neighbours.
- Communication is done in rounds.
- In each round the active edges are a matching.
- Each round uses one time-unit.
Types of Communication

- **Telegraph-Mode**: Communication is directed.
 - Is also called **one-way communication**.

- **Telephone-Mode**: Information is exchanged.
 - Is also called **two-way communication**.
 - Communication only between neighbours.
 - Communication is done in rounds.
 - In each round the active edges are a matching.
 - Each round uses one time-unit.
Types of Communication

- **Telegraph-Mode**: Communication is directed.
 - Is also called one-way communication.

- **Telephone-Mode**: Information is exchanged.
 - Is also called two-way communication.
 - Communication only between neighbours.
 - Communication is done in rounds.
 - In each round the active edges are a matching.
 - Each round uses one time-unit.
Types of Communication

- Telegraph-Mode: Communication is directed.
 - Is also called one-way communication.
- Telephone-Mode: Information is exchanged.
 - Is also called two-way communication.
- Communication only between neighbours.
- Communication is done in rounds.
- In each round the active edges are a matching.
- Each round uses one time-unit.
Types of Communication

- Telegraph-Mode: Communication is directed.
 - Is also called one-way communication.
- Telephone-Mode: Information is exchanged.
 - Is also called two-way communication.
- Communication only between neighbours.
 - Communication is done in rounds.
 - In each round the active edges are a matching.
 - Each round uses one time-unit.
Types of Communication

- **Telegraph-Mode:** Communication is directed.
 - Is also called one-way communication.
- **Telephone-Mode:** Information is exchanged.
 - Is also called two-way communication.
- Communication only between neighbours.
- **Communication is done in rounds.**
 - In each round the active edges are a matching.
 - Each round uses one time-unit.
Types of Communication

- Telegraph-Mode: Communication is directed.
 - Is also called one-way communication.
- Telephone-Mode: Information is exchanged.
 - Is also called two-way communication.
- Communication only between neighbours.
- Communication is done in rounds.
 - In each round the active edges are a matching.
- Each round uses one time-unit.
Types of Communication

- Telegraph-Mode: Communication is directed.
 - Is also called one-way communication.
- Telephone-Mode: Information is exchanged.
 - Is also called two-way communication.
- Communication only between neighbours.
- Communication is done in rounds.
- In each round the active edges are a matching.
- Each round uses one time-unit.
Types of Communication

- In the broadcast-problem the information of one node is transferred to all others.
- The accumulation-problem is a “inverse” broadcast.
- A gossip distributes the sum of all informations to all nodes.
- In each round the communication is done by a matching.
- The communication on an edge may be one-way or two-way, depending on the mode.
- The size of send date is ignored.
Types of Communication

- In the broadcast-problem the information of one node is transferred to all others.
- The accumulation-problem is a “inverse” broadcast.
- A gossip distributes the sum of all informations to all nodes.
- In each round the communication is done by a matching.
- The communication on an edge may be one-way or two-way, depending on the mode.
- The size of send date is ignored.
Types of Communication

- In the broadcast-problem the information of one node is transferred to all others.
- The accumulation-problem is a “inverse” broadcast.
- A gossip distributes the sum of all informations to all nodes.
- In each round the communication is done by a matching.
- The communication on an edge may be one-way or two-way, depending on the mode.
- The size of send date is ignored.
Types of Communication

- In the broadcast-problem the information of one node is transfered to all others.
- The accumulation-problem is a “inverse” broadcast.
- A gossip distributes the sum of all informations to all nodes.
- In each round the communication is done by a matching.
- The communication on an edge may be one-way or two-way, depending on the mode.
- The size of send date is ignored.
Types of Communication

- In the broadcast-problem the information of one node is transferred to all others.
- The accumulation-problem is a “inverse” broadcast.
- A gossip distributes the sum of all informations to all nodes.
- In each round the communication is done by a matching.
- The communication on an edge may be one-way or two-way, depending on the mode.
- The size of send date is ignored.
Types of Communication

- In the broadcast-problem the information of one node is transferred to all others.
- The accumulation-problem is a “inverse” broadcast.
- A gossip distributes the sum of all informations to all nodes.
- In each round the communication is done by a matching.
- The communication on an edge may be one-way or two-way, depending on the mode.
- The size of send date is ignored.
Definition

- By $comm(A)$ we denote the complexity (number of rounds) of a communication-algorithm.

- $r(G) = \min \{comm(A) | A \text{ is a one-way algorithm for the gossip-problem on } G\}$

- $r_2(G) = \min \{comm(A) | A \text{ is a two-way algorithm for the gossip-problem on } G\}$

- $b(v, G) = \min \{comm(A) | A \text{ is a one-way algorithm for the broadcast-problem on } G \text{ and } v\}$

- $a(v, G) = \min \{comm(A) | A \text{ is a one-way algorithm for the accumulations-problem on } G \text{ and } v\}$
Definition

- By $comm(A)$ we denote the complexity (number of rounds) of a communication-algorithm.

- $r(G) = \min \{ comm(A) \mid A \text{ is a one-way algorithm for the gossip-problem on } G \}$

- $r_2(G) = \min \{ comm(A) \mid A \text{ is a two-way algorithm for the gossip-problem on } G \}$

- $b(v, G) = \min \{ comm(A) \mid A \text{ is a one-way algorithm for the broadcast-problem on } G \text{ and } v \}$

- $a(v, G) = \min \{ comm(A) \mid A \text{ is a one-way algorithm for the accumulations-problem on } G \text{ and } v \}$
Definition

- By $\text{comm}(A)$ we denote the complexity (number of rounds) of a communication-algorithm.

- $r(G) = \min\{\text{comm}(A) \mid A \text{ is a one-way algorithm for the gossip-problem on } G\}$

- $r_2(G) = \min\{\text{comm}(A) \mid A \text{ is a two-way algorithm for the gossip-problem on } G\}$

- $b(\nu, G) = \min\{\text{comm}(A) \mid A \text{ is a one-way algorithm for the broadcast-problem on } G \text{ and } \nu\}$

- $a(\nu, G) = \min\{\text{comm}(A) \mid A \text{ is a one-way algorithm for the accumulations-problem on } G \text{ and } \nu\}$
Definition

- By $\text{comm}(A)$ we denote the complexity (number of rounds) of a communication-algorithm.

- $r(G) = \min \{ \text{comm}(A) \mid A \text{ is a one-way algorithm for the gossip-problem on } G \}$

- $r_2(G) = \min \{ \text{comm}(A) \mid A \text{ is a two-way algorithm for the gossip-problem on } G \}$

- $b(v, G) = \min \{ \text{comm}(A) \mid A \text{ is a one-way algorithm for the broadcast-problem on } G \text{ and } v \}$

- $a(v, G) = \min \{ \text{comm}(A) \mid A \text{ is a one-way algorithm for the accumulations-problem on } G \text{ and } v \}$
Definition

- By $\text{comm}(A)$ we denote the complexity (number of rounds) of a communication-algorithm.
- $r(G) = \min\{\text{comm}(A) | \ A \text{ is a one-way algorithm for the gossip-problem on } G\}$
- $r_2(G) = \min\{\text{comm}(A) | \ A \text{ is a two-way algorithm for the gossip-problem on } G\}$
- $b(v, G) = \min\{\text{comm}(A) | \ A \text{ is a one-way algorithm for the broadcast-problem on } G \text{ and } v\}$
- $a(v, G) = \min\{\text{comm}(A) | \ A \text{ is a one-way algorithm for the accumulations-problem on } G \text{ and } v\}$
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.

- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.
 - Note: 2-clique or cycle of length four.

- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.

- The inequalities result from the definitions.

- $\text{minb}(L(n)) = \lceil n/2 \rceil$

- Optimal broadcast on a line start in the center of the line.

- $b(L(n)) = n - 1$

- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.
- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.
 - Note: 2-clique or cycle of length four.
- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.
- The inequalities result from the definitions.
- $\text{minb}(L(n)) = \lceil n/2 \rceil$
- Optimal broadcast on a line start in the center of the line.
- $b(L(n)) = n - 1$
- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.

- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.
 - Note: 2-clique or cycle of length four.

- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.

- The inequalities result from the definitions.

- $\text{minb}(L(n)) = \lceil n/2 \rceil$

- Optimal broadcast on a line start in the center of the line.

- $b(L(n)) = n - 1$

- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.

- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.

- Note: 2-clique or cycle of length four.

- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.

- The inequalities result from the definitions.

- $\text{minb}(L(n)) = \lceil n/2 \rceil$

- Optimal broadcast on a line start in the center of the line.

- $b(L(n)) = n - 1$

- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.
- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.
- Note: 2-clique or cycle of length four.
- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.
- The inequalities result from the definitions.
- $\text{minb}(L(n)) = \lceil n/2 \rceil$
- Optimal broadcast on a line start in the center of the line.
- $b(L(n)) = n - 1$
- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.

- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.
 - Note: 2-clique or cycle of length four.

- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.
 - The inequalities result from the definitions.

- $\text{minb}(L(n)) = \lceil n/2 \rceil$

- Optimal broadcast on a line start in the center of the line.
 - $b(L(n)) = n - 1$

- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.

- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.

- Note: 2-clique or cycle of length four.

- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.

- The inequalities result from the definitions.

- $\text{minb}(L(n)) = \lceil n/2 \rceil$

- Optimal broadcast on a line start in the center of the line.

- $b(L(n)) = n - 1$

- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.

- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.

- Note: 2-clique or cycle of length four.

- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.

- The inequalities result from the definitions.

- $\text{minb}(L(n)) = \lceil n/2 \rceil$

- Optimal broadcast on a line start in the center of the line.

- $b(L(n)) = n - 1$

- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.
- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.
- Note: 2-clique or cycle of length four.
- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.
- The inequalities result from the definitions.
- $\text{minb}(L(n)) = \lceil n/2 \rceil$
- Optimal broadcast on a line start in the center of the line.
- $b(L(n)) = n - 1$
- A message from the left has to traverse all edges.
First Results

- For each graph \(G \) and \(v \in V \) we have:
 - \(a(v, G) = b(v, G) \)
 - \(a(G) = b(G) \)
 - \(\text{mina}(G) = \text{minb}(G) \)

- Note: reverse broadcast is accumulation.

- There exists a graph \(G \) with: \(r(G) = 2 \cdot r_2(G) \).
 - Note: 2-clique or cycle of length four.

- The following holds: \(\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G) \).

- The inequalities result from the definitions.

- \(\text{minb}(L(n)) = \lceil n/2 \rceil \)

- Optimal broadcast on a line start in the center of the line.

- \(b(L(n)) = n - 1 \)

- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.

- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.
 - Note: 2-clique or cycle of length four.

- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.

- The inequalities result from the definitions.

- $\text{minb}(L(n)) = \lceil n/2 \rceil$

- Optimal broadcast on a line start in the center of the line.

- $b(L(n)) = n - 1$

- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

- Note: reverse broadcast is accumulation.

- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.
- Note: 2-clique or cycle of length four.

- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.

- The inequalities result from the definitions.

- $\text{minb}(L(n)) = \lceil n/2 \rceil$

- Optimal broadcast on a line start in the center of the line.

- $b(L(n)) = n - 1$

- A message from the left has to traverse all edges.
First Results

- For each graph G and $v \in V$ we have:
 - $a(v, G) = b(v, G)$
 - $a(G) = b(G)$
 - $\text{mina}(G) = \text{minb}(G)$

 Note: reverse broadcast is accumulation.

- There exists a graph G with: $r(G) = 2 \cdot r_2(G)$.
 Note: 2-clique or cycle of length four.

- The following holds: $\text{minb}(G) \leq b(G) \leq r_2(G) \leq r(G) \leq 2 \cdot r_2(G)$.

- The inequalities result from the definitions.

- $\text{minb}(L(n)) = \lceil n/2 \rceil$

- Optimal broadcast on a line start in the center of the line.

- $b(L(n)) = n - 1$

- A message from the left has to traverse all edges.
Lemma:

For each graph G with $|V| \geq 2$ we have:

- $b(G) \leq r(G) \leq 2 \cdot \min b(G)$
- $b(G) \leq r_2(G) \leq 2 \cdot \min b(G) - 1$

Proof: Consider the following steps.

- Let $v \in V$ with $b(v, G) = \min b(G) = \min a(G) = z$.
- Let $A = E_1, E_2, \cdots E_z$ be the corresponding one-way broadcast-algorithm.
- Let $B = F_1, F_2, \cdots F_z$ be the corresponding one-way accumulation-algorithm.
- Then is $F_1, F_2, \cdots F_z, E_1, E_2, \cdots E_z$ one-way gossip-algorithm.
- Note: in the two-way case holds: $F_z = E_1$.
- Note: For $L(2 \cdot n)$ we have equality.
Lemma:

For each graph G with $|V| \geq 2$ we have:
- $b(G) \leq r(G) \leq 2 \cdot \min b(G)$
- $b(G) \leq r_2(G) \leq 2 \cdot \min b(G) - 1$

Proof: Consider the following steps.

- Let $v \in V$ with $b(v, G) = \min b(G) = \min a(G) = z$.
- Let $A = E_1, E_2, \cdots E_z$ be the corresponding one-way broadcast-algorithm.
- Let $B = F_1, F_2, \cdots F_z$ be the corresponding one-way accumulation-algorithm.
- Then is $F_1, F_2, \cdots F_z, E_1, E_2, \cdots E_z$ one-way gossip-algorithm.
- Note: in the two-way case holds: $F_z = E_1$.
- Note: For $L(2 \cdot n)$ we have equality.
Lemma:

For each graph G with $|V| \geq 2$ we have:

1. $b(G) \leq r(G) \leq 2 \cdot \min b(G)$
2. $b(G) \leq r_2(G) \leq 2 \cdot \min b(G) - 1$

Proof: Consider the following steps.

1. Let $v \in V$ with $b(v, G) = \min b(G) = \min a(G) = z$.
2. Let $A = E_1, E_2, \ldots, E_z$ be the corresponding one-way broadcast-algorithm.
3. Let $B = F_1, F_2, \ldots, F_z$ be the corresponding one-way accumulation-algorithm.
4. Then is $F_1, F_2, \ldots, F_z, E_1, E_2, \ldots, E_z$ one-way gossip-algorithm.
5. Note: in the two-way case holds: $F_z = E_1$.
6. Note: For $L(2 \cdot n)$ we have equality.
Lemma:

For each graph G with $|V| \geq 2$ we have:

- $b(G) \leq r(G) \leq 2 \cdot \min b(G)$
- $b(G) \leq r_2(G) \leq 2 \cdot \min b(G) - 1$

Proof: Consider the following steps.

- Let $v \in V$ with $b(v, G) = \min b(G) = \min a(G) = z$.
- Let $A = E_1, E_2, \cdots E_z$ be the corresponding one-way broadcast-algorithm.
- Let $B = F_1, F_2, \cdots F_z$ be the corresponding one-way accumulation-algorithm.
- Then is $F_1, F_2, \cdots F_z, E_1, E_2, \cdots E_z$ one-way gossip-algorithm.
- Note: in the two-way case holds: $F_z = E_1$.
- Note: For $L(2 \cdot n)$ we have equality.
Lemma:
For each graph G with $|V| \geq 2$ we have:
- $b(G) \leq r(G) \leq 2 \cdot \min b(G)$
- $b(G) \leq r_2(G) \leq 2 \cdot \min b(G) - 1$

Proof: Consider the following steps.
- Let $v \in V$ with $b(v, G) = \min b(G) = \min a(G) = z$.
- Let $A = E_1, E_2, \cdots E_z$ be the corresponding one-way broadcast-algorithm.
- Let $B = F_1, F_2, \cdots F_z$ be the corresponding one-way accumulation-algorithm.
- Then is $F_1, F_2, \cdots F_z, E_1, E_2, \cdots E_z$ one-way gossip-algorithm.
- Note: in the two-way case holds: $F_z = E_1$.
- Note: For $L(2 \cdot n)$ we have equality.
First Results II

Lemma:
For each graph G with $|V| \geq 2$ we have:

- $b(G) \leq r(G) \leq 2 \cdot \minb(G)$
- $b(G) \leq r_2(G) \leq 2 \cdot \minb(G) - 1$

Proof: Consider the following steps.

- Let $v \in V$ with $b(v, G) = \minb(G) = \mina(G) = z$.
- Let $A = E_1, E_2, \cdots E_z$ be the corresponding one-way broadcast-algorithm.
- Let $B = F_1, F_2, \cdots F_z$ be the corresponding one-way accumulation-algorithm.
- Then is $F_1, F_2, \cdots F_z, E_1, E_2, \cdots E_z$ one-way gossip-algorithm.
- Note: in the two-way case holds: $F_z = E_1$.
- Note: For $L(2 \cdot n)$ we have equality.
Lemma:

For each graph G with $|V| \geq 2$ we have:

1. $b(G) \leq r(G) \leq 2 \cdot \min b(G)$
2. $b(G) \leq r_2(G) \leq 2 \cdot \min b(G) - 1$

Proof: Consider the following steps.

- Let $v \in V$ with $b(v, G) = \min b(G) = \min a(G) = z$.
- Let $A = E_1, E_2, \cdots E_z$ be the corresponding one-way broadcast-algorithm.
- Let $B = F_1, F_2, \cdots F_z$ be the corresponding one-way accumulation-algorithm.
- Then is $F_1, F_2, \cdots F_z, E_1, E_2, \cdots E_z$ one-way gossip-algorithm.
- Note: in the two-way case holds: $F_z = E_1$.
- Note: For $L(2 \cdot n)$ we have equality.
Lemma:

For each graph G with $|V| \geq 2$ we have:

- $b(G) \leq r(G) \leq 2 \cdot \min b(G)$
- $b(G) \leq r_2(G) \leq 2 \cdot \min b(G) - 1$

Proof: Consider the following steps.

- Let $v \in V$ with $b(v, G) = \min b(G) = \min a(G) = z$.
- Let $A = E_1, E_2, \cdots E_z$ be the corresponding one-way broadcast-algorithm.
- Let $B = F_1, F_2, \cdots F_z$ be the corresponding one-way accumulation-algorithm.
- Then is $F_1, F_2, \cdots F_z, E_1, E_2, \cdots E_z$ one-way gossip-algorithm.
- Note: in the two-way case holds: $F_z = E_1$.
- Note: For $L(2 \cdot n)$ we have equality.
Lemma:

For each graph G with $|V| \geq 2$ we have:

- $b(G) \leq r(G) \leq 2 \cdot \min b(G)$
- $b(G) \leq r_2(G) \leq 2 \cdot \min b(G) - 1$

Proof: Consider the following steps.

- Let $v \in V$ with $b(v, G) = \min b(G) = \min a(G) = z$.
- Let $A = E_1, E_2, \cdots E_z$ be the corresponding one-way broadcast-algorithm.
- Let $B = F_1, F_2, \cdots F_z$ be the corresponding one-way accumulation-algorithm.
- Then is $F_1, F_2, \cdots F_z, E_1, E_2, \cdots E_z$ one-way gossip-algorithm.
- Note: in the two-way case holds: $F_z = E_1$.
- **Note:** For $L(2 \cdot n)$ we have equality.
Lemma:

For each even \(n \) with \(n \geq 8 \) exists a Graph \(G \) with \(n \) nodes and

\[b(G) = r(G) \]

Proof (for \(n = 8 \)):
Lemma:
For each even n with $n \geq 8$ exists a Graph G with n nodes and $b(G) = r(G)$

Proof (for $n = 8$):
Lemma:
For each even \(n \) with \(n \geq 8 \) exists a Graph \(G \) with \(n \) nodes and
\[b(G) = r(G) \]

Proof (for \(n = 8 \)):
Lemma:

For each even n with $n \geq 8$ exists a Graph G with n nodes and $b(G) = r(G)$

Proof (for $n = 8$):
Lemma:
For each even n with $n \geq 8$ exists a Graph G with n nodes and $b(G) = r(G)$

Proof (for $n = 8$):

\begin{center}
\begin{tikzpicture}
\node[vertex, label=above:a_1] (a1) at (0, 0) {};
\node[vertex, label=above:a_2] (a2) at (1, 0) {};
\node[vertex, label=above:a_3] (a3) at (2, 0) {};
\node[vertex, label=above:a_4] (a4) at (2,-1) {};
\node[vertex, label=above:a_5] (a5) at (3, 0) {};
\node[vertex, label=above:a_6] (a6) at (4, 0) {};
\node[vertex, label=above:a_7] (a7) at (5, 0) {};
\node[vertex, label=above:a_8] (a8) at (6, 0) {};
\draw (a1) -- (a2);
\draw (a3) -- (a4);
\draw (a5) -- (a6);
\draw (a7) -- (a8);
\end{tikzpicture}
\end{center}
First Results III

Lemma:
For each even n with $n \geq 8$ exists a Graph G with n nodes and

\[b(G) = r(G) \]

Proof (for $n = 8$):
Lemma:
For each even n with $n \geq 8$ exists a Graph G with n nodes and

$$b(G) = r(G)$$

Proof (for $n = 8$):

Both broadcasts together are a gossip-algorithm.
Lemma:

For each even n with $n \geq 8$ exists a Graph G with n nodes and

\[b(G) = r(G) \]

Proof (for $n = 8$):

Both broadcasts together are a gossip-algorithm.
Lemma:

For each even n with $n \geq 8$ exists a Graph G with n nodes and

\[b(G) = r(G) \]

Proof (for $n = 8$):

![Diagram of a graph with 8 nodes and two broadcast processes]
Lemma:
For each even n with $n \geq 8$ exists a Graph G with n nodes and
\[b(G) = r(G) \]

Proof (for $n = 8$):

Both broadcasts together are a gossip-algorithm.
First Results III

Lemma:
For each even \(n \) with \(n \geq 8 \) exists a Graph \(G \) with \(n \) nodes and \(b(G) = r(G) \)

Proof (for \(n = 8 \)):

Both broadcasts together are a gossip-algorithm.
Lemma:

For each even n with $n \geq 8$ exists a Graph G with n nodes and

$$b(G) = r(G)$$

Proof (for $n = 8$):

Both broadcasts together are a gossip algorithm.
Lemma:
For each even \(n \) with \(n \geq 8 \) exists a Graph \(G \) with \(n \) nodes and
\[b(G) = r(G) \]

Proof (for \(n = 8 \)):
Lemma:

For each even \(n \) with \(n \geq 8 \) exists a Graph \(G \) with \(n \) nodes and \(b(G) = r(G) \).

Proof (for \(n = 8 \)):
Lemma:

For each even n with $n \geq 8$ exists a Graph G with n nodes and $b(G) = r(G)$

Proof (for $n = 8$):

\[\begin{align*}
\text{broadcast with } a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_4 \\
\text{gossip with } a_1 \rightarrow a_3 \rightarrow a_5 \rightarrow a_7 \\
\text{broadcast with } a_2 \rightarrow a_3 \rightarrow a_4 \\
\text{gossip with } a_6 \rightarrow a_3 \rightarrow a_5 \\
\end{align*} \]
Lemma:
For each even n with $n \geq 8$ exists a Graph G with n nodes and
\[b(G) = r(G) \]

Proof (for $n = 8$):

Both broadcasts together are a gossip-algorithm.
First Results IV

- \(\text{rad}(G) \leq \text{minb}(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subset E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\text{minb}(G) \leq \text{minb}(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).

- \(\text{minb}(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2 \).
- \(r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).

\[
\text{diam}(G) = \max\{\text{dist}(u, v) \mid u, v \in V\}
\]
\[
\text{rad}(v, G) = \max\{\text{dist}(v, x) \mid x \in V\}
\]
\[
\text{rad}(G) = \min\{\text{rad}(v, G) \mid v \in V\}
\]
First Results IV

- \(\text{rad}(G) \leq \min b(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).

Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subset E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\min b(G) \leq \min b(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).

- \(\min b(G) \leq (\deg(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\deg(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \deg(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\deg(G) - 1) \cdot \text{rad}(G) + 2 \).
- \(r_2(G) \leq 2(\deg(G) - 1) \cdot \text{rad}(G) + 1 \).

\[
\begin{align*}
\text{diam}(G) & = \max \{ \text{dist}(u, v) \mid u, v \in V \} \\
\text{rad}(v, G) & = \max \{ \text{dist}(v, x) \mid x \in V \} \\
\text{rad}(G) & = \min \{ \text{rad}(v, G) \mid v \in V \}
\end{align*}
\]
First Results IV

- \(\text{rad}(G) \leq \text{minb}(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subseteq E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\text{minb}(G) \leq \text{minb}(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).
- \(\text{minb}(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2 \).
- \(r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
First Results IV

- \(\text{rad}(G) \leq \min b(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subseteq E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\min b(G) \leq \min b(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).

- \(\min b(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2 \)
- \(r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \)
First Results IV

- $\text{rad}(G) \leq \text{minb}(G)$.
- $\text{rad}(G) \leq \text{diam}(G) \leq b(G)$.

Let $G = (V, E)$ and $H = (V, F)$ with $F \subseteq E$. Then we have:

- $b(G) \leq b(H)$.
- $\text{minb}(G) \leq \text{minb}(H)$.
- $r(G) \leq r(H)$.
- $r_2(G) \leq r_2(H)$.

- $\text{minb}(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1$.
- $b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1$.
- $b(G) \leq \text{deg}(G) \cdot \text{rad}(G)$.
- $r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2$.
- $r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1$.
First Results IV

- \(\text{rad}(G) \leq \text{minb}(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subseteq E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\text{minb}(G) \leq \text{minb}(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).

- \(\text{minb}(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2 \).
- \(r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
First Results IV

- \(\text{rad}(G) \leq \text{minb}(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subset E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\text{minb}(G) \leq \text{minb}(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).

- \(\text{minb}(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2 \).
- \(r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
First Results IV

- \(\text{rad}(G) \leq \text{minb}(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subseteq E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\text{minb}(G) \leq \text{minb}(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).
- \(\text{minb}(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2 \).
- \(r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).

\[
\begin{align*}
\text{diam}(G) &= \max \{ \text{dist}(u, v) \mid u, v \in V \} \\
\text{rad}(v, G) &= \max \{ \text{dist}(v, x) \mid x \in V \} \\
\text{rad}(G) &= \min \{ \text{rad}(v, G) \mid v \in V \}
\end{align*}
\]
First Results IV

- \(\text{rad}(G) \leq \min b(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subset E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\min b(G) \leq \min b(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).
 - \(\min b(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
 - \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
 - \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
 - \(r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2 \)
 - \(r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \)
First Results IV

- \(\text{rad}(G) \leq \min b(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subseteq E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\min b(G) \leq \min b(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).
- \(\min b(G) \leq (\deg(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\deg(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \deg(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\deg(G) - 1) \cdot \text{rad}(G) + 2 \).
- \(r_2(G) \leq 2(\deg(G) - 1) \cdot \text{rad}(G) + 1 \).
First Results IV

- $\text{rad}(G) \leq \text{minb}(G)$.
- $\text{rad}(G) \leq \text{diam}(G) \leq b(G)$.
- Let $G = (V, E)$ and $H = (V, F)$ with $F \subseteq E$. Then we have:
 - $b(G) \leq b(H)$.
 - $\text{minb}(G) \leq \text{minb}(H)$.
 - $r(G) \leq r(H)$.
 - $r_2(G) \leq r_2(H)$.
- $\text{minb}(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1$.
- $b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1$.
- $b(G) \leq \text{deg}(G) \cdot \text{rad}(G)$.
- $r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2$
- $r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1$
First Results IV

- \(\text{rad}(G) \leq \text{minb}(G) \).
- \(\text{rad}(G) \leq \text{diam}(G) \leq b(G) \).
- Let \(G = (V, E) \) and \(H = (V, F) \) with \(F \subseteq E \). Then we have:
 - \(b(G) \leq b(H) \).
 - \(\text{minb}(G) \leq \text{minb}(H) \).
 - \(r(G) \leq r(H) \).
 - \(r_2(G) \leq r_2(H) \).

- \(\text{minb}(G) \leq (\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \).
- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1 \).
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G) \).
- \(r(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 2 \)
- \(r_2(G) \leq 2(\text{deg}(G) - 1) \cdot \text{rad}(G) + 1 \)

\[
\begin{align*}
\text{diam}(G) & = \max\{\text{dist}(u, v) \mid u, v \in V\} \\
\text{rad}(v, G) & = \max\{\text{dist}(v, x) \mid x \in V\} \\
\text{rad}(G) & = \min\{\text{rad}(v, G) \mid v \in V\}
\end{align*}
\]
Lemma

Let $G = (V, E)$ be a graph with n nodes. Then we have:

- $b(G) \geq \min b(G) \geq \lceil \log n \rceil$

Proof:

- Let $A(t)$ be the number of informed nodes after t rounds.
- $A(0) = 1$
- $A(t+1) \leq 2 \cdot A(t)$
- $A(t) \leq 2^t$
- At the end $2^t \geq n$ must hold.
Lower Bound

Lemma

Let $G = (V, E)$ be a graph with n nodes. Then we have:

- $b(G) \geq \min b(G) \geq \lceil \log n \rceil$

Proof:

- Let $A(t)$ be the number of informed nodes after t rounds.
- $A(0) = 1$
- $A(t + 1) \leq 2 \cdot A(t)$
- $A(t) \leq 2^t$
- At the end $2^t \geq n$ must hold.
Lemma

Let $G = (V, E)$ be a graph with n nodes. Then we have:

- $b(G) \geq \min b(G) \geq \lceil \log n \rceil$

Proof:

- Let $A(t)$ be the number of informed nodes after t rounds.
- $A(0) = 1$
- $A(t + 1) \leq 2 \cdot A(t)$
- $A(t) \leq 2^t$
- At the end $2^t \geq n$ must hold.
Lower Bound

Lemma

Let $G = (V, E)$ be a graph with n nodes. Then we have:

- $b(G) \geq \min b(G) \geq \lceil \log n \rceil$

Proof:

- Let $A(t)$ be the number of informed nodes after t rounds.
- $A(0) = 1$
- $A(t + 1) \leq 2 \cdot A(t)$
- $A(t) \leq 2^t$
- At the end $2^t \geq n$ must hold.
Lower Bound

Lemma

Let $G = (V, E)$ be a graph with n nodes. Then we have:

- $b(G) \geq \min b(G) \geq \lceil \log n \rceil$

Proof:

- Let $A(t)$ be the number of informed nodes after t rounds.
- $A(0) = 1$
- $A(t + 1) \leq 2 \cdot A(t)$
- $A(t) \leq 2^t$
- At the end $2^t \geq n$ must hold.
Lower Bound

Lemma

Let $G = (V, E)$ be a graph with n nodes. Then we have:

- $b(G) \geq \min b(G) \geq \lceil \log n \rceil$

Proof:

- Let $A(t)$ be the number of informed nodes after t rounds.
- $A(0) = 1$
- $A(t + 1) \leq 2 \cdot A(t)$
- $A(t) \leq 2^t$
- At the end $2^t \geq n$ must hold.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \cdots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \ldots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \cdots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \cdots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \ldots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \cdots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \cdots, v_{i-1}$ and
- v_j is the root of a T_j.
Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \cdots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \ldots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

![Diagram of a broadcast tree]

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \ldots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

- A tree T_i is a broadcast-tree, iff
 - the root of T_i has i successors $v_0, v_1, \ldots, v_{i-1}$ and
 - v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \cdots, v_{i-1}$ and
- v_j is the root of a T_j.
Optimal Broadcast-Tree

Each informed node has to send in each round the information to a non-informed node:

A tree T_i is a broadcast-tree, iff
- the root of T_i has i successors $v_0, v_1, \ldots, v_{i-1}$ and
- v_j is the root of a T_j.
First Results

Lemma

We have:

- \(\min b(K(n)) = b(K(n)) = \lceil \log n \rceil \) and
- \(\min b(HQ(m)) = b(HQ(m)) = m. \)

Proof \((K(n))\):

for \(t = 1 \) to \(\lceil \log n \rceil \) do

for all \(i \in \{0, 1, \ldots, 2^{t-1} - 1\} \) do in parallel

if \(i + 2^{t-1} \leq n \) then

\(i \) sends to \(i + 2^{t-1} \)

Proof \((HQ(m))\):

for \(i = 1 \) to \(m \) do

for all \(a_1, a_2, \ldots, a_{i-1} \in \{0, 1\} \) do in parallel

\(a_1 a_2 \cdots a_{i-1} 00 \cdots 0 \) sends to \(a_1 a_2 \cdots a_{i-1} 10 \cdots 0 \)
Lemma

We have:
- \(\min b(K(n)) = b(K(n)) = \lceil \log n \rceil \) and
- \(\min b(HQ(m)) = b(HQ(m)) = m. \)

Proof \((K(n))\):

\[
\text{for } t = 1 \text{ to } \lceil \log n \rceil \text{ do} \\
\quad \text{for all } i \in \{0, 1, \ldots, 2^{t-1} - 1\} \text{ do in parallel} \\
\qquad \text{if } i + 2^{t-1} \leq n \text{ then} \\
\qquad \quad i \text{ sends to } i + 2^{t-1}
\]

Proof \((HQ(m))\):

\[
\text{for } i = 1 \text{ to } m \text{ do} \\
\quad \text{for all } a_1, a_2, \ldots, a_{i-1} \in \{0, 1\} \text{ do in parallel} \\
\qquad a_1 a_2 \cdots a_{i-1} 00 \cdots 0 \text{ sends to } a_1 a_2 \cdots a_{i-1} 10 \cdots 0
\]
Lemma

We have:

1. $\min b(K(n)) = b(K(n)) = \lceil \log n \rceil$ and
2. $\min b(HQ(m)) = b(HQ(m)) = m$.

Proof ($K(n)$):

for $t = 1$ to $\lceil \log n \rceil$ do
 for all $i \in \{0, 1, \ldots, 2^{t-1} - 1\}$ do in parallel
 if $i + 2^{t-1} \leq n$ then
 i sends to $i + 2^{t-1}$

Proof ($HQ(m)$):

for $i = 1$ to m do
 for all $a_1, a_2, \ldots, a_{i-1} \in \{0, 1\}$ do in parallel
 $a_1a_2\cdots a_{i-1}00\cdots 0$ sends to $a_1a_2\cdots a_{i-1}10\cdots 0$
Lemma

For all $k, m \geq 2$ we have: $\min b(T_k(m)) = k \cdot m$.

Idea of proof:

- $b(\varepsilon, T_k(m)) = k \cdot m$.
- $b(\varepsilon, T_k(m)) \leq b(\nu, T_k(m))$.
- Note that ν has to inform ε.
- and ε has to inform the other successors.
First Results II

Lemma

For all $k, m \geq 2$ we have: $\min_b(T_k(m)) = k \cdot m$.

Idea of proof:

- $b(\varepsilon, T_k(m)) = k \cdot m$.
- $b(\varepsilon, T_k(m)) \leq b(\nu, T_k(m))$.
- Note that ν has to inform ε.
- and ε has to inform the other successors.
First Results II

Lemma

For all $k, m \geq 2$ we have: $\min(b(T_k(m))) = k \cdot m$.

Idea of proof:

- $b(\epsilon, T_k(m)) = k \cdot m$.
- $b(\epsilon, T_k(m)) \leq b(\nu, T_k(m))$.
- Note that ν has to inform ϵ.
- and ϵ has to inform the other successors.
Lemma

For all $k, m \geq 2$ we have: $\min b(T_k(m)) = k \cdot m$.

Idea of proof:

- $b(\epsilon, T_k(m)) = k \cdot m$.
- $b(\epsilon, T_k(m)) \leq b(\nu, T_k(m))$.
- **Note that ν has to inform ϵ**
- and ϵ has to inform the other successors.
First Results II

Lemma

For all $k, m \geq 2$ we have: $\min b(T_k(m)) = k \cdot m$.

Idea of proof:

- $b(\epsilon, T_k(m)) = k \cdot m$.
- $b(\epsilon, T_k(m)) \leq b(\nu, T_k(m))$.
- Note that ν has to inform ϵ.
- and ϵ has to inform the other successors.
Lemma

We have:

- \(b(\text{CCC}(k)) \leq 5k + O(1) \)
- \(b(\text{BF}(k)) \leq 4.5k + O(1) \)
- \(b(\text{SE}(k)) \leq 4k + O(1) \)
- \(b(\text{DB}(k)) \leq 3k + O(1) \)

Proof: Use the following statements:

- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1. \)
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G). \)
First Results

Lemma

We have:

- $b(\text{CCC}(k)) \leq 5k + O(1)$
- $b(\text{BF}(k)) \leq 4.5k + O(1)$
- $b(\text{SE}(k)) \leq 4k + O(1)$
- $b(\text{DB}(k)) \leq 3k + O(1)$

Proof: Use the following statements:

- $b(G) \leq (\deg(G) - 1) \cdot \diam(G) + 1$.
- $b(G) \leq \deg(G) \cdot \rad(G)$.
First Results

Lemma

We have:

- \(b(\text{CCC}(k)) \leq 5k + O(1) \)
- \(b(\text{BF}(k)) \leq 4.5k + O(1) \)
- \(b(\text{SE}(k)) \leq 4k + O(1) \)
- \(b(\text{DB}(k)) \leq 3k + O(1) \)

Proof: Use the following statements:

- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1. \)
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G). \)
First Results

Lemma
We have:
1. \(b(\text{CCC}(k)) \leq 5k + O(1) \)
2. \(b(\text{BF}(k)) \leq 4.5k + O(1) \)
3. \(b(\text{SE}(k)) \leq 4k + O(1) \)
4. \(b(\text{DB}(k)) \leq 3k + O(1) \)

Proof: Use the following statements:
1. \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1. \)
2. \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G). \)
First Results

Lemma

We have:

- $b(\text{CCC}(k)) \leq 5k + O(1)$
- $b(\text{BF}(k)) \leq 4.5k + O(1)$
- $b(\text{SE}(k)) \leq 4k + O(1)$
- $b(\text{DB}(k)) \leq 3k + O(1)$

Proof: Use the following statements:

- $b(G) \leq (\deg(G) - 1) \cdot \text{diam}(G) + 1$.
- $b(G) \leq \deg(G) \cdot \text{rad}(G)$.
First Results

Lemma

We have:

- \(b(\text{CCC}(k)) \leq 5k + O(1) \)
- \(b(\text{BF}(k)) \leq 4.5k + O(1) \)
- \(b(\text{SE}(k)) \leq 4k + O(1) \)
- \(b(\text{DB}(k)) \leq 3k + O(1) \)

Proof: Use the following statements:

- \(b(G) \leq (\text{deg}(G) - 1) \cdot \text{diam}(G) + 1. \)
- \(b(G) \leq \text{deg}(G) \cdot \text{rad}(G). \)
Theorem:

We have: ⌈5k/2⌉ − 2 ≤ minb(CCC(k)) = b(CCC(k)) ≤ ⌈5k/2⌉ − 1.

The following parts are proven:

- minb(CCC(k)) ≥ ⌈5k/2⌉ − 2
- Algorithm for ⌈5k/2⌉ − 1 will be presented.
Theorem:
We have: \(\lceil \frac{5k}{2} \rceil - 2 \leq \min b(\text{CCC}(k)) = b(\text{CCC}(k)) \leq \lceil \frac{5k}{2} \rceil - 1\).

- The following parts are proven:
 - \(\min b(\text{CCC}(k)) \geq \lceil \frac{5k}{2} \rceil - 2\)
 - Algorithm for \(\lceil \frac{5k}{2} \rceil - 1\) will be presented.
Theorem:
We have: \(\lceil \frac{5k}{2} \rceil - 2 \leq \min_b(\text{CCC}(k)) = b(\text{CCC}(k)) \leq \lceil \frac{5k}{2} \rceil - 1\).

- The following parts are proven:
 - \(\min_b(\text{CCC}(k)) \geq \lceil \frac{5k}{2} \rceil - 2\)
 - Algorithm for \(\lceil \frac{5k}{2} \rceil - 1\) will be presented.
CCC, Proof $\text{minb}(\text{CCC}(k)) \geq \left\lceil 5 \cdot k/2 \right\rceil - 2$

- $\text{diam}(\text{CCC}(k)) = \left\lceil 5/2 \cdot k \right\rceil - 2$
- The statement holds for even k.
- Let k be odd.
- Let $(0, 00 \cdots 0)$ be the origin of the message.
- The nodes $(\lfloor k/2 \rfloor, 11 \cdots 1)$ and $(\lfloor k/2 \rfloor + 1, 11 \cdots 1)$ are both in distance $(\lfloor 5 \cdot k/2 \rfloor - 2)$.
- Thus we need one round more then the diameter.
- The statement hold, because the CCC is node-symetric.
CCC, Proof $\text{minb}(\text{CCC}(k)) \geq \lceil 5 \cdot k/2 \rceil - 2$

- $\text{diam}(\text{CCC}(k)) = \lfloor 5/2 \cdot k \rfloor - 2$
- The statement holds for even k.
- Let k be odd.
- Let $(0,00\cdots0)$ be the origin of the message.
- The nodes $([k/2],11\cdots1)$ and $([k/2]+1,11\cdots1)$ are both in distance $\lfloor 5 \cdot k/2 \rfloor - 2$.
- Thus we need one round more then the diameter.
- The statement hold, because the CCC is node-symetric.
CCC, Proof $\text{minb}(\text{CCC}(k)) \geq \lceil 5 \cdot k/2 \rceil - 2$

- $\text{diam}(\text{CCC}(k)) = \lceil 5/2 \cdot k \rceil - 2$
- The statement holds for even k.
- Let k be odd.
- Let $(0,00\cdots0)$ be the origin of the message.
- The nodes $(\lceil k/2 \rceil, 11\cdots1)$ and $(\lceil k/2 \rceil + 1, 11\cdots1)$ are both in distance $(\lceil 5 \cdot k/2 \rceil - 2)$.
- Thus we need one round more then the diameter.
- The statement hold, because the CCC is node-symmetric.
CCC, Proof $\text{minb}(\text{CCC}(k)) \geq \left\lfloor 5 \cdot k/2 \right\rfloor - 2$

- $\text{diam}(\text{CCC}(k)) = \left\lfloor 5/2 \cdot k \right\rfloor - 2$
- The statement holds for even k.
- Let k be odd.
- Let $(0,00\cdots 0)$ be the origin of the message.
- The nodes $(\lfloor k/2 \rfloor, 11\cdots 1)$ and $(\lfloor k/2 \rfloor + 1, 11\cdots 1)$ are both in distance $(\lfloor 5 \cdot k/2 \rfloor - 2)$.
- Thus we need one round more then the diameter.
- The statement hold, because the CCC is node-symmetric.
CCC, Proof \(\text{minb}(\text{CCC}(k)) \geq \lceil 5 \cdot k/2 \rceil - 2 \)

- \(\text{diam}(\text{CCC}(k)) = \lceil 5/2 \cdot k \rceil - 2 \)
- The statement holds for even \(k \).
- Let \(k \) be odd.
- Let \((0, 00 \cdots 0)\) be the origin of the message.
- The nodes \((\lfloor k/2 \rfloor, 11 \cdots 1)\) and \((\lceil k/2 \rceil + 1, 11 \cdots 1)\) are both in distance \((\lceil 5 \cdot k/2 \rceil - 2)\).
- Thus we need one round more than the diameter.
- The statement hold, because the CCC is node-symetric.
CCC, Proof $\text{minb}(\text{CCC}(k)) \geq \lceil 5 \cdot k/2 \rceil - 2$

- $\text{diam}(\text{CCC}(k)) = \lceil 5/2 \cdot k \rceil - 2$
- The statement holds for even k.
- Let k be odd.
- Let $(0,00\cdots0)$ be the origin of the message.
- The nodes $(\lceil k/2 \rceil, 11\cdots1)$ and $(\lceil k/2 \rceil + 1, 11\cdots1)$ are both in distance $(\lceil 5 \cdot k/2 \rceil - 2)$.
- Thus we need one round more then the diameter.
- The statement hold, because the CCC is node-symetric.
CCC, Proof $\text{minb}(\text{CCC}(k)) \geq \lceil 5 \cdot k/2 \rceil - 2$

- $\text{diam}(\text{CCC}(k)) = \lceil 5/2 \cdot k \rceil - 2$
- The statement holds for even k.
- Let k be odd.
- Let $(0,00 \cdots 0)$ be the origin of the message.
- The nodes $([k/2], 11 \cdots 1)$ and $([k/2] + 1, 11 \cdots 1)$ are both in distance $(\lceil 5 \cdot k/2 \rceil - 2)$.
- Thus we need one round more than the diameter.
- The statement hold, because the CCC is node-symmetric.
Algorithm \textsc{Broadcast-CCC}_k

$(0,00\ldots0)$ sends to $(0,10\ldots0)$;

\textbf{for } $i = 0$ \textbf{to } $k - 1$ \textbf{do begin}

\textbf{for all } $a_0,\ldots,a_{i-1} \in \{0,1\}$ \textbf{do in parallel}

$(i-1,a_0\ldots a_{i-1}00\ldots0)$ sends to $(i,a_0\ldots a_{i-1}00\ldots0)$;

\textbf{for all } $a_0,\ldots,a_{i-1} \in \{0,1\}$ \textbf{do in parallel}

$(i,a_0\ldots a_{i-1}00\ldots0)$ sends to $(i,a_0\ldots a_{i-1}10\ldots0)$;

\textbf{end;}

\textbf{for all } $\alpha \in \{0,1\}^k$ \textbf{do in parallel}

Broadcast on cycle $C_\alpha(k)$ starting from $(k-1,\alpha)$;

\begin{figure}
\centering
\includegraphics[width=\textwidth]{diagram.png}
\end{figure}
Theorem:

We have: \(\min b(\text{CCC}(k)) = b(\text{CCC}(k)) \leq \lceil 5 \cdot k/2 \rceil - 2. \)

Idea of proof: Change the first phase and send in both directions.
Theorem:
We have: $\min b(\text{CCC}(k)) = b(\text{CCC}(k)) \leq \lceil 5 \cdot k/2 \rceil - 2$.

Idea of proof: Change the first phase and send in both directions.
Theorem:

We have: \(\min_b(SE(k)) = b(SE(k)) = 2 \cdot k - 1\)

Proof:

- The diameter provides the lower bound.
- Note \(SE(k)\) is not node-symmetric.
- We have to provide an algorithm for any node \(v\).
- Algorithm has to be without conflicts.
- And we do now show it here in detail.
Theorem:
We have: \(\min b(SE(k)) = b(SE(k)) = 2 \cdot k - 1 \)

Proof:
- The diameter provides the lower bound.
- Note \(SE(k) \) is not node-symmetric.
- We have to provide an algorithm for any node \(v \).
- Algorithm has to be without conflicts.
- And we do now show it here in detail.
Theorem:
We have: \(\min b(SE(k)) = b(SE(k)) = 2 \cdot k - 1 \)

Proof:

- The diameter provides the lower bound.
- Note \(SE(k) \) is not node-symmetric.
- We have to provide an algorithm for any node \(v \).
- Algorithm has to be without conflicts.
- And we do now show it here in detail.
Theorem:

We have: \(\min b(\text{SE}(k)) = b(\text{SE}(k)) = 2 \cdot k - 1 \)

Proof:

- The diameter provides the lower bound.
- Note \(\text{SE}(k) \) is not node-symmetric.
- We have to provide an algorithm for any node \(v \).
- Algorithm has to be without conflicts.
- And we do now show it here in detail.
Theorem:
We have: \(\min b(\text{SE}(k)) = b(\text{SE}(k)) = 2 \cdot k - 1 \)

Proof:
- The diameter provides the lower bound.
- Note \(\text{SE}(k) \) is not node-symmetric.
- We have to provide an algorithm for any node \(v \).
- Algorithm has to be without conflicts.
- And we do now show it here in detail.
Theorem:
We have: \(\lceil \frac{3m}{2} \rceil \leq \min_b(\text{BF}(m)) = b(\text{BF}(m)) \leq 2 \cdot m \)

- The diameter gives the lower bound.
- Algorithm will be provided in the following.
Theorem:

We have: \(\lfloor 3m/2 \rfloor \leq \min_b(BF(m)) = b(BF(m)) \leq 2 \cdot m \)

- The diameter gives the lower bound.
- Algorithm will be provided in the following.
BF (Idea of proof)

- Distribute the information in two ways:
 - Prefer in the first strategy the cycle-edges.
 - Prefer in the second strategy the cross-edges.

- Split the butterfly into two isomorph parts.
- Choose for each part a different strategy.
- Distribute in the last phase on the cycles.

\[\left\lfloor \frac{3m}{2} \right\rfloor \leq \min_b(BF(m)) = b(BF(m)) \leq 2 \cdot m \]
BF (Idea of proof)

- Distribute the information in two ways:
 - Prefer in the first strategy the cycle-edges.
 - Prefer in the second strategy the cross-edges.

- Split the butterfly into two isomorphic parts.
- Choose for each part a different strategy.
- Distribute in the last phase on the cycles.

\[\left\lfloor \frac{3m}{2} \right\rfloor \leq \min_b(BF(m)) = b(BF(m)) \leq 2 \cdot m \]
BF (Idea of proof)

- Distribute the information in two ways:
 - Prefer in the first strategy the cycle-edges.
 - Prefer in the second strategy the cross-edges.

- Split the butterfly into two isomorph parts.
- Choose for each part a different strategy.
- Distribute in the last phase on the cycles.

\[
\left\lfloor \frac{3m}{2} \right\rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m
\]
BF (Idea of proof)

- Distribute the information in two ways:
 - Prefer in the first strategy the cycle-edges.
 - Prefer in the second strategy the cross-edges.
- Split the butterfly into two isomorph parts.
- Choose for each part a different strategy.
- Distribute in the last phase on the cycles.

\[
\left\lfloor \frac{3m}{2} \right\rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m
\]
BF (Idea of proof)

- Distribute the information in two ways:
 - Prefer in the first strategy the cycle-edges.
 - Prefer in the second strategy the cross-edges.
- Split the butterfly into two isomorph parts.
- Choose for each part a different strategy.
- Distribute in the last phase on the cycles.

\[\lfloor \frac{3m}{2} \rfloor \leq \min\{b(BF(m)) = b(BF(m)) \leq 2 \cdot m \]
BF (Idea of proof)

- Distribute the information in two ways:
 - Prefer in the first strategy the cycle-edges.
 - Prefer in the second strategy the cross-edges.
- Split the butterfly into two isomorph parts.
- Choose for each part a different strategy.
- Distribute in the last phase on the cycles.

\[
\lfloor \frac{3m}{2} \rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m
\]
BF (Proof I)

- **Splitting of BF(m) in F₀ and F₁:**
 - **F₀** has nodes: \(\{(l, \alpha 0) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\} \).
 - **F₁** has nodes: \(\{(l, \alpha 1) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\} \).
 - **F₀** and **F₁** are isomorphic.

- **♯₀(w)** denotes the number of 0’en in \(w \).
- **♯₁(w)** denotes the number of 1’en in \(w \).

\[
\left\lfloor \frac{3m}{2} \right\rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m
\]
BF (Proof I)

- Splitting of $BF(m)$ in F_0 and F_1:
 - F_0 has nodes: $\{(l, \alpha 0) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
 - F_1 has nodes: $\{(l, \alpha 1) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
 - F_0 and F_1 are isomorphic.
- $\#_0(w)$ denotes the number of 0’en in w.
- $\#_1(w)$ denotes the number of 1’en in w.

$$\left\lfloor \frac{3m}{2} \right\rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m$$
BF (Proof I)

Splitting of $BF(m)$ in F_0 and F_1:
- F_0 has nodes: $\{(l, \alpha 0) | 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
- F_1 has nodes: $\{(l, \alpha 1) | 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
- F_0 and F_1 are isomorphic.
- $\#_0(w)$ denotes the number of 0’en in w.
- $\#_1(w)$ denotes the number of 1’en in w.

$\lfloor \frac{3m}{2} \rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m$
\[\left\lfloor \frac{3m}{2} \right\rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m \]

- Splitting of $BF(m)$ in F_0 and F_1:
 - F_0 has nodes: $\{(l, \alpha 0) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
 - F_1 has nodes: $\{(l, \alpha 1) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
 - F_0 and F_1 are isomorphic.
- $\#_0(w)$ denotes the number of 0’en in w.
- $\#_1(w)$ denotes the number of 1’en in w.

![Diagram of BF (Proof 1)](attachment:bf_diagram.png)
Splitting of $BF(m)$ in F_0 and F_1:

- F_0 has nodes: $\{(l, \alpha 0) | 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
- F_1 has nodes: $\{(l, \alpha 1) | 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
- F_0 and F_1 are isomorph.

- $\#_0(w)$ denotes the number of 0’en in w.
- $\#_1(w)$ denotes the number of 1’en in w.

$$\lfloor 3m/2 \rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m$$
BF (Proof I)

- Splitting of $BF(m)$ in F_0 and F_1:

 - F_0 has nodes: $\{(l, \alpha 0) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.
 - F_1 has nodes: $\{(l, \alpha 1) \mid 0 \leq l \leq m - 1, \alpha \in \{0, 1\}^{m-1}\}$.

- F_0 and F_1 are isomorphic.

- $\#_0(w)$ denotes the number of 0’en in w.

- $\#_1(w)$ denotes the number of 1’en in w.
Consider F_0: from node $v_0 = (0, 00 \cdots 00)$ exists a unique path of length $m - 1$ to $w_0 = (m - 1, \alpha 0)$ for $\alpha \in \{0, 1\}^{m-1}$.

Consider F_1: from node $v_1 = (m - 1, 00 \cdots 01)$ exists a unique path of length $m - 1$ to $w_1 = (0, \alpha 1)$ for $\alpha \in \{0, 1\}^{m-1}$.

First step of the algorithm v_0 informs v_1.

Then we use in F_0 and F_1 two different strategies.
Consider F_0: from node $v_0 = (0, 00 \cdots 00)$ exists a unique path of length $m - 1$ to $w_0 = (m - 1, \alpha 0)$ for $\alpha \in \{0, 1\}^{m-1}$.

Consider F_1: from node $v_1 = (m - 1, 00 \cdots 01)$ exists a unique path of length $m - 1$ to $w_1 = (0, \alpha 1)$ for $\alpha \in \{0, 1\}^{m-1}$.

First step of the algorithm v_0 informs v_1.

Then we use in F_0 and F_1 two different strategies.
Consider F_0: from node $v_0 = (0, 00 \cdots 00)$ exists a unique path of length $m - 1$ to $w_0 = (m - 1, \alpha 0)$ for $\alpha \in \{0, 1\}^{m-1}$.

Consider F_1: from node $v_1 = (m - 1, 00 \cdots 01)$ exists a unique path of length $m - 1$ to $w_1 = (0, \alpha 1)$ for $\alpha \in \{0, 1\}^{m-1}$.

First step of the algorithm v_0 informs v_1.

Then we use in F_0 and F_1 two different strategies.
Consider \(F_0 \): from node \(v_0 = (0, 00 \cdots 00) \) exists a unique path of length \(m - 1 \) to \(w_0 = (m - 1, \alpha 0) \) for \(\alpha \in \{0, 1\}^{m-1} \).

Consider \(F_1 \): from node \(v_1 = (m - 1, 00 \cdots 01) \) exists a unique path of length \(m - 1 \) to \(w_1 = (0, \alpha 1) \) for \(\alpha \in \{0, 1\}^{m-1} \).

First step of the algorithm \(v_0 \) informs \(v_1 \).

Then we use in \(F_0 \) and \(F_1 \) two different strategies.
Consider F_0: from node $v_0 = (0, 00 \cdots 00)$ exists a unique path of length $m - 1$ to $w_0 = (m - 1, \alpha 0)$ for $\alpha \in \{0, 1\}^{m-1}$.

Consider F_1: from node $v_1 = (m - 1, 00 \cdots 01)$ exists a unique path of length $m - 1$ to $w_1 = (0, \alpha 1)$ for $\alpha \in \{0, 1\}^{m-1}$.

First step of the algorithm v_0 informs v_1.

Then we use in F_0 and F_1 two different strategies.
Consider F_0: from node $v_0 = (0, 00 \cdots 00)$ exists a unique path of length $m - 1$ to $w_0 = (m - 1, \alpha 0)$ for $\alpha \in \{0, 1\}^{m-1}$.

Consider F_1: from node $v_1 = (m - 1, 00 \cdots 01)$ exists a unique path of length $m - 1$ to $w_1 = (0, \alpha 1)$ for $\alpha \in \{0, 1\}^{m-1}$.

First step of the algorithm v_0 informs v_1.

Then we use in F_0 and F_1 two different strategies.
Aim: Inform in ⌊3m/2⌋ steps the nodes \(w_0 = (m - 1, \alpha_0)\) and \(w_1 = (0, \alpha_1)\) for \(\alpha \in \{0, 1\}^{m-1}\).

If a node \(w_0 = (m - 1, \alpha_0)\) gets informed, then it informs in the next step \(w_1 = (0, \alpha_1)\) (if necessary).

If a node \(w_1 = (0, \alpha_1)\) gets informed, then it informs in the next step \(w_0 = (m - 1, \alpha_0)\) (if necessary).
Aim: Inform in $\lfloor 3m/2 \rfloor$ steps the nodes $w_0 = (m - 1, \alpha_0)$ and $w_1 = (0, \alpha_1)$ for $\alpha \in \{0, 1\}^{m-1}$.

If a node $w_0 = (m - 1, \alpha_0)$ gets informed, then it informs in the next step $w_1 = (0, \alpha_1)$ (if necessary).

If a node $w_1 = (0, \alpha_1)$ gets informed, then it informs in the next step $w_0 = (m - 1, \alpha_0)$ (if necessary).
BF (Proof III)

\[
\left\lceil \frac{3m}{2} \right\rceil \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m
\]

- **Aim:** Inform in \(\left\lceil \frac{3m}{2} \right\rceil\) steps the nodes \(w_0 = (m - 1, \alpha 0)\) and \(w_1 = (0, \alpha 1)\) for \(\alpha \in \{0, 1\}^{m-1}\).

- If a node \(w_0 = (m - 1, \alpha 0)\) gets informed, then it informs in the next step \(w_1 = (0, \alpha 1)\) (if necessary).

- If a node \(w_1 = (0, \alpha 1)\) gets informed, then it informs in the next step \(w_0 = (m - 1, \alpha 0)\) (if necessary).
In F_0 a informed node $(l, \alpha 0)$ sends first to $(l + 1, \alpha 0)$ and then to $(l + 1, \alpha(l)0)$. [$\alpha(l) = \alpha_1 \ldots \bar{\alpha}_l \ldots$]

In F_1 a informed node $(l, \alpha 1)$ sends first to $(l + 1, \alpha(l)1)$ and then to $(l + 1, \alpha 1)$.

The time to inform from $v_0 = (0, 00 \cdots 00)$ a node $w_0 = (m - 1, \alpha 0)$ is: $1 + \#_0(\alpha) + 2\#_1(\alpha) = m + \#_1(\alpha)$.

The time to inform from $v_1 = (m - 1, 00 \cdots 01)$ a node $w_1 = (0, \alpha 1)$ is: $1 + 2\#_0(\alpha) + \#_1(\alpha) = m + \#_0(\alpha)$.
In F_0 a informed node (l, α_0) sends first to $(l + 1, \alpha_0)$ and then to $(l + 1, \alpha(l)0)$. $[\alpha(l) = \alpha_1 \ldots \bar{\alpha}_l \ldots]$

In F_1 a informed node (l, α_1) sends first to $(l + 1, \alpha(l)1)$ and then to $(l + 1, \alpha_1)$.

The time to inform from $v_0 = (0, 00 \cdots 00)$ a node $w_0 = (m - 1, \alpha_0)$ is: $1 + \#_0(\alpha) + 2\#_1(\alpha) = m + \#_1(\alpha)$.

The time to inform from $v_1 = (m - 1, 00 \cdots 01)$ a node $w_1 = (0, \alpha_1)$ is: $1 + 2\#_0(\alpha) + \#_1(\alpha) = m + \#_0(\alpha)$.
\[\lfloor \frac{3m}{2} \rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m \]

- In \(F_0 \) a informed node \((l, \alpha 0)\) sends first to \((l + 1, \alpha 0)\) and then to \((l + 1, \alpha(l)0)\). \([\alpha(l) = \alpha_1 \ldots \bar{\alpha}_l \ldots]\)

- In \(F_1 \) a informed node \((l, \alpha 1)\) sends first to \((l + 1, \alpha(l)1)\) and then to \((l + 1, \alpha 1)\).

- The time to inform from \(v_0 = (0, 00 \cdots 00)\) a node \(w_0 = (m - 1, \alpha 0)\) is:
 \[1 + \#_0(\alpha) + 2\#_1(\alpha) = m + \#_1(\alpha) \]

- The time to inform from \(v_1 = (m - 1, 00 \cdots 01)\) a node \(w_1 = (0, \alpha 1)\) is:
 \[1 + 2\#_0(\alpha) + \#_1(\alpha) = m + \#_0(\alpha) \]
BF (Proof IV)

\[\lfloor \frac{3m}{2} \rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m \]

- In \(F_0 \) a informed node \((l, \alpha 0)\) sends first to \((l + 1, \alpha 0)\) and then to \((l + 1, \alpha(l)0)\). \([\alpha(l) = \alpha_1 \ldots \bar{\alpha}_l \ldots]\)
- In \(F_1 \) a informed node \((l, \alpha 1)\) sends first to \((l + 1, \alpha(l)1)\) and then to \((l + 1, \alpha 1)\).
- The time to inform from \(v_0 = (0, 00 \cdots 00) \) a node \(w_0 = (m - 1, \alpha 0) \) is:
 \[1 + \#_0(\alpha) + 2\#_1(\alpha) = m + \#_1(\alpha). \]
- The time to inform from \(v_1 = (m - 1, 00 \cdots 01) \) a node \(w_1 = (0, \alpha 1) \) is:
 \[1 + 2\#_0(\alpha) + \#_1(\alpha) = m + \#_0(\alpha). \]
Case 1: m is odd:

- **Case 1.1: \(\#_1(\alpha) < (m - 1)/2: \)**

 Node \(w_0 \) will be informed from \(v_0 \) at time

 \[m + \#_1(\alpha) < (3m - 1)/2 = \lfloor 3m/2 \rfloor. \]

 After this \(w_0 \) sends to \(w_1 \).

- **Case 1.2: \(\#_0(\alpha) < (m - 1)/2: \)**

 Node \(w_1 \) will be informed from \(v_0 \) at time

 \[m + \#_0(\alpha) < (3m - 1)/2 = \lfloor 3m/2 \rfloor. \]

- **Case 1.3: \(\#_0(\alpha) = \#_1(\alpha) = (m - 1)/2: \)**

 \(w_0 \) is informed at time

 \[m + \#_1(\alpha) = (3m - 1)/2 = \lfloor 3m/2 \rfloor. \]

\(w_1 \) is informed at time

\[m + \#_0(\alpha) = (3m - 1)/2 = \lfloor 3m/2 \rfloor. \]
Case 1: m is odd:

Case 1.1: $\#_1(\alpha) < (m - 1)/2$:
Node w_0 will be informed from v_0 at time
$m + \#_1(\alpha) < (3m - 1)/2 = [3m/2]$.
After this w_0 sends to w_1.
w_1 is informed at time $[3m/2]$.

Case 1.2: $\#_0(\alpha) < (m - 1)/2$:
node w_1 will be informed from v_0 at time
$m + \#_0(\alpha) < (3m - 1)/2 = [3m/2]$.
w_0 will be informed from w_1 at time $[3m/2]$.

Case 1.3: $\#_0(\alpha) = \#_1(\alpha) = (m - 1)/2$:
w_0 is informed at time
$m + \#_1(\alpha) = (3m - 1)/2 = [3m/2]$.
w_1 is informed at time $m + \#_0(\alpha) = (3m - 1)/2 = [3m/2]$.

$[3m/2] \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m$
BF (Proof V)

Case 1: \(m \) is odd:

Case 1.1: \(\#_1(\alpha) < \frac{(m - 1)}{2} \):
Node \(w_0 \) will be informed from \(v_0 \) at time
\[m + \#_1(\alpha) < \frac{(3m - 1)}{2} = \lfloor \frac{3m}{2} \rfloor. \]
After this \(w_0 \) sends to \(w_1 \).
\(w_1 \) is informed at time \(\lfloor \frac{3m}{2} \rfloor \).

Case 1.2: \(\#_0(\alpha) < \frac{(m - 1)}{2} \):
Node \(w_1 \) will be informed from \(v_0 \) at time
\[m + \#_0(\alpha) < \frac{(3m - 1)}{2} = \lfloor \frac{3m}{2} \rfloor. \]
\(w_0 \) will be informed from \(w_1 \) at time \(\lfloor \frac{3m}{2} \rfloor \).

Case 1.3: \(\#_0(\alpha) = \#_1(\alpha) = \frac{(m - 1)}{2} \):
\(w_0 \) is informed at time
\[m + \#_1(\alpha) = \frac{(3m - 1)}{2} = \lfloor \frac{3m}{2} \rfloor. \]
\(w_1 \) is informed at time \(m + \#_0(\alpha) = \frac{(3m - 1)}{2} = \lfloor \frac{3m}{2} \rfloor \).

\[\lfloor \frac{3m}{2} \rfloor \leq \min(b(BF(m))) = b(BF(m)) \leq 2 \cdot m \]
Case 1: m is odd:

- **Case 1.1: $\#_1(\alpha) < (m - 1)/2$:**
 Node w_0 will be informed from v_0 at time $m + \#_1(\alpha) < (3m - 1)/2 = \lfloor 3m/2 \rfloor$.
 After this w_0 sends to w_1.
 w_1 is informed at time $\lfloor 3m/2 \rfloor$.

- **Case 1.2: $\#_0(\alpha) < (m - 1)/2$:**
 node w_1 will be informed from v_0 at time $m + \#_0(\alpha) < (3m - 1)/2 = \lfloor 3m/2 \rfloor$.
 w_0 will be informed from w_1 at time $\lfloor 3m/2 \rfloor$.

- **Case 1.3: $\#_0(\alpha) = \#_1(\alpha) = (m - 1)/2$:**
 w_0 is informed at time $m + \#_1(\alpha) = (3m - 1)/2 = \lfloor 3m/2 \rfloor$.
 w_1 is informed at time $m + \#_0(\alpha) = (3m - 1)/2 = \lfloor 3m/2 \rfloor$.

\[[3m/2] \leq \min_b(BF(m)) = b(BF(m)) \leq 2 \cdot m \]
Case 2: m is even:

Case 2.1: $\#_1(\alpha) \leq (m - 2)/2$:
node w_0 will be informed from v_0 at time $m + \#_1(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor$.
Thus node w_1 will be informed at time $\lfloor 3m/2 \rfloor$.

Case 2.2: $\#_0(\alpha) \leq (m - 2)/2$:
node w_1 will be informed from v_0 at time $m + \#_0(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor$.
Thus node w_0 will be informed at time $\lfloor 3m/2 \rfloor$.

In the last phase we distribute the information on the cycles.

Running time is: $\lceil m/2 \rceil$ rounds.

Total running time: $\lfloor 3m/2 \rfloor + \lceil m/2 \rceil = 2m$
Case 2: m is even:

- **Case 2.1:** $\#_1(\alpha) \leq (m - 2)/2$:
 node w_0 will be informed from v_0 at time $m + \#_1(\alpha) \leq 3m/2 - 1 < [3m/2]$. Thus node w_1 will be informed at time $[3m/2]$.

- **Case 2.2:** $\#_0(\alpha) \leq (m - 2)/2$:
 node w_1 will be informed from v_0 at time $m + \#_0(\alpha) \leq 3m/2 - 1 < [3m/2]$. Thus node w_0 will be informed at time $[3m/2]$.

- In the last phase we distribute the information on the cycles.
- Running time is: $\lceil m/2 \rceil$ rounds.
- Total running time: $\lfloor 3m/2 \rfloor + \lceil m/2 \rceil = 2m$
Case 2: \(m \) is even:

- **Case 2.1: \(\#_1(\alpha) \leq (m - 2)/2: \)**
 node \(w_0 \) will be informed from \(v_0 \) at time
 \(m + \#_1(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor \).
 Thus node \(w_1 \) will be informed at time \(\lfloor 3m/2 \rfloor \).

- **Case 2.2: \(\#_0(\alpha) \leq (m - 2)/2: \)**
 node \(w_1 \) will be informed from \(v_0 \) at time
 \(m + \#_0(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor \).
 Thus node \(w_0 \) will be informed at time \(\lfloor 3m/2 \rfloor \).

In the last phase we distribute the information on the cycles.

Running time is: \(\lceil m/2 \rceil \) rounds.

Total running time: \(\lfloor 3m/2 \rfloor + \lceil m/2 \rceil = 2m \)
Case 2: m is even:

- **Case 2.1:** $\#_1(\alpha) \leq (m - 2)/2$:
 node w_0 will be informed from v_0 at time
 $m + \#_1(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor$.
 Thus node w_1 will be informed at time $\lfloor 3m/2 \rfloor$.

- **Case 2.2:** $\#_0(\alpha) \leq (m - 2)/2$:
 node w_1 will be informed from v_0 at time
 $m + \#_0(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor$.
 Thus node w_0 will be informed at time $\lfloor 3m/2 \rfloor$.

In the last phase we distribute the information on the cycles.

Running time is: $\lceil m/2 \rceil$ rounds.

Total running time: $\lfloor 3m/2 \rfloor + \lceil m/2 \rceil = 2m$
BF (Proof V)

\[\left\lfloor \frac{3m}{2} \right\rfloor \leq \min b(BF(m)) = b(BF(m)) \leq 2 \cdot m \]

- **Case 2: \(m \) is even:**
 - **Case 2.1:** \(\#_1(\alpha) \leq \frac{(m - 2)}{2} \):
 - node \(w_0 \) will be informed from \(v_0 \) at time \(m + \#_1(\alpha) \leq 3m/2 - 1 < \left\lfloor \frac{3m}{2} \right\rfloor \).
 - Thus node \(w_1 \) will be informed at time \(\left\lfloor \frac{3m}{2} \right\rfloor \).
 - **Case 2.2:** \(\#_0(\alpha) \leq \frac{(m - 2)}{2} \):
 - node \(w_1 \) will be informed from \(v_0 \) at time \(m + \#_0(\alpha) \leq 3m/2 - 1 < \left\lfloor \frac{3m}{2} \right\rfloor \).
 - Thus node \(w_0 \) will be informed at time \(\left\lfloor \frac{3m}{2} \right\rfloor \).

- In the last phase we distribute the information on the cycles.
- **Running time is:** \(\left\lceil \frac{m}{2} \right\rceil \) rounds.
- **Total running time:** \(\left\lceil \frac{m}{2} \right\rceil + \left\lfloor \frac{m}{2} \right\rfloor = 2m \)
Case 2: m is even:

- **Case 2.1:** $\#_1(\alpha) \leq (m - 2)/2$:
 node w_0 will be informed from v_0 at time
 $m + \#_1(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor$.
 Thus node w_1 will be informed at time $\lfloor 3m/2 \rfloor$.

- **Case 2.2:** $\#_0(\alpha) \leq (m - 2)/2$:
 node w_1 will be informed from v_0 at time
 $m + \#_0(\alpha) \leq 3m/2 - 1 < \lfloor 3m/2 \rfloor$.
 Thus node w_0 will be informed at time $\lfloor 3m/2 \rfloor$.

In the last phase we distribute the information on the cycles.

Running time is: $\lceil m/2 \rceil$ rounds.

Total running time: $\lfloor 3m/2 \rfloor + \lceil m/2 \rceil = 2m$
Theorem:
We have: \(d \leq \min b(DB(d)) = b(DB(d)) \leq \left\lfloor \frac{3}{2} \cdot (d + 1) \right\rfloor. \)

Proof:
- Idea \((y_1, y_2, \ldots, y_d)\) informs \((y_2, \ldots, y_d, y_1)\) and \((y_2, \ldots, y_d, \overline{y_1})\).
- The order is given by the parity.
- Let \(\alpha = \#_1(y_1, y_2, \ldots, y_d) \mod 2\).
- \((y_1, y_2, \ldots, y_d)\) informs first \((y_2, \ldots, y_d, \alpha)\) and then \((y_2, \ldots, y_d, \overline{\alpha})\).
- \((0011000)\) informs first \((0110000)\) and then \((0110001)\).
Theorem:
We have: \(d \leq \min b(\text{DB}(d)) = b(\text{DB}(d)) \leq \lfloor 3/2 \cdot (d + 1) \rfloor. \)

Proof:
- **Idea** \((y_1, y_2, \ldots, y_d)\) informs \((y_2, \ldots, y_d, y_1)\) and \((y_2, \ldots, y_d, \bar{y_1})\).
- The order is given by the parity.
- Let \(\alpha = \#_1(y_1, y_2, \ldots, y_d) \mod 2. \)
- \((y_1, y_2, \ldots, y_d)\) informs first \((y_2, \ldots, y_d, \alpha)\) and then \((y_2, \ldots, y_d, \bar{\alpha})\).
- \((0011000)\) informs first \((0110000)\) and then \((0110001)\).
Theorem:

We have: \(d \leq \min b(DB(d)) = b(DB(d)) \leq \lfloor 3/2 \cdot (d + 1) \rfloor. \)

Proof:

- Idea \((y_1, y_2, \ldots, y_d)\) informs \((y_2, \ldots, y_d, y_1)\) and \((y_2, \ldots, y_d, \overline{y_1})\).
- The order is given by the parity.
- Let \(\alpha = \#_1(y_1, y_2, \ldots, y_d) \mod 2. \)
- \((y_1, y_2, \ldots, y_d)\) informs first \((y_2, \ldots, y_d, \alpha)\) and then \((y_2, \ldots, y_d, \overline{\alpha})\).
- \((0011000)\) informs first \((0110000)\) and then \((0110001)\).
Theorem:

We have: \(d \leq \min_b(DB(d)) = b(DB(d)) \leq \lfloor \frac{3}{2} \cdot (d + 1) \rfloor. \)

Proof:

- Idea \((y_1, y_2, \ldots, y_d)\) informs \((y_2, \ldots, y_d, y_1)\) and \((y_2, \ldots, y_d, \overline{y_1})\).
- The order is given by the parity.
- Let \(\alpha = \#_1(y_1, y_2, \ldots, y_d) \mod 2\).
- \((y_1, y_2, \ldots, y_d)\) informs first \((y_2, \ldots, y_d, \alpha)\) and then \((y_2, \ldots, y_d, \overline{\alpha})\).
- \((0011000)\) informs first \((0110000)\) and then \((0110001)\).
Theorem:

We have: \(d \leq \min b(DB(d)) = b(DB(d)) \leq \lceil \frac{3}{2} \cdot (d + 1) \rceil \).

Proof:

- Idea \((y_1, y_2, \ldots, y_d)\) informs \((y_2, \ldots, y_d, y_1)\) and \((y_2, \ldots, y_d, \overline{y_1})\).
- The order is given by the parity.
- Let \(\alpha = \#_1(y_1, y_2, \ldots, y_d) \mod 2\).
- \((y_1, y_2, \ldots, y_d)\) informs first \((y_2, \ldots, y_d, \alpha)\) and then \((y_2, \ldots, y_d, \overline{\alpha})\).
- \((0011000)\) informs first \((0110000)\) and then \((0110001)\).
Theorem: We have: \(d \leq \min b(DB(d)) = b(DB(d)) \leq \lceil 3/2 \cdot (d + 1) \rceil \).

Proof:

- Idea \((y_1, y_2, \ldots, y_d)\) informs \((y_2, \ldots, y_d, y_1)\) and \((y_2, \ldots, y_d, \overline{y_1})\).
- The order is given by the parity.
- Let \(\alpha = \#_1(y_1, y_2, \ldots, y_d) \mod 2\).
- \((y_1, y_2, \ldots, y_d)\) informs first \((y_2, \ldots, y_d, \alpha)\) and then \((y_2, \ldots, y_d, \overline{\alpha})\).
- \((0011000)\) informs first \((0110000)\) and then \((0110001)\).
For $k \in \{0, 1\}$ consider the path P_k
from (y_1, y_2, \ldots, y_d) to $(z_1, z_2, \ldots, z_{d-1}, z_d)$.

\[(y_1, \ldots, y_d), (y_2, \ldots, y_d, k), (y_3, \ldots, y_d, k, z_1), (y_4, \ldots, y_d, k, z_1, z_2), \ldots \]
\[
\ldots, (y_d, k, z_1, \ldots, z_{d-2}), (k, z_1, \ldots, z_{d-1}), (z_1, \ldots, z_{d-1}, z_d)\)

Let $v_{0i} = (y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2})$ the i-th node on P_0.
Let $v_{1i} = (y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2})$ the i-th node on P_1.

We have different times (1 or 2) for sending:
\[
(y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 0, z_1, \ldots, z_{i-2}, z_{i-1})
\]
\[
(y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 1, z_1, \ldots, z_{i-2}, z_{i-1})
\]

Thus the sum of running times is on P_0 and P_1: $3(d + 1)$.
Thus the running time for the broadcast is: $\lceil 3(d + 1)/2 \rceil$.
For $k \in \{0, 1\}$ consider the path P_k
from (y_1, y_2, \ldots, y_d) to $(z_1, z_2, \ldots, z_{d-1}, z_d)$.

\[(y_1, \ldots, y_d), (y_2, \ldots, y_d, k), (y_3, \ldots, y_d, k, z_1), (y_4, \ldots, y_d, k, z_1, z_2), \ldots \]
\[
\ldots , (y_d, k, z_1, \ldots, z_{d-2}), (k, z_1, \ldots, z_{d-2}), (z_1, \ldots, z_{d-1}, z_d)\]

Let $v_{0i} = (y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2})$ the i-th node on P_0.

Let $v_{1i} = (y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2})$ the i-th node on P_1.

We have different times (1 or 2) for sending:

- $((y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 0, z_1, \ldots, z_{i-2}, z_{i-1}))$
- $((y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 1, z_1, \ldots, z_{i-2}, z_{i-1}))$

Thus the sum of running times is on P_0 and P_1: $3(d + 1)$.

Thus the running time for the broadcast is: $\lceil 3(d + 1)/2 \rceil$.
For $k \in \{0, 1\}$ consider the path P_k
from (y_1, y_2, \ldots, y_d) to $(z_1, z_2, \ldots, z_{d-1}, z_d)$.

$$(y_1, \ldots, y_d), (y_2, \ldots, y_d, k), (y_3, \ldots, y_d, k, z_1), (y_4, \ldots, y_d, k, z_1, z_2), \cdots$$

$$\cdots, (y_d, k, z_1, \ldots, z_{d-2}), (k, z_1, \ldots, z_{d-1}), (z_1, \ldots, z_{d-1}, z_d))$$

Let $v_{0i} = (y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2})$ the i-th node on P_0.

Let $v_{1i} = (y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2})$ the i-th node on P_1.

We have different times (1 or 2) for sending:

- $(y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 0, z_1, \ldots, z_{i-2}, z_{i-1})$
- $(y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 1, z_1, \ldots, z_{i-2}, z_{i-1})$.

Thus the sum of running times is on P_0 and P_1: $3(d + 1)$.

Thus the running time for the broadcast is: $\lceil 3(d + 1)/2 \rceil$.
For $k \in \{0, 1\}$ consider the path P_k
from (y_1, y_2, \ldots, y_d) to $(z_1, z_2, \ldots, z_{d-1}, z_d)$.

$$(y_1, \ldots, y_d), (y_2, \ldots, y_d, k), (y_3, \ldots, y_d, k, z_1), (y_4, \ldots, y_d, k, z_1, z_2), \ldots$$

$$\ldots, (y_d, k, z_1, \ldots, z_{d-2}), (k, z_1, \ldots, z_{d-1}), (z_1, \ldots, z_{d-1}, z_d)$$

Let $v_{0i} = (y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2})$ the i-th node on P_0.

Let $v_{1i} = (y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2})$ the i-th node on P_1.

We have different times (1 or 2) for sending:

- $(y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 0, z_1, \ldots, z_{i-2}, z_{i-1})$
- $(y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 1, z_1, \ldots, z_{i-2}, z_{i-1})$.

Thus the sum of running times is on P_0 and P_1: $3(d + 1)$.

Thus the running time for the broadcast is: $\lfloor 3(d + 1)/2 \rfloor$.
For $k \in \{0, 1\}$ consider the path P_k
from (y_1, y_2, \ldots, y_d) to $(z_1, z_2, \ldots, z_{d-1}, z_d)$.

$$(y_1, \ldots, y_d), (y_2, \ldots, y_d, k), (y_3, \ldots, y_d, k, z_1), (y_4, \ldots, y_d, k, z_1, z_2), \ldots$$

$$\ldots, (y_d, k, z_1, \ldots, z_{d-2}), (k, z_1, \ldots, z_{d-1}), (z_1, \ldots, z_{d-1}, z_d))$$

Let $v_{0i} = (y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2})$ the i-th node on P_0.
Let $v_{1i} = (y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2})$ the i-th node on P_1.

We have different times (1 or 2) for sending:

- $(y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 0, z_1, \ldots, z_{i-2}, z_{i-1})$
- $(y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 1, z_1, \ldots, z_{i-2}, z_{i-1})$.

Thus the sum of running times is on P_0 and P_1: $3(d + 1)$.
Thus the running time for the broadcast is: $\lceil 3(d + 1)/2 \rceil$.
DB (Proof)

- For $k \in \{0, 1\}$ consider the path P_k
 from (y_1, y_2, \ldots, y_d) to $(z_1, z_2, \ldots, z_{d-1}, z_d)$.

$$(y_1, \ldots, y_d), (y_2, \ldots, y_d, k), (y_3, \ldots, y_d, k, z_1), (y_4, \ldots, y_d, k, z_1, z_2), \ldots \ldots, (y_d, k, z_1, \ldots, z_{d-2}), (k, z_1, \ldots, z_{d-1}), (z_1, \ldots, z_{d-1}, z_d))$$

- Let $v_{0i} = (y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2})$ the i-th node on P_0.
- Let $v_{1i} = (y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2})$ the i-th node on P_1.

- We have different times (1 or 2) for sending:
 - $(y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 0, z_1, \ldots, z_{i-2}, z_{i-1})$
 - $(y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 1, z_1, \ldots, z_{i-2}, z_{i-1})$.

- Thus the sum of running times is on P_0 and P_1: $3(d + 1)$.
- Thus the running time for the broadcast is: $\lceil 3(d + 1)/2 \rceil$.

For $k \in \{0, 1\}$ consider the path P_k
from (y_1, y_2, \ldots, y_d) to $(z_1, z_2, \ldots, z_{d-1}, z_d)$.

$$(y_1, \ldots, y_d), (y_2, \ldots, y_d, k), (y_3, \ldots, y_d, k, z_1), (y_4, \ldots, y_d, k, z_1, z_2), \ldots \ldots, (y_d, k, z_1, \ldots, z_{d-2}), (k, z_1, \ldots, z_{d-1}), (z_1, \ldots, z_{d-1}, z_d))$$

Let $v_{0i} = (y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2})$ the i-th node on P_0.
Let $v_{1i} = (y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2})$ the i-th node on P_1.

We have different times (1 or 2) for sending:

- $(y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 0, z_1, \ldots, z_{i-2}, z_{i-1})$
- $(y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 1, z_1, \ldots, z_{i-2}, z_{i-1})$

Thus the sum of running times is on P_0 and P_1: $3(d + 1)$.
Thus the running time for the broadcast is: $\lfloor 3(d + 1)/2 \rfloor$.
For $k \in \{0, 1\}$ consider the path P_k
from (y_1, y_2, \ldots, y_d) to $(z_1, z_2, \ldots, z_{d-1}, z_d)$.

$$(y_1, \ldots, y_d), (y_2, \ldots, y_d, k), (y_3, \ldots, y_d, k, z_1), (y_4, \ldots, y_d, k, z_1, z_2), \ldots$$

$$\ldots, (y_d, k, z_1, \ldots, z_{d-2}), (k, z_1, \ldots, z_{d-1}), (z_1, \ldots, z_{d-1}, z_d))$$

Let $v_{0i} = (y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2})$ the i-th node on P_0.

Let $v_{1i} = (y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2})$ the i-th node on P_1.

We have different times (1 or 2) for sending:

- $(y_i, \ldots, y_d, 0, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 0, z_1, \ldots, z_{i-2}, z_{i-1})$
- $(y_i, \ldots, y_d, 1, z_1, \ldots, z_{i-2}) \rightarrow (y_{i+1}, \ldots, y_d, 1, z_1, \ldots, z_{i-2}, z_{i-1})$.

Thus the sum of running times is on P_0 and P_1: $3(d + 1)$.

Thus the running time for the broadcast is: $\lceil 3(d + 1)/2 \rceil$.
Degree of the Nodes

Theorem:

Let $n \geq 5$ and $G = (V, E)$ be a graph with n nodes:

- If $\Delta(G) = 3$ holds, we have: $b(G) \geq \min b(G) \geq 1.4404 \log(n) - 3$.
- If $\Delta(G) = 4$ holds, we have: $b(G) \geq \min b(G) \geq 1.1374 \log(n) - 2$.

Proof:

- Let A be a broadcast-algorithm.
- Let $\text{Broad}_i^A(v_0)$ be the set of nodes, which are informed from v_0 by A in i rounds.
- Let $\text{Rec}_i^A(v_0) = \text{Broad}_i^A(v_0) \setminus \text{Broad}_{i-1}^A(v_0)$.
- Let $\text{Rec}_0^A(v_0) = \{v_0\}$.
- We have: $|\text{Broad}_i^A(v_0)| = \sum_{s=0}^{i} |\text{Rec}_s^A(v_0)|$.
Theorem:

Let $n \geq 5$ and $G = (V, E)$ be a graph with n nodes:

- If $\Delta(G) = 3$ holds, we have: $b(G) \geq \min b(G) \geq 1.4404 \log(n) - 3$.
- If $\Delta(G) = 4$ holds, we have: $b(G) \geq \min b(G) \geq 1.1374 \log(n) - 2$.

Proof:

- Let A be a broadcast-algorithm.
- Let $\text{Broad}_i^A(v_0)$ be the set of nodes, which are informed from v_0 by A in i rounds.
- Let $\text{Rec}_i^A(v_0) = \text{Broad}_i^A(v_0) \setminus \text{Broad}_{i-1}^A(v_0)$.
- Let $\text{Rec}_0^A(v_0) = \{v_0\}$.
- We have: $|\text{Broad}_i^A(v_0)| = \sum_{s=0}^i |\text{Rec}_s^A(v_0)|$.
Degree of the Nodes

Theorem:

Let $n \geq 5$ and $G = (V, E)$ be a graph with n nodes:

- If $\Delta(G) = 3$ holds, we have: $b(G) \geq \min b(G) \geq 1.4404 \log(n) - 3$.
- If $\Delta(G) = 4$ holds, we have: $b(G) \geq \min b(G) \geq 1.1374 \log(n) - 2$.

Proof:

- Let A be a broadcast-algorithm.
- Let $\text{Broad}_i^A(v_0)$ be the set of nodes, which are informed from v_0 by A in i rounds.
- Let $\text{Rec}_i^A(v_0) = \text{Broad}_i^A(v_0) \setminus \text{Broad}_{i-1}^A(v_0)$.
- Let $\text{Rec}_0^A(v_0) = \{v_0\}$.
- We have: $|\text{Broad}_i^A(v_0)| = \sum_{s=0}^{i} |\text{Rec}_s^A(v_0)|$.

Degree of the Nodes

Theorem:
Let $n \geq 5$ and $G = (V, E)$ be a graph with n nodes:
- If $\Delta(G) = 3$ holds, we have: $b(G) \geq \min b(G) \geq 1.4404 \log(n) - 3$.
- If $\Delta(G) = 4$ holds, we have: $b(G) \geq \min b(G) \geq 1.1374 \log(n) - 2$.

Proof:
- Let A be a broadcast-algorithm.
- Let $\text{Broad}_i^A(v_0)$ be the set of nodes, which are informed from v_0 by A in i rounds.
- Let $\text{Rec}_i^A(v_0) = \text{Broad}_i^A(v_0) \setminus \text{Broad}_{i-1}^A(v_0)$.
- Let $\text{Rec}_0^A(v_0) = \{v_0\}$.
- We have: $|\text{Broad}_i^A(v_0)| = \sum_{s=0}^{i} |\text{Rec}_s^A(v_0)|$.
Degree of the Nodes

Theorem:
Let $n \geq 5$ and $G = (V, E)$ be a graph with n nodes:
- If $\Delta(G) = 3$ holds, we have: $b(G) \geq \min b(G) \geq 1.4404 \log(n) - 3$.
- If $\Delta(G) = 4$ holds, we have: $b(G) \geq \min b(G) \geq 1.1374 \log(n) - 2$.

Proof:
- Let A be a broadcast-algorithm.
- Let $\text{Broad}_i^A(v_0)$ be the set of nodes, which are informed from v_0 by A in i rounds.
- Let $\text{Rec}_i^A(v_0) = \text{Broad}_i^A(v_0) \setminus \text{Broad}_{i-1}^A(v_0)$.
- Let $\text{Rec}_0^A(v_0) = \{v_0\}$.
- We have: $|\text{Broad}_i^A(v_0)| = \sum_{s=0}^{i} |\text{Rec}_s^A(v_0)|$.
Degree of the Nodes

Theorem:
Let $n \geq 5$ and $G = (V, E)$ be a graph with n nodes:
- If $\Delta(G) = 3$ holds, we have: $b(G) \geq \min b(G) \geq 1.4404 \log(n) - 3$.
- If $\Delta(G) = 4$ holds, we have: $b(G) \geq \min b(G) \geq 1.1374 \log(n) - 2$.

Proof:
- Let A be a broadcast-algorithm.
- Let $\text{Broad}_i^A(v_0)$ be the set of nodes, which are informed from v_0 by A in i rounds.
- Let $\text{Rec}_i^A(v_0) = \text{Broad}_i^A(v_0) \setminus \text{Broad}_{i-1}^A(v_0)$.
- Let $\text{Rec}_0^A(v_0) = \{v_0\}$.
- We have: $|\text{Broad}_i^A(v_0)| = \sum_{s=0}^{i} |\text{Rec}_s^A(v_0)|$.
Degree of the Nodes

Theorem:

Let $n \geq 5$ and $G = (V, E)$ be a graph with n nodes:

- If $\Delta(G) = 3$ holds, we have: $b(G) \geq \min b(G) \geq 1.4404 \log(n) - 3$.
- If $\Delta(G) = 4$ holds, we have: $b(G) \geq \min b(G) \geq 1.1374 \log(n) - 2$.

Proof:

- Let A be a broadcast-algorithm.
- Let $\text{Broad}_i^A(v_0)$ be the set of nodes, which are informed from v_0 by A in i rounds.
- Let $\text{Rec}_i^A(v_0) = \text{Broad}_i^A(v_0) \setminus \text{Broad}_{i-1}^A(v_0)$.
- Let $\text{Rec}_0^A(v_0) = \{v_0\}$.
- We have: $|\text{Broad}_i^A(v_0)| = \sum_{s=0}^{i} |\text{Rec}_s^A(v_0)|$.
Degree of the Nodes

Theorem:

Let $n \geq 5$ and $G = (V, E)$ be a graph with n nodes:

- If $\Delta(G) = 3$ holds, we have: $b(G) \geq \min b(G) \geq 1.4404 \log(n) - 3$.
- If $\Delta(G) = 4$ holds, we have: $b(G) \geq \min b(G) \geq 1.1374 \log(n) - 2$.

Proof:

- Let A be a broadcast-algorithm.
- Let $\text{Broad}_i^A(v_0)$ be the set of nodes, which are informed from v_0 by A in i rounds.
- Let $\text{Rec}_i^A(v_0) = \text{Broad}_i^A(v_0) \setminus \text{Broad}_{i-1}^A(v_0)$.
- Let $\text{Rec}_0^A(v_0) = \{v_0\}$.
- We have: $|\text{Broad}_i^A(v_0)| = \sum_{s=0}^{i} |\text{Rec}_s^A(v_0)|$.
Building the Idea

We consider here only the case $\Delta(G) = 3$. The case $\Delta(G) = 4$ is similar.

- The initial node may send at most three times.
- The initial node sends only in rounds $1, 2, 3$.
- Any other nodes will be informed at time t via an edge e.
- No further node may be informed via e.
- Thus any other node may send at most two times.
- If a node v is informed in round t by w, then did w receive the information at round $t - 1$ or $t - 2$.
- Thus the number of newly informed nodes in round $t > 3$, is at most the number of nodes which got informed in rounds $t - 1$ and $t - 2$.
Building the Idea

We consider here only the case $\Delta(G) = 3$. The case $\Delta(G) = 4$ is similar.

- The initial node may send at most three times.
- The initial node sends only in rounds 1, 2, 3.
- Any other nodes will be informed at time t via an edge e.
- No further node may be informed via e.
- Thus any other node may send at most two times.
- If a node v is informed in round t by w, then did w receive the information at round $t - 1$ or $t - 2$.
- Thus the number of newly informed nodes in round $t > 3$, is at most the number of nodes which got informed in rounds $t - 1$ and $t - 2$.
Building the Idea

We consider here only the case $\Delta(G) = 3$. The case $\Delta(G) = 4$ is similar.

- The initial node may send at most three times.
- The initial node sends only in rounds 1, 2, 3.
- Any other nodes will be informed at time t via an edge e.
- No further node may be informed via e.
- Thus any other node may send at most two times.
- If a node v is informed in round t by w, then did w receive the information at round $t - 1$ or $t - 2$.
- Thus the number of newly informed nodes in round $t > 3$, is at most the number of nodes which got informed in rounds $t - 1$ and $t - 2$.
Building the Idea

We consider here only the case $\Delta(G) = 3$. The case $\Delta(G) = 4$ is similar.

- The initial node may send at most three times.
- The initial node sends only in rounds 1, 2, 3.
- Any other nodes will be informed at time t via an edge e.
- **No further node may be informed via e.**
- Thus any other node may send at most two times.
- If a node v is informed in round t by w, then did w receive the information at round $t - 1$ or $t - 2$.
- Thus the number of newly informed nodes in round $t > 3$, is at most the number of nodes which got informed in rounds $t - 1$ and $t - 2$.
Building the Idea

We consider here only the case $\Delta(G) = 3$. The case $\Delta(G) = 4$ is similar.

- The initial node may send at most three times.
- The initial node sends only in rounds 1, 2, 3.
- Any other nodes will be informed at time t via an edge e.
- No further node may be informed via e.
- Thus any other node may send at most two times.
- If a node v is informed in round t by w, then did w receive the information at round $t - 1$ or $t - 2$.
- Thus the number of newly informed nodes in round $t > 3$, is at most the number of nodes which got informed in rounds $t - 1$ and $t - 2$.
Building the Idea

We consider here only the case $\Delta(G) = 3$. The case $\Delta(G) = 4$ is similar.

- The initial node may send at most three times.
- The initial node sends only in rounds 1, 2, 3.
- Any other nodes will be informed at time t via an edge e.
- No further node may be informed via e.
- Thus any other node may send at most two times.
- If a node v is informed in round t by w, then did w receive the information at round $t - 1$ or $t - 2$.
- Thus the number of newly informed nodes in round $t > 3$, is at most the number of nodes which got informed in rounds $t - 1$ and $t - 2$.
Building the Idea

We consider here only the case $\Delta(G) = 3$. The case $\Delta(G) = 4$ is similar.

- The initial node may send at most three times.
- The initial node sends only in rounds 1, 2, 3.
- Any other nodes will be informed at time t via an edge e.
- No further node may be informed via e.
- Thus any other node may send at most two times.
- If a node v is informed in round t by w, then did w receive the information at round $t - 1$ or $t - 2$.
- Thus the number of newly informed nodes in round $t > 3$, is at most the number of nodes which got informed in rounds $t - 1$ and $t - 2$.
Proof

- Let $A(i) = |Rec_i^A(v_0)|$.
- $A(0) = 1$
- $A(1) = 1$
- $A(2) = 2$
- $A(3) = 4$
- $A(i) = A(i - 1) + A(i - 2)$ für $i \geq 4$.
- Show by induction: $A(i) \leq 1.61804^i$ for $i \geq 0$.
Proof

- Let $A(i) = |Rec_i^A(v_0)|$.
- $A(0) = 1$
- $A(1) = 1$
- $A(2) = 2$
- $A(3) = 4$
- $A(i) = A(i - 1) + A(i - 2)$ für $i \geq 4$.
- Show by induction: $A(i) \leq 1.61804^i$ for $i \geq 0$.
Proof

- Let $A(i) = |Rec_i^A(v_0)|$.
- $A(0) = 1$
- $A(1) = 1$
- $A(2) = 2$
- $A(3) = 4$
- $A(i) = A(i - 1) + A(i - 2)$ für $i \geq 4$.
- Show by induction: $A(i) \leq 1.61804^i$ for $i \geq 0$.
Proof

- Let $A(i) = |Rec_i^A(v_0)|$.
- $A(0) = 1$
- $A(1) = 1$
- $A(2) = 2$
- $A(3) = 4$
- $A(i) = A(i - 1) + A(i - 2)$ für $i \geq 4$.
- Show by induction: $A(i) \leq 1.61804^i$ for $i \geq 0$.
Proof

Let $A(i) = |Rec_i^A(v_0)|$.

- $A(0) = 1$
- $A(1) = 1$
- $A(2) = 2$
- $A(3) = 4$
- $A(i) = A(i - 1) + A(i - 2)$ für $i \geq 4$.

Show by induction: $A(i) \leq 1.61804^i$ for $i \geq 0$.
Proof

- Let $A(i) = |Rec_i^A(v_0)|$.
- $A(0) = 1$
- $A(1) = 1$
- $A(2) = 2$
- $A(3) = 4$
- $A(i) = A(i - 1) + A(i - 2)$ für $i \geq 4$.
- Show by induction: $A(i) \leq 1.61804^i$ for $i \geq 0$.
Proof

- Let $A(i) = |Rec_i^A(v_0)|$.
- $A(0) = 1$
- $A(1) = 1$
- $A(2) = 2$
- $A(3) = 4$
- $A(i) = A(i - 1) + A(i - 2)$ für $i \geq 4$.
- Show by induction: $A(i) \leq 1.61804^i$ for $i \geq 0$.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):

- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804^0 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broadcast}_t^A(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1}-1}{1.61804-1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.
- Proof of the second statement may be done in the same way.
Proof

1. $A(0) = 1 \leq 1 = 1.61804^0$

2. $A(1) = 1 \leq 1.61804 = 1.61804^1$

3. $A(2) = 2 \leq 2.61805 = 1.61804^2$

4. $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):

- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broadcast}^A(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.

- Proof of the second statement may be done in the same way.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):

- We have: $A(j) \leq 1.61804^i$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broadcast}_t^A(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.

Proof of the second statement may be done in the same way.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):
- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |Broadcast^A_t(v_0)| = \sum_{i=0}^{t} |Rec_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.

Proof of the second statement may be done in the same way.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):
- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broad}_t^A(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.
- Proof of the second statement may be done in the same way.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):

- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broad}_t^A(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.

Proof of the second statement may be done in the same way.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):

- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broadcast}^t_A(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.

Proof of the second statement may be done in the same way.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):

- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broadcast}^A_t(v_0)| = \sum_{i=0}^t |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^t A(i) \leq \sum_{i=0}^t 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.
- Proof of the second statement may be done in the same way.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):

- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broadcast}_t^A(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.

Proof of the second statement may be done in the same way.
Proof

- $A(0) = 1 \leq 1 = 1.61804^0$
- $A(1) = 1 \leq 1.61804 = 1.61804^1$
- $A(2) = 2 \leq 2.61805 = 1.61804^2$
- $A(3) = 4 \leq 4.23612 = 1.61804^3$

Induction step ($i \geq 4$):

- We have: $A(j) \leq 1.61804^j$ for any $j \leq i - 1$.
- $A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i$
- Note for this: $1.61804 + 1 \leq 1.61804^2$.

Thus we have: $n \leq |\text{Broadcast}_t^A(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1}-1}{1.61804-1} \leq 3 \cdot 1.61804^t$

- $t \geq 1.4404 \cdot \log_2 n - 3$.

Proof of the second statement may be done in the same way.
Proof

- \(A(0) = 1 \leq 1 = 1.61804^0 \)
- \(A(1) = 1 \leq 1.61804 = 1.61804^1 \)
- \(A(2) = 2 \leq 2.61805 = 1.61804^2 \)
- \(A(3) = 4 \leq 4.23612 = 1.61804^3 \)

Induction step \((i \geq 4)\):

- We have: \(A(j) \leq 1.61804^j \) for any \(j \leq i - 1 \).
- \(A(i) = A(i - 1) + A(i - 2) \leq 1.61804^{i-1} + 1.61804^{i-2} \leq 1.61804^i \)
- Note for this: \(1.61804 + 1 \leq 1.61804^2 \).

Thus we have: \(n \leq |\text{Broadcast}^A_t(v_0)| = \sum_{i=0}^{t} |\text{Rec}_i^A(v_0)| \leq \sum_{i=0}^{t} A(i) \leq \sum_{i=0}^{t} 1.61804^i = \frac{1.61804^{t+1} - 1}{1.61804 - 1} \leq 3 \cdot 1.61804^t \)

- \(t \geq 1.4404 \cdot \log_2 n - 3. \)

Proof of the second statement may be done in the same way.
More Results

Consequence:
\[b(DB_k) \geq \min b(DB_k) \geq 1.1374 \cdot k - 2 \]

Theorem:
\[b(BF_m) = \min b(BF_m) > 1.7396m \text{ for large enough } m. \]

Idea of Proof: Check the number of nodes in distance \(k \).

Theorem:
\[b(DB_m) > 1.3042m \text{ for large enough } m. \]

Idea of Proof: Check the number of nodes in distance \(k \).
More Results

Consequence:

\[b(DB_k) \geq \min b(DB_k) \geq 1.1374 \cdot k - 2 \]

Theorem:

\[b(BF_m) = \min b(BF_m) > 1.7396m \text{ for large enough } m. \]

Idea of Proof: Check the number of nodes in distance \(k \).

Theorem:

\[b(DB_m) > 1.3042m \text{ for large enough } m. \]

Idea of Proof: Check the number of nodes in distance \(k \).
More Results

Consequence:

\[b(DB_k) \geq \min b(DB_k) \geq 1.1374 \cdot k - 2 \]

Theorem:

\[b(BF_m) = \min b(BF_m) > 1.7396m \text{ for large enough } m. \]

Idea of Proof: Check the number of nodes in distance \(k \).

Theorem:

\[b(DB_m) > 1.3042m \text{ for large enough } m. \]

Idea of Proof: Check the number of nodes in distance \(k \).
Overview

| Graph | $|V|$ | Diameter | Lower Bound | Upper Bound |
|---------|------|----------|--------------|--------------|
| K_n | n | 1 | $\lceil \log_2 n \rceil$ | $\lceil \log_2 n \rceil$ |
| HQ_k | 2^k | k | k | k |
| CCC_k | $k \cdot 2^k$ | $\lfloor 5k/2 \rfloor - 2$ | $\lfloor 5k/2 \rfloor - 2$ | $\lfloor 5k/2 \rfloor - 2$ |
| SE_k | 2^k | $2k - 1$ | $2k - 1$ | $2k - 1$ |
| DB_k | 2^k | k | $1.4404k$ | $\frac{3}{2}(k + 1)$ |
| BF_k | $k \cdot 2^k$ | $\lfloor 3k/2 \rfloor$ | $1.7609k$ | $2k - \frac{1}{2} \log \log k + c$ |
Definition

In edge-disjoint-path communication the information is passed on a set of edge-disjoint paths between the endpoint of each path. A sending or receiving node may not forward any information at the same time.

A edge-disjoint communication algorithm for G is a sequence of rounds A_1, A_2, \ldots, A_k, where each A_i is a correct edge-disjoint-path communication.

- $edp-b(G) =$ maximal time to broadcast in edp-mode in G.
- $edp-a(G) =$ maximal time to accumulate in edp-mode in G.
- $edp-r_1(G) =$ minimal time to gossip in 1-way edp-mode in G.
- $edp-r_2(G) =$ minimal time to gossip in 2-way edp-mode in G.
Definition

In edge-disjoint-path communication the information is passed on a set of edge-disjoint paths between the endpoint of each path. A sending or receiving node may not forward any information at the same time.

A edge-disjoint communication algorithm for G is a sequence of rounds A_1, A_2, \ldots, A_k, where each A_i is a correct edge-disjoint-path communication.

- $edp-b(G) =$ maximal time to broadcast in edp-mode in G.
- $edp-a(G) =$ maximal time to accumulate in edp-mode in G.
- $edp-r_1(G) =$ minimal time to gossip in 1-way edp-mode in G.
- $edp-r_2(G) =$ minimal time to gossip in 2-way edp-mode in G.
Definition

In edge-disjoint-path communication the information is passed on a set of edge-disjoint paths between the endpoint of each path. A sending or receiving node may not forward any information at the same time.

A edge-disjoint communication algorithm for \(G \) is a sequence of rounds \(A_1, A_2, \ldots, A_k \), where each \(A_i \) is a correct edge-disjoint-path communication.

- \(edp-b(G) = \) maximal time to broadcast in edp-mode in \(G \).
- \(edp-a(G) = \) maximal time to accumulate in edp-mode in \(G \).
- \(edp-r_1(G) = \) minimal time to gossip in 1-way edp-mode in \(G \).
- \(edp-r_2(G) = \) minimal time to gossip in 2-way edp-mode in \(G \).
Definition

In edge-disjoint-path communication the information is passed on a set of edge-disjoint paths between the endpoint of each path. A sending or receiving node may not forward any information at the same time.

A edge-disjoint communication algorithm for G is a sequence of rounds A_1, A_2, \ldots, A_k, where each A_i is a correct edge-disjoint-path communication.

- $edp-b(G) = $ maximal time to broadcast in edp-mode in G.
- $edp-a(G) = $ maximal time to accumulate in edp-mode in G.
- $edp-r_1(G) = $ minimal time to gossip in 1-way edp-mode in G.
- $edp-r_2(G) = $ minimal time to gossip in 2-way edp-mode in G.
Idea ($edp-a(G)$)

Definition

A set of vertices $K \subset V$ is called **knowledge set**, if the pieces of information residing in the vertices of K form the cumulative message.

Definition

Let $T = (V, E)$ be some tree, we will refer to any vertex of degree > 2 in T as a critical vertex, while all other vertices are called non-critical.

- Collect within two rounds all pieces of information in a subset K of non-critical vertices with $|S| \leq \lfloor n/2 \rfloor$.
- In each of $\lceil \log_2 n \rceil - 1$ communication rounds, reduce the size of a given knowledge set K by a factor of two.
Idea (edp-$a(G)$)

Definition

A set of vertices $K \subset V$ is called knowledge set, if the pieces of information residing in the vertices of K form the cumulative message.

Definition

Let $T = (V, E)$ be some tree, we will refer to any vertex of degree > 2 in T as a critical vertex, while all other vertices are called non-critical.

- Collect within two rounds all pieces of information in a subset K of non-critical vertices with $|S| \leq \lfloor n/2 \rfloor$.
- In each of $\lceil \log_2 n \rceil - 1$ communication rounds, reduce the size of a given knowledge set K by a factor of two.
Idea \((edp-a(G)) \)

Definition

A set of vertices \(K \subseteq V \) is called **knowledge set**, if the pieces of information residing in the vertices of \(K \) form the cumulative message.

Definition

Let \(T = (V, E) \) be some tree, we will refer to any vertex of degree \(>2 \) in \(T \) as a critical vertex, while all other vertices are called non-critical.

- Collect within two rounds all pieces of information in a subset \(K \) of non-critical vertices with \(|S| \leq \lfloor n/2 \rfloor \).
- In each of \(\lceil \log_2 n \rceil - 1 \) communication rounds, reduce the size of a given knowledge set \(K \) by a factor of two.
Idea ($edp-a(G)$)

Definition

A set of vertices $K \subseteq V$ is called knowledge set, if the pieces of information residing in the vertices of K form the cumulative message.

Definition

Let $T = (V, E)$ be some tree, we will refer to any vertex of degree > 2 in T as a critical vertex, while all other vertices are called non-critical.

- Collect within two rounds all pieces of information in a subset K of non-critical vertices with $|S| \leq \lfloor n/2 \rfloor$.
- In each of $\lceil \log_2 n \rceil - 1$ communication rounds, reduce the size of a given knowledge set K by a factor of two.
Lower Bound

Lemma:

Let $G = (V, E)$ a graph with n nodes. Then we have:

$$r(G) \geq r_2(G) \geq \begin{cases} \lceil \log_2 n \rceil & n \text{ even}, \\ \lceil \log_2 n \rceil + 1 & n \text{ odd}. \end{cases}$$

Proof: Only the case, where n is odd, has to be proven.

- Show: $r_2(G) \geq \lceil \log_2 n \rceil + 1$.

- Let A be a communication-algorithm for the gossip-problem. A has communication rounds (matchings) E_1, E_2, \ldots, E_k.

- Show by induction: After i rounds has each node at most 2^i pieces of information.

 - $i = 0$: Each node has $2^0 = 1$ pieces of information.

 - $i - 1 \rightarrow i$: at most $2^{i-1} + 2^{i-1} = 2^i$ pieces of information may be collected by any node.

- In round k is at least one node v inactive.

- v has after k rounds at most 2^{k-1} pieces of information.
Lower Bound

Lemma:
Let $G = (V, E)$ a graph with n nodes. Then we have:

$$r(G) \geq r_2(G) \geq \begin{cases} \lceil \log_2 n \rceil & n \text{ even}, \\ \lceil \log_2 n \rceil + 1 & n \text{ odd}. \end{cases}$$

Proof: Only the case, where n is odd, has to be proven.

- **Show:** $r_2(G) \geq \lceil \log_2 n \rceil + 1$.

- Let A be a communication-algorithm for the gossip-problem. A has communication rounds (matchings) E_1, E_2, \cdots, E_k.

- **Show by induction:** After i rounds has each node at most 2^i pieces of information.
 - $i = 0$: Each node has $2^0 = 1$ pieces of information.
 - $i - 1 \rightarrow i$: at most $2^{i-1} + 2^{i-1} = 2^i$ pieces of information may be collected by any node.

- In round k is at least one node v inactive.
- v has after k rounds at most 2^{k-1} pieces of information.
Lower Bound

Lemma:

Let $G = (V, E)$ a graph with n nodes. Then we have:

$$r(G) \geq r_2(G) \geq \begin{cases} \lceil \log_2 n \rceil & n \text{ even}, \\ \lceil \log_2 n \rceil + 1 & n \text{ odd}. \end{cases}$$

Proof: Only the case, where n is odd, has to be proven.

- Show: $r_2(G) \geq \lceil \log_2 n \rceil + 1$.
- Let A be a communication-algorithm for the gossip-problem. A has communication rounds (matchings) E_1, E_2, \cdots, E_k.
- Show by induction: After i rounds has each node at most 2^i pieces of information.
 - $i = 0$: Each node has $2^0 = 1$ pieces of information.
 - $i - 1 \rightarrow i$: at most $2^{i-1} + 2^{i-1} = 2^i$ pieces of information may be collected by any node.
- In round k is at least one node v inactive.
- v has after k rounds at most 2^{k-1} pieces of information.
Lower Bound

Lemma:

Let $G = (V, E)$ a graph with n nodes. Then we have:

$$r(G) \geq r_2(G) \geq \begin{cases} \lceil \log_2 n \rceil & n \text{ even}, \\ \lceil \log_2 n \rceil + 1 & n \text{ odd}. \end{cases}$$

Proof: Only the case, where n is odd, has to be proven.

- Show: $r_2(G) \geq \lceil \log_2 n \rceil + 1$.
- Let A be a communication-algorithm for the gossip-problem. A has communication rounds (matchings) E_1, E_2, \ldots, E_k.
- Show by induction: After i rounds has each node at most 2^i pieces of information.
 - $i = 0$: Each node has $2^0 = 1$ pieces of information.
 - $i - 1 \rightarrow i$: at most $2^{i-1} + 2^{i-1} = 2^i$ pieces of information may be collected by any node.
- In round k is at least one node v inactive.
- v has after k rounds at most 2^{k-1} pieces of information.
Lower Bound

Lemma:
Let \(G = (V, E) \) a graph with \(n \) nodes. Then we have:
\[
r(G) \geq r_2(G) \geq \begin{cases}
\lceil \log_2 n \rceil & \text{n even,} \\
\lceil \log_2 n \rceil + 1 & \text{n odd.}
\end{cases}
\]

Proof: Only the case, where \(n \) is odd, has to be proven.

- Show: \(r_2(G) \geq \lceil \log_2 n \rceil + 1 \).

- Let \(A \) be a communication-algorithm for the gossip-problem. \(A \) has communication rounds (matchings) \(E_1, E_2, \ldots, E_k \).

- Show by induction: After \(i \) rounds has each node at most \(2^i \) pieces of information.
 - \(i = 0 \): Each node has \(2^0 = 1 \) pieces of information.
 - \(i - 1 \rightarrow i \): at most \(2^{i-1} + 2^{i-1} = 2^i \) pieces of information may be collected by any node.

- In round \(k \) is at least one node \(v \) inactive.

- \(v \) has after \(k \) rounds at most \(2^{k-1} \) pieces of information.
Lower Bound

Lemma:

Let $G = (V, E)$ a graph with n nodes. Then we have:

$$ r(G) \geq r_2(G) \geq \begin{cases}
\lceil \log_2 n \rceil & n \text{ even}, \\
\lceil \log_2 n \rceil + 1 & n \text{ odd}.
\end{cases} $$

Proof: Only the case, where n is odd, has to be proven.

- **Show:** $r_2(G) \geq \lceil \log_2 n \rceil + 1$.

- Let A be a communication-algorithm for the gossip-problem. A has communication rounds (matchings) E_1, E_2, \ldots, E_k.

- **Show by induction:** After i rounds has each node at most 2^i pieces of information.

 - $i = 0$: Each node has $2^0 = 1$ pieces of information.
 - $i - 1 \rightarrow i$: at most $2^{i-1} + 2^{i-1} = 2^i$ pieces of information may be collected by any node.

- In round k is at least one node v inactive.

- v has after k rounds at most 2^{k-1} pieces of information.
Lower Bound

Lemma:

Let $G = (V, E)$ a graph with n nodes. Then we have:

$$r(G) \geq r_2(G) \geq \begin{cases} \lceil \log_2 n \rceil & n \text{ even}, \\ \lceil \log_2 n \rceil + 1 & n \text{ odd}. \end{cases}$$

Proof: Only the case, where n is odd, has to be proven.

- **Show:** $r_2(G) \geq \lceil \log_2 n \rceil + 1$.

- Let A be a communication-algorithm for the gossip-problem. A has communication rounds (matchings) E_1, E_2, \cdots, E_k.

- **Show by induction:** After i rounds has each node at most 2^i pieces of information.
 - $i = 0$: Each node has $2^0 = 1$ pieces of information.
 - $i - 1 \to i$: at most $2^{i-1} + 2^{i-1} = 2^i$ pieces of information may be collected by any node.

- In round k is at least one node v inactive.
- v has after k rounds at most 2^{k-1} pieces of information.
Lower Bound

Lemma:

Let \(G = (V, E) \) a graph with \(n \) nodes. Then we have:

\[
r(G) \geq r_2(G) \geq \begin{cases} \lceil \log_2 n \rceil & n \text{ even}, \\ \lceil \log_2 n \rceil + 1 & n \text{ odd}. \end{cases}
\]

Proof: Only the case, where \(n \) is odd, has to be proven.

- Show: \(r_2(G) \geq \lceil \log_2 n \rceil + 1. \)
- Let \(A \) be a communication-algorithm for the gossip-problem. \(A \) has communication rounds (matchings) \(E_1, E_2, \ldots, E_k. \)
- Show by induction: After \(i \) rounds has each node at most \(2^i \) pieces of information.
 - \(i = 0: \) Each node has \(2^0 = 1 \) pieces of information.
 - \(i - 1 \rightarrow i: \) At most \(2^{i-1} + 2^{i-1} = 2^i \) pieces of information may be collected by any node.
- In round \(k \) is at least one node \(v \) inactive.
- \(v \) has after \(k \) rounds at most \(2^{k-1} \) pieces of information.
Lemma:

For any graph $G = (V, E)$ with $|V| = n$ we have:

- $r(G) \leq 2n - 2$, and
- $r_2(G) \leq 2n - 3$.

Proof: Follows from the following known statements:

- $\minb(G) \leq n - 1$ for any graph $G = (V, E)$ with $|V| = n$.
- $r(G) \leq 2 \cdot \minb(G)$
- $r_2(G) \leq 2 \cdot \minb(G) - 1$
Simple Algorithm

Lemma:
For any graph $G = (V, E)$ with $|V| = n$ we have:

- $r(G) \leq 2n - 2$, and
- $r_2(G) \leq 2n - 3$.

Proof: Follows from the following known statements:

- $\minb(G) \leq n - 1$ for any graph $G = (V, E)$ with $|V| = n$.
- $r(G) \leq 2 \cdot \minb(G)$
- $r_2(G) \leq 2 \cdot \minb(G) - 1$
Simple Algorithm

Lemma:

For any graph $G = (V, E)$ with $|V| = n$ we have:

- $r(G) \leq 2n - 2$, and
- $r_2(G) \leq 2n - 3$.

Proof: Follows from the following known statements:

- $\min b(G) \leq n - 1$ for any graph $G = (V, E)$ with $|V| = n$.
- $r(G) \leq 2 \cdot \min b(G)$
- $r_2(G) \leq 2 \cdot \min b(G) - 1$
Simple Algorithm

Lemma:

For any graph $G = (V, E)$ with $|V| = n$ we have:

- $r(G) \leq 2n - 2$, and
- $r_2(G) \leq 2n - 3$.

Proof: Follows from the following known statements:

- $\minb(G) \leq n - 1$ for any graph $G = (V, E)$ with $|V| = n$.
- $r(G) \leq 2 \cdot \minb(G)$
- $r_2(G) \leq 2 \cdot \minb(G) - 1$
Simple Algorithm

Lemma:
For any graph $G = (V, E)$ with $|V| = n$ we have:
- $r(G) \leq 2n - 2$, and
- $r_2(G) \leq 2n - 3$.

Proof: Follows from the following known statements:
- $\text{minb}(G) \leq n - 1$ for any graph $G = (V, E)$ with $|V| = n$.
- $r(G) \leq 2 \cdot \text{minb}(G)$
- $r_2(G) \leq 2 \cdot \text{minb}(G) - 1$
Simple Algorithm

Lemma:
For any graph $G = (V, E)$ with $|V| = n$ we have:

- $r(G) \leq 2n - 2$, and
- $r_2(G) \leq 2n - 3$.

Proof: Follows from the following known statements:

- $\text{minb}(G) \leq n - 1$ for any graph $G = (V, E)$ with $|V| = n$.
- $r(G) \leq 2 \cdot \text{minb}(G)$
- $r_2(G) \leq 2 \cdot \text{minb}(G) - 1$
Lemma:

For any graph $G = (V, E)$ with $|V| = n$ we have:

- $r(G) \leq 2n - 2$, and
- $r_2(G) \leq 2n - 3$.

Proof: Follows from the following known statements:

- $\minb(G) \leq n - 1$ for any graph $G = (V, E)$ with $|V| = n$.
- $r(G) \leq 2 \cdot \minb(G)$
- $r_2(G) \leq 2 \cdot \minb(G) - 1$
Simple Algorithm (Continuation)

Lemma:

We have:

- \(r(T_k(1)) = 2k \)
- \(r_2(T_k(1)) = 2k - 1 \)

Proof:

- Show: \(r(T_k(1)) \geq 2k \).
- \(r(T_k(1)) \) has one root and \(k \) leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total \(2k \) rounds necessary.
- \(r_2(T_k(1)) \geq 2k - 1 \), is a simple exercise.
Simple Algorithm (Continuation)

Lemma:

We have:

- \(r(T_k(1)) = 2k \)
- \(r_2(T_k(1)) = 2k - 1 \)

Proof:

- Show: \(r(T_k(1)) \geq 2k \).
- \(r(T_k(1)) \) has one root and \(k \) leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total \(2k \) rounds necessary.
- \(r_2(T_k(1)) \geq 2k - 1 \), is a simple exercise.
Simple Algorithm (Continuation)

Lemma:
We have:
- \(r(T_k(1)) = 2k \)
- \(r_2(T_k(1)) = 2k - 1 \)

Proof:
- Show: \(r(T_k(1)) \geq 2k \).
- \(r(T_k(1)) \) has one root and \(k \) leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total \(2k \) rounds necessary.
- \(r_2(T_k(1)) \geq 2k - 1 \), is a simple exercise.
Lemma:

We have:

- $r(T_k(1)) = 2k$
- $r_2(T_k(1)) = 2k - 1$

Proof:

- **Show:** $r(T_k(1)) \geq 2k$.
- $r(T_k(1))$ has one root and k leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total $2k$ rounds necessary.
- $r_2(T_k(1)) \geq 2k - 1$, is a simple exercise.
Simple Algorithm (Continuation)

Lemma:
We have:
- \(r(T_k(1)) = 2k \)
- \(r_2(T_k(1)) = 2k - 1 \)

Proof:
- Show: \(r(T_k(1)) \geq 2k \).
- \(r(T_k(1)) \) has one root and \(k \) leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total \(2k \) rounds necessary.
- \(r_2(T_k(1)) \geq 2k - 1 \), is a simple exercise.
Simple Algorithm (Continuation)

Lemma:

We have:

- \(r(T_k(1)) = 2k \)
- \(r_2(T_k(1)) = 2k - 1 \)

Proof:

- Show: \(r(T_k(1)) \geq 2k \).
- \(r(T_k(1)) \) has one root and \(k \) leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total \(2k \) rounds necessary.
- \(r_2(T_k(1)) \geq 2k - 1 \), is a simple exercise.
Simple Algorithm (Continuation)

Lemma:
We have:
- \(r(T_k(1)) = 2k \)
- \(r_2(T_k(1)) = 2k - 1 \)

Proof:
- Show: \(r(T_k(1)) \geq 2k \).
- \(r(T_k(1)) \) has one root and \(k \) leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total \(2k \) rounds necessary.
- \(r_2(T_k(1)) \geq 2k - 1 \), is a simple exercise.
Simple Algorithm (Continuation)

Lemma:
We have:
- \(r(T_k(1)) = 2k \)
- \(r_2(T_k(1)) = 2k - 1 \)

Proof:
- Show: \(r(T_k(1)) \geq 2k \).
- \(r(T_k(1)) \) has one root and \(k \) leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total \(2k \) rounds necessary.
- \(r_2(T_k(1)) \geq 2k - 1 \), is a simple exercise.
Simple Algorithm (Continuation)

Lemma:
We have:
- \(r(T_k(1)) = 2k \)
- \(r_2(T_k(1)) = 2k - 1 \)

Proof:
- Show: \(r(T_k(1)) \geq 2k \).
- \(r(T_k(1)) \) has one root and \(k \) leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total \(2k \) rounds necessary.
- \(r_2(T_k(1)) \geq 2k - 1 \), is a simple exercise.
Simple Algorithm (Continuation)

Lemma:

We have:

- $r(T_k(1)) = 2k$
- $r_2(T_k(1)) = 2k - 1$

Proof:

- Show: $r(T_k(1)) \geq 2k$.
- $r(T_k(1))$ has one root and k leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total $2k$ rounds necessary.
- $r_2(T_k(1)) \geq 2k - 1$, is a simple exercise.
Simple Algorithm (Continuation)

Lemma:
We have:
- \(r(T_k(1)) = 2k \)
- \(r_2(T_k(1)) = 2k - 1 \)

Proof:
- Show: \(r(T_k(1)) \geq 2k \).
- \(r(T_k(1)) \) has one root and \(k \) leaves.
- The maximal matching is 1.
- In each round is only one leaf active.
- Each leaf has to send at least once.
- Each leaf has to receive at least once.
- Thus in total \(2k \) rounds necessary.
- \(r_2(T_k(1)) \geq 2k - 1 \), is a simple exercise.
Gossip on Lines

Theorem:

We have:

- $r_2(L(n)) = n - 1$ for any even number $n \geq 2$,
- $r_2(L(n)) = n$ for any odd number $n \geq 3$,
- $r(L(n)) = n$ for any even number $n \geq 2$ and
- $r(L(n)) = n + 1$ for any odd number $n \geq 3$.

Proof:

- All are more or less easy.
Theorem:

We have:

- $r_2(L(n)) = n - 1$ for any even number $n \geq 2$,
- $r_2(L(n)) = n$ for any odd number $n \geq 3$,
- $r(L(n)) = n$ for any even number $n \geq 2$ and
- $r(L(n)) = n + 1$ for any odd number $n \geq 3$.

Proof:

- All are more or less easy.
Gossip on Lines

Theorem:

We have:

- \(r_2(L(n)) = n - 1 \) for any even number \(n \geq 2 \),
- \(r_2(L(n)) = n \) for any odd number \(n \geq 3 \),
- \(r(L(n)) = n \) for any even number \(n \geq 2 \) and
- \(r(L(n)) = n + 1 \) for any odd number \(n \geq 3 \).

Proof:

- All are more or less easy.
Gossip on Lines

Theorem:

We have:

- $r_2(L(n)) = n - 1$ for any even number $n \geq 2$,
- $r_2(L(n)) = n$ for any odd number $n \geq 3$,
- $r(L(n)) = n$ for any even number $n \geq 2$ and
- $r(L(n)) = n + 1$ for any odd number $n \geq 3$.

Proof:

- All are more or less easy.
Gossip on Lines

Theorem:

We have:

- $r_2(L(n)) = n - 1$ for any even number $n \geq 2$,
- $r_2(L(n)) = n$ for any odd number $n \geq 3$,
- $r(L(n)) = n$ for any even number $n \geq 2$ and
- $r(L(n)) = n + 1$ for any odd number $n \geq 3$.

Proof:

- All are more or less easy.
Theorem:

We have:

- \(r_2(L(n)) = n - 1 \) for any even number \(n \geq 2 \),
- \(r_2(L(n)) = n \) for any odd number \(n \geq 3 \),
- \(r(L(n)) = n \) for any even number \(n \geq 2 \) and
- \(r(L(n)) = n + 1 \) for any odd number \(n \geq 3 \).

Proof:

- All are more or less easy.
Gossip on arbitrary Trees

Lemma:

For any tree T we have:

- $r(T) = 2 \cdot \text{minb}(T)$
- $r_2(T) = 2 \cdot \text{minb}(T) - 1$

Idea of the proof:

- We have already for any graph G: $r(G) \leq 2 \cdot \text{minb}(G)$.
- We have to show: $r(G) \geq 2 \cdot \text{minb}(G)$.
- Let $W = \bigcup_{w \in V} I(v)$ be the total information.
- Let A be any communication algorithm on T.
- Let t be the point in time, when some node knows W.
- Let v one node, which after t steps know W.
- Show: at time t only node v knows W.
Gossip on arbitrary Trees

Lemma:
For any tree T we have:
1. $r(T) = 2 \cdot \text{minb}(T)$
2. $r_2(T) = 2 \cdot \text{minb}(T) - 1$

Idea of the proof:
1. We have already for any graph G: $r(G) \leq 2 \cdot \text{minb}(G)$.
2. We have to show: $r(G) \geq 2 \cdot \text{minb}(G)$.
3. Let $W = \bigcup_{v \in V} I(v)$ be the total information.
4. Let A be any communication algorithm on T.
5. Let t be the point in time, when some node knows W.
6. Let v one node, which after t steps know W.
7. Show: at time t only node v knows W.
Gossip on arbitrary Trees

Lemma:

For any tree T we have:

1. $r(T) = 2 \cdot \min_b(T)$
2. $r_2(T) = 2 \cdot \min_b(T) - 1$

Idea of the proof:

- We have already for any graph G: $r(G) \leq 2 \cdot \min_b(G)$.
- We have to show: $r(G) \geq 2 \cdot \min_b(G)$.
- Let $W = \bigcup_{w \in V} I(v)$ be the total information.
- Let A be any communication algorithm on T.
- Let t be the point in time, when some node knows W.
- Let v one node, which after t steps know W.
- Show: at time t only node v knows W.
Gossip on arbitrary Trees

Lemma:

For any tree T we have:

- $r(T) = 2 \cdot \minb(T)$
- $r_2(T) = 2 \cdot \minb(T) - 1$

Idea of the proof:

- We have already for any graph G: $r(G) \leq 2 \cdot \minb(G)$.
- We have to show: $r(G) \geq 2 \cdot \minb(G)$.
- Let $W = \bigcup_{w \in V} I(v)$ be the total information.
- Let A be any communication algorithm on T.
- Let t be the point in time, when some node knows W.
- Let v one node, which after t steps know W.
- Show: at time t only node v knows W.
Gossip on arbitrary Trees

Lemma:
For any tree T we have:
- $r(T) = 2 \cdot \min b(T)$
- $r_2(T) = 2 \cdot \min b(T) - 1$

Idea of the proof:
- We have already for any graph G: $r(G) \leq 2 \cdot \min b(G)$.
- We have to show: $r(G) \geq 2 \cdot \min b(G)$.
- Let $W = \bigcup_{v \in V} I(v)$ be the total information.
- Let A be any communication algorithm on T.
- Let t be the point in time, when some node knows W.
- Let v one node, which after t steps know W.
- Show: at time t only node v knows W.
Gossip on arbitrary Trees

Lemma:
For any tree T we have:
- $r(T) = 2 \cdot \min b(T)$
- $r_2(T) = 2 \cdot \min b(T) - 1$

Idea of the proof:
- We have already for any graph G: $r(G) \leq 2 \cdot \min b(G)$.
- We have to show: $r(G) \geq 2 \cdot \min b(G)$.
- Let $W = \bigcup_{w \in V} I(v)$ be the total information.
- Let A be any communication algorithm on T.
- Let t be the point in time, when some node knows W.
- Let v one node, which after t steps know W.
- Show: at time t only node v knows W.

Gossip on arbitrary Trees

Lemma:

For any tree T we have:

- $r(T) = 2 \cdot \min_b(T)$
- $r_2(T) = 2 \cdot \min_b(T) - 1$

Idea of the proof:

- We have already for any graph G: $r(G) \leq 2 \cdot \min_b(G)$.
- We have to show: $r(G) \geq 2 \cdot \min_b(G)$.
- Let $W = \bigcup_{w \in V} I(v)$ be the total information.
- Let A be any communication algorithm on T.
- Let t be the point in time, when some node knows W.
- Let v one node, which after t steps know W.
- Show: at time t only node v knows W.
Gossip on arbitrary Trees

Lemma:
For any tree T we have:
- $r(T) = 2 \cdot \minb(T)$
- $r_2(T) = 2 \cdot \minb(T) - 1$

Idea of the proof:
- We have already for any graph G: $r(G) \leq 2 \cdot \minb(G)$.
- We have to show: $r(G) \geq 2 \cdot \minb(G)$.
- Let $W = \bigcup_{w \in V} I(v)$ be the total information.
- Let A be any communication algorithm on T.
- Let t be the point in time, when some node knows W.
- Let v one node, which after t steps know W.
- Show: at time t only node v knows W.
Gossip on arbitrary Trees

Lemma:

For any tree T we have:

- $r(T) = 2 \cdot \min b(T)$
- $r_2(T) = 2 \cdot \min b(T) - 1$

Idea of the proof:

- We have already for any graph G: $r(G) \leq 2 \cdot \min b(G)$.
- We have to show: $r(G) \geq 2 \cdot \min b(G)$.
- Let $W = \bigcup_{w \in V} I(v)$ be the total information.
- Let A be any communication algorithm on T.
- Let t be the point in time, when some node knows W.
- Let v one node, which after t steps know W.
- Show: at time t only node v knows W.
Consider any tree T. We have:

- $r(T) = 2 \cdot \text{minb}(T)$
- $r_2(T) = 2 \cdot \text{minb}(T) - 1$

Lemma:

For any tree T, we have:

- $r(T) = 2 \cdot \text{minb}(T)$
- $r_2(T) = 2 \cdot \text{minb}(T) - 1$

Idea of the proof:

- We have already for any graph G: $r(G) \leq 2 \cdot \text{minb}(G)$.
- We have to show: $r(G) \geq 2 \cdot \text{minb}(G)$.
- Let $W = \cup_{v \in V} I(v)$ be the total information.
- Let A be any communication algorithm on T.
- Let t be the point in time, when some node knows W.
- Let v one node, which after t steps know W.
- Show: at time t only node v knows W.
Gossip on arbitrary Trees (Proof I)

- Let $u \neq v$ be an other node which knows W after t steps.
- Let $(u, y_1, y_2, \ldots, y_k, v)$ be the unique path connecting u and v.
- If v sends to y_k at time t, then v did know W at time $t - 1$.
- So we have to consider the case: y_k sends to v at time t:
 - In this case y_k sends v some missing information.
 - y_k knows at time $t - 1$ the full information, which has to be send from y_k to v.
 - The information, which has to be send from v to y_k, is already send.
 - Then the node y_k know W at time $t - 1$.
- Contradiction, the node u does not exist.
- Thus we have: $t \geq \min b(T) = b(v, T)$.
Gossip on arbitrary Trees (Proof I)

- Let $u \neq v$ be an other node which knows W after t steps.
- Let $(u, y_1, y_2, \cdots, y_k, v)$ be the unique path connecting u and v.
- If v sends to y_k at time t, then v did know W at time $t - 1$.
- So we have to consider the case: y_k sends to v at time t:
 - In this case y_k sends v some missing information.
 - y_k knows at time $t - 1$ the full information, which has to be send from y_k to v.
 - The information, which has to be send from v to y_k, is already send.
 - Then the node y_k know W at time $t - 1$.
- Contradiction, the node u does not exist.
- Thus we have: $t \geq \min b(T) = b(v, T)$.

![Diagram](image-url)
Gossip on arbitrary Trees (Proof I)

- Let $u \neq v$ be an other node which knows W after t steps.
- Let $(u, y_1, y_2, \ldots, y_k, v)$ be the unique path connecting u and v.
- If v sends to y_k at time t, then v did know W at time $t - 1$.
- So we have to consider the case: y_k sends to v at time t:
 - In this case y_k sends v some missing information.
 - y_k knows at time $t - 1$ the full information, which has to be send from y_k to v.
 - The information, which has to be send from v to y_k, is already send.
 - Then the node y_k know W at time $t - 1$.
- Contradiction, the node u does not exist.
- Thus we have: $t \geq \min b(T) = b(v, T)$.

![Diagram of a tree with nodes u, y_1, y_2, y_3, y_k, v.]
Let \(u \neq v \) be an other node which knows \(W \) after \(t \) steps.

Let \((u, y_1, y_2, \cdots, y_k, v)\) be the unique path connecting \(u \) and \(v \).

If \(v \) sends to \(y_k \) at time \(t \), then \(v \) did know \(W \) at time \(t - 1 \).

So we have to consider the case: \(y_k \) sends to \(v \) at time \(t \):

- In this case \(y_k \) sends \(v \) some missing information.
- \(y_k \) knows at time \(t - 1 \) the full information, which has to be send from \(y_k \) to \(v \).
- The information, which has to be send from \(v \) to \(y_k \), is already send.
- Then the node \(y_k \) know \(W \) at time \(t - 1 \).

Contradiction, the node \(u \) does not exist.

Thus we have: \(t \geq \min b(T) = b(v, T) \).
Gossip on arbitrary Trees (Proof I)

- Let \(u \neq v \) be an other node which knows \(W \) after \(t \) steps.
- Let \((u, y_1, y_2, \ldots, y_k, v) \) be the unique path connecting \(u \) and \(v \).
- If \(v \) sends to \(y_k \) at time \(t \), then \(v \) did know \(W \) at time \(t - 1 \).
- So we have to consider the case: \(y_k \) sends to \(v \) at time \(t \):
 - In this case \(y_k \) sends \(v \) some missing information.
 - \(y_k \) knows at time \(t - 1 \) the full information, which has to be send from \(y_k \) to \(v \).
 - The information, which has to be send from \(v \) to \(y_k \), is already send.
 - Then the node \(y_k \) know \(W \) at time \(t - 1 \).

- Contradiction, the node \(u \) does not exist.
- Thus we have: \(t \geq \min b(T) = b(v, T) \).
Let $u \neq v$ be an other node which knows W after t steps.

Let $(u, y_1, y_2, \cdots, y_k, v)$ be the unique path connecting u and v.

If v sends to y_k at time t, then v did know W at time $t - 1$.

So we have to consider the case: y_k sends to v at time t:

- In this case y_k sends v some missing information.
- y_k knows at time $t - 1$ the full information, which has to be send from y_k to v.
- The information, which has to be send from v to y_k, is already send.
- Then the node y_k know W at time $t - 1$.

Contradiction, the node u does not exist.

Thus we have: $t \geq \min b(T) = b(v, T)$.
Gossip on arbitrary Trees (Proof I)

- Let $u \neq v$ be an other node which knows W after t steps.
- Let $(u, y_1, y_2, \cdots, y_k, v)$ be the unique path connecting u and v.
- If v sends to y_k at time t, then v did know W at time $t-1$.
- So we have to consider the case: y_k sends to v at time t:
 - In this case y_k sends v some missing information.
 - y_k knows at time $t-1$ the full information, which has to be send from y_k to v.
 - The information, which has to be send from v to y_k, is already send.
 - Then the node y_k know W at time $t-1$.
- Contradiction, the node u does not exist.
- Thus we have: $t \geq \min b(T) = b(v, T)$.
Gossip on arbitrary Trees (Proof I)

- Let $u \neq v$ be an other node which knows W after t steps.
- Let $(u, y_1, y_2, \ldots, y_k, v)$ be the unique path connecting u and v.
- If v sends to y_k at time t, then v did know W at time $t - 1$.
- So we have to consider the case: y_k sends to v at time t:
 - In this case y_k sends v some missing information.
 - y_k knows at time $t - 1$ the full information, which has to be send from y_k to v.
 - The information, which has to be send from v to y_k, is already send.
 - Then the node y_k know W at time $t - 1$.
- Contradiction, the node u does not exist.
- Thus we have: $t \geq \min_{b}(T) = b(v, T)$.

![Diagram of a tree showing nodes and edges connecting them.](attachment://tree_diagram.png)
Gossip on arbitrary Trees (Proof I)

- Let $u \neq v$ be an other node which knows W after t steps.
- Let $(u, y_1, y_2, \cdots, y_k, v)$ be the unique path connecting u and v.
- If v sends to y_k at time t, then v did know W at time $t - 1$.
- So we have to consider the case: y_k sends to v at time t:
 - In this case y_k sends v some missing information.
 - y_k knows at time $t - 1$ the full information, which has to be send from y_k to v.
 - The information, which has to be send from v to y_k, is already send.
 - Then the node y_k know W at time $t - 1$.

- Contradiction, the node u does not exist.
- Thus we have: $t \geq \min b(T) = b(v, T)$.

![Diagram of a tree with nodes u, y_1, y_2, y_3, y_k, and v.]
Gossip on arbitrary Trees (Proof I)

- Let \(u \neq v \) be an other node which knows \(W \) after \(t \) steps.
- Let \((u, y_1, y_2, \ldots, y_k, v)\) be the unique path connecting \(u \) and \(v \).
- If \(v \) sends to \(y_k \) at time \(t \), then \(v \) did know \(W \) at time \(t - 1 \).
- So we have to consider the case: \(y_k \) sends to \(v \) at time \(t \):
 - In this case \(y_k \) sends \(v \) some missing information.
 - \(y_k \) knows at time \(t - 1 \) the full information, which has to be send from \(y_k \) to \(v \).
 - The information, which has to be send from \(v \) to \(y_k \), is already send.
 - Then the node \(y_k \) know \(W \) at time \(t - 1 \).
- Contradiction, the node \(u \) does not exist.
- Thus we have: \(t \geq \min b(T) = b(v, T) \).
Gossip on arbitrary Trees (Proof II)

- Consider the situation at node v after round t.
- Let w.l.o.g. v be the root of T.
- Let v_1, v_2, \ldots, v_k be the successors of v.
- Let T_1, T_2, \ldots, T_k be the subtrees with roots v_1, v_2, \ldots, v_k.
- In each subtree T_i is some information w_i missing.
- Only the node v knows $\bigcup_{j=1}^{k} w_j$.
- Thus there are $b(v, T)$ steps to be done.
- We finally have $r(T) \geq \min b(T) + b(v, T) \geq 2 \cdot \min b(T)$
Gossip on arbitrary Trees (Proof II)

- Consider the situation at node v after round t.
- Let w.l.o.g. v be the root of T.
- Let v_1, v_2, \cdots, v_k be the successors of v.
- Let T_1, T_2, \cdots, T_k be the subtrees with roots v_1, v_2, \cdots, v_k.
- In each subtree T_i is some information w_i missing.
- Only the node v knows $\bigcup_{j=1}^{k} w_j$.
- Thus there are $b(v, T)$ steps to be done.
- We finally have $r(T) \geq \min b(T) + b(v, T) \geq 2 \cdot \min b(T)$
Gossip on arbitrary Trees (Proof II)

- Consider the situation at node \(v \) after round \(t \).
- Let w.l.o.g. \(v \) be the root of \(T \).
- Let \(v_1, v_2, \ldots, v_k \) be the successors of \(v \).
- Let \(T_1, T_2, \ldots, T_k \) be the subtrees with roots \(v_1, v_2, \ldots, v_k \).
- In each subtree \(T_i \) is some information \(w_i \) missing.
- Only the node \(v \) knows \(\bigcup_{j=1}^{k} w_j \).
- Thus there are \(b(v, T) \) steps to be done.
- We finally have \(r(T) \geq \minb(T) + b(v, T) \geq 2 \cdot \minb(T) \)
Gossip on arbitrary Trees (Proof II)

- Consider the situation at node v after round t.
- Let w.l.o.g. v be the root of T.
- Let v_1, v_2, \cdots, v_k be the successors of v.
- Let T_1, T_2, \cdots, T_k be the subtrees with roots v_1, v_2, \cdots, v_k.
- In each subtree T_i is some information w_i missing.
- Only the node v knows $\bigcup_{j=1}^{k} w_j$.
- Thus there are $b(v, T)$ steps to be done.
- We finally have $r(T) \geq \min b(T) + b(v, T) \geq 2 \cdot \min b(T)$
Gossip on arbitrary Trees (Proof II)

- Consider the situation at node v after round t.
- Let w.l.o.g. v be the root of T.
- Let v_1, v_2, \ldots, v_k be the successors of v.
- Let T_1, T_2, \ldots, T_k be the subtrees with roots v_1, v_2, \ldots, v_k.
- In each subtree T_i is some information w_i missing.
- Only the node v knows $\bigcup_{j=1}^k w_j$.
- Thus there are $b(v, T)$ steps to be done.
- We finally have $r(T) \geq \min b(T) + b(v, T) \geq 2 \cdot \min b(T)$
Consider the situation at node \(v \) after round \(t \).

Let w.l.o.g. \(v \) be the root of \(T \).

Let \(v_1, v_2, \cdots, v_k \) be the successors of \(v \).

Let \(T_1, T_2, \cdots, T_k \) be the subtrees with roots \(v_1, v_2, \cdots, v_k \).

In each subtree \(T_i \) is some information \(w_i \) missing.

Only the node \(v \) knows \(\bigcup_{j=1}^{k} w_j \).

Thus there are \(b(v, T) \) steps to be done.

We finally have \(r(T) \geq \min b(T) + b(v, T) \geq 2 \cdot \min b(T) \)
Consider the situation at node \(v \) after round \(t \).

Let w.l.o.g. \(v \) be the root of \(T \).

Let \(v_1, v_2, \ldots, v_k \) be the successors of \(v \).

Let \(T_1, T_2, \ldots, T_k \) be the subtrees with roots \(v_1, v_2, \ldots, v_k \).

In each subtree \(T_i \) is some information \(w_i \) missing.

Only the node \(v \) knows \(\bigcup_{j=1}^{k} w_j \).

Thus there are \(b(v, T) \) steps to be done.

We finally have \(r(T) \geq \min b(T) + b(v, T) \geq 2 \cdot \min b(T) \)
Gossip on arbitrary Trees (Proof II)

- Consider the situation at node v after round t.
- Let w.l.o.g. v be the root of T.
- Let v_1, v_2, \ldots, v_k be the successors of v.
- Let T_1, T_2, \ldots, T_k be the subtrees with roots v_1, v_2, \ldots, v_k.
- In each subtree T_i is some information w_i missing.
- Only the node v knows $\bigcup_{j=1}^{k} w_j$.
- Thus there are $b(v, T)$ steps to be done.
- We finally have $r(T) \geq \min b(T) + b(v, T) \geq 2 \cdot \min b(T)$
Gossip on arbitrary Trees (Proof III)

- Consider the two-way mode: by a similar way we may prove:
- At time t only two neighbors nodes u and v know the total information. We get in the similar way the second statement.
Consider the two-way mode: by a similar way we may prove:

- At time t only two neighbours nodes u and v know the total information. We get in the similar way the second statement.
Gossip on arbitrary Trees (Proof III)

- Consider the two-way mode: by a similar way we may prove:
- At time t only two neighbours nodes u and v know the total information. We get in the similar way the second statement.
Gossip on arbitrary Trees (Proof III)

- Consider the two-way mode: by a similar way we may prove:
- At time t only two neighbours nodes u and v know the total information. We get in the similar way the second statement.
Lemma:

For all $m \geq 1$ and $k \geq 2$ we have:

- $r(T_k(m)) = 2 \minb(T_k(m)) = 2 \cdot k \cdot m$.
- $r_2(T_k(m)) = 2 \minb(T_k(m)) - 1 = 2 \cdot k \cdot m - 1$.
Gossip on Cycles

Theorem:

We have:

- \(r_2(C(k)) = \frac{k}{2} \) for even \(k \).
- \(r_2(C(k)) = \lceil \frac{k}{2} \rceil + 1 \) for odd \(k \).

Idea of the proof (\(k \) even): [\(k \) odd: an easy exercise]

- Let \(k \) be even.
- \(r_2(C(k)) \geq k/2 \) results by the diameter.
- \(r_2(C(k)) \leq k/2 \) is true by the following algorithm:
 1. \{\{0, 1\}, \{2, 3\}, \{4, 5\}, \cdots, \{2i, 2i + 1\}, \cdots, \{n - 2, n - 1\}\}
 2. \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \cdots, \{2i - 1, 2i\}, \cdots, \{n - 1, 0\}\}
 3. \{\{0, 1\}, \{2, 3\}, \{4, 5\}, \cdots, \{2i, 2i + 1\}, \cdots, \{n - 2, n - 1\}\}
 4. \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \cdots, \{2i - 1, 2i\}, \cdots, \{n - 1, 0\}\}
 5. \cdots

- Note: After \(i \) rounds knows each node 2 \(\cdot \) \(i \) Informationen.
Gossip on Cycles

Theorem:

We have:

- \(r_2(C(k)) = k/2 \) for even \(k \).
- \(r_2(C(k)) = \lceil k/2 \rceil + 1 \) for odd \(k \).

Idea of the proof (\(k \) even): [\(k \) odd: an easy exercise]

- Let \(k \) be even.
- \(r_2(C(k)) \geq k/2 \) results by the diameter.
- \(r_2(C(k)) \leq k/2 \) is true by the following algorithm:
 1. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i+1\}, \ldots, \{n-2, n-1\} \)
 2. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i-1, 2i\}, \ldots, \{n-1, 0\} \)
 3. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i+1\}, \ldots, \{n-2, n-1\} \)
 4. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i-1, 2i\}, \ldots, \{n-1, 0\} \)
 5. \ldots

Note: After \(i \) rounds knows each node \(2 \cdot i \) Informationen.
Gossip on Cycles

Theorem:

We have:

- $r_2(C(k)) = k/2$ for even k.
- $r_2(C(k)) = \lceil k/2 \rceil + 1$ for odd k.

Idea of the proof (k even): [k odd: an easy exercise]

- Let k be even.
- $r_2(C(k)) \geq k/2$ results by the diameter.
- $r_2(C(k)) \leq k/2$ is true by the following algorithm:

 1. $\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}$
 2. $\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}$
 3. $\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}$
 4. $\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}$
 5. \ldots

- Note: After i rounds knows each node $2 \cdot i$ Informationen.
Theorem:

We have:

- \(r_2(C(k)) = k/2 \) for even \(k \).
- \(r_2(C(k)) = \lceil k/2 \rceil + 1 \) for odd \(k \).

Idea of the proof (\(k \) even): [\(k \) odd: an easy exercise]

- **Let \(k \) be even.**
- \(r_2(C(k)) \geq k/2 \) results by the diameter.
- \(r_2(C(k)) \leq k/2 \) is true by the following algorithm:

 1. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\} \)
 2. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\} \)
 3. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\} \)
 4. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\} \)
 5. \(\ldots \)

- **Note:** After \(i \) rounds knows each node \(2 \cdot i \) Informationen.
Gossip on Cycles

Theorem:

We have:
- \(r_2(C(k)) = k/2 \) for even \(k \).
- \(r_2(C(k)) = \lceil k/2 \rceil + 1 \) for odd \(k \).

Idea of the proof (\(k \) even): [\(k \) odd: an easy exercise]

- Let \(k \) be even.
- \(r_2(C(k)) \geq k/2 \) results by the diameter.
- \(r_2(C(k)) \leq k/2 \) is true by the following algorithm:
 - \(1 \): \(\{0,1\}, \{2,3\}, \{4,5\}, \ldots, \{2i,2i+1\}, \ldots, \{n-2,n-1\} \)
 - \(2 \): \(\{1,2\}, \{3,4\}, \{5,6\}, \ldots, \{2i-1,2i\}, \ldots, \{n-1,0\} \)
 - \(3 \): \(\{0,1\}, \{2,3\}, \{4,5\}, \ldots, \{2i,2i+1\}, \ldots, \{n-2,n-1\} \)
 - \(4 \): \(\{1,2\}, \{3,4\}, \{5,6\}, \ldots, \{2i-1,2i\}, \ldots, \{n-1,0\} \)
 - \(5 \): \(\ldots \)

- Note: After \(i \) rounds knows each node \(2 \cdot i \) Informationen.
Gossip on Cycles

Theorem:
We have:

- \(r_2(C(k)) = k/2 \) for even \(k \).
- \(r_2(C(k)) = \lceil k/2 \rceil + 1 \) for odd \(k \).

Idea of the proof (\(k \) even): \([k \) odd: an easy exercise]

- Let \(k \) be even.
- \(r_2(C(k)) \geq k/2 \) results by the diameter.
- \(r_2(C(k)) \leq k/2 \) is true by the following algorithm:
 1. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\} \)
 2. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\} \)
 3. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\} \)
 4. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\} \)
 5. \ldots

Note: After \(i \) rounds knows each node \(2 \cdot i \) Informationen.
Gossip on Cycles

Theorem:
We have:

- \(r_2(C(k)) = k/2 \) for even \(k \).
- \(r_2(C(k)) = \lceil k/2 \rceil + 1 \) for odd \(k \).

Idea of the proof (\(k \) even): [\(k \) odd: an easy exercise]

- Let \(k \) be even.
- \(r_2(C(k)) \geq k/2 \) results by the diameter.
- \(r_2(C(k)) \leq k/2 \) is true by the following algorithm:

 1. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n-2, n-1\} \)
 2. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i-1, 2i\}, \ldots, \{n-1, 0\} \)
 3. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n-2, n-1\} \)
 4. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i-1, 2i\}, \ldots, \{n-1, 0\} \)
 5. \ldots

- Note: After \(i \) rounds knows each node \(2 \cdot i \) Informationen.
Gossip on Cycles

Theorem:

We have:

- $r_2(C(k)) = k/2$ for even k.
- $r_2(C(k)) = \lceil k/2 \rceil + 1$ for odd k.

Idea of the proof (k even): [k odd: an easy exercise]

- Let k be even.
- $r_2(C(k)) \geq k/2$ results by the diameter.
- $r_2(C(k)) \leq k/2$ is true by the following algorithm:
 1. $\{\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}\}$
 2. $\{\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}\}$
 3. $\{\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}\}$
 4. $\{\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}\}$
 5. \ldots

- Note: After i rounds knows each node $2 \cdot i$ Informationen.
Gossip on Cycles

Theorem:

We have:

- $r_2(C(k)) = k/2$ for even k.
- $r_2(C(k)) = \lceil k/2 \rceil + 1$ for odd k.

Idea of the proof (k even): [k odd: an easy exercise]

- Let k be even.
- $r_2(C(k)) \geq k/2$ results by the diameter.
- $r_2(C(k)) \leq k/2$ is true by the following algorithm:

 1. $\{\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}\}
 2. $\{\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}\}
 3. $\{\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}\}
 4. $\{\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}\}
 5. \ldots

- Note: After i rounds knows each node $2 \cdot i$ Informationen.
Gossip on Cycles

Theorem:

We have:

- $r_2(C(k)) = k/2$ for even k.
- $r_2(C(k)) = \lceil k/2 \rceil + 1$ for odd k.

Idea of the proof (k even): [k odd: an easy exercise]

- Let k be even.
- $r_2(C(k)) \geq k/2$ results by the diameter.
- $r_2(C(k)) \leq k/2$ is true by the following algorithm:
 1. $\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}$
 2. $\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}$
 3. $\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}$
 4. $\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}$
 5. \ldots

- Note: After i rounds knows each node $2 \cdot i$ Informationen.
Gossip on Cycles

Theorem:

We have:

- \(r_2(C(k)) = k/2 \) for even \(k \).
- \(r_2(C(k)) = \lceil k/2 \rceil + 1 \) for odd \(k \).

Idea of the proof (\(k \) even): [\(k \) odd: an easy exercise]

- Let \(k \) be even.
- \(r_2(C(k)) \geq k/2 \) results by the diameter.
- \(r_2(C(k)) \leq k/2 \) is true by the following algorithm:

\[
\begin{align*}
1 & \quad \{\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}\} \\
2 & \quad \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}\} \\
3 & \quad \{\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i + 1\}, \ldots, \{n - 2, n - 1\}\} \\
4 & \quad \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i - 1, 2i\}, \ldots, \{n - 1, 0\}\} \\
5 & \quad \ldots
\end{align*}
\]

- Note: After \(i \) rounds knows each node \(2 \cdot i \) Informationen.
Gossip on Cycles

Theorem:
We have:

- \(r_2(C(k)) = k/2 \) for even \(k \).
- \(r_2(C(k)) = \lceil k/2 \rceil + 1 \) for odd \(k \).

Idea of the proof (\(k \) even): [\(k \) odd: an easy exercise]

- Let \(k \) be even.
- \(r_2(C(k)) \geq k/2 \) results by the diameter.
- \(r_2(C(k)) \leq k/2 \) is true by the following algorithm:

 1. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i+1\}, \ldots, \{n-2, n-1\} \)
 2. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i-1, 2i\}, \ldots, \{n-1, 0\} \)
 3. \(\{0, 1\}, \{2, 3\}, \{4, 5\}, \ldots, \{2i, 2i+1\}, \ldots, \{n-2, n-1\} \)
 4. \(\{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots, \{2i-1, 2i\}, \ldots, \{n-1, 0\} \)
 5. \(\ldots \)

- Note: After \(i \) rounds knows each node \(2 \cdot i \) Informationen.
1-Way Gossip on Cycles (Idea)

- **Messages should traverse in both directions.**
- Activate each $f(n)$-th node on the cycle.
- This will result in an additional $\Theta(f(n))$ steps.
- During the distribution we get $\Theta\left(\frac{n}{2f(n)}\right)$ delays.
- Thus we will choose $f(n) = \Theta(\sqrt{n})$.
- By this idea we may get a lower and upper bound.
1-Way Gossip on Cycles (Idea)

- Messages should traverse in both directions.
- **Activate each** $f(n)$-th node on the cycle.
- This will result in an additional $\Theta(f(n))$ steps.
- During the distribution we get $\Theta\left(\frac{n}{2^{f(n)}}\right)$ delays.
- Thus we will choose $f(n) = \Theta(\sqrt{n})$.
- By this idea we may get a lower and upper bound.
1-Way Gossip on Cycles (Idea)

- Messages should traverse in both directions.
- Activate each $f(n)$-th node on the cycle.
- This will result in an additional $\Theta(f(n))$ steps.
- During the distribution we get $\Theta\left(\frac{n}{2f(n)}\right)$ delays.
- Thus we will choose $f(n) = \Theta(\sqrt{n})$.
- By this idea we may get a lower and upper bound.
1-Way Gossip on Cycles (Idea)

- Messages should traverse in both directions.
- Activate each $f(n)$-th node on the cycle.
- This will result in an additional $\Theta(f(n))$ steps.
- During the distribution we get $\Theta(\frac{n}{2 \cdot f(n)})$ delays.
- Thus we will choose $f(n) = \Theta(\sqrt{n})$.
- By this idea we may get a lower and upper bound.
1-Way Gossip on Cycles (Idea)

- Messages should traverse in both directions.
- Activate each $f(n)$-th node on the cycle.
- This will result in an additional $\Theta(f(n))$ steps.
- During the distribution we get $\Theta\left(\frac{n}{2 \cdot f(n)}\right)$ delays.
- Thus we will choose $f(n) = \Theta(\sqrt{n})$.
- By this idea we may get a lower and upper bound.
1-Way Gossip on Cycles (Idea)

- Messages should traverse in both directions.
- Activate each $f(n)$-th node on the cycle.
- This will result in an additional $\Theta(f(n))$ steps.
- During the distribution we get $\Theta(\frac{n}{2f(n)})$ delays.
- Thus we will choose $f(n) = \Theta(\sqrt{n})$.
- By this idea we may get a lower and upper bound.
Gossip on Cycles (Idea)
Gossip on Cycles (Idea of the algorithm)

- Split the cycle in $\Theta(\sqrt{n})$ blocks B_i.
- Within block B_i ($i \in \{1, 2, 3, \ldots, k\}$ with $k \in \Theta(\sqrt{n})$) do the following:
 - Phase 1:
 - The nodes v_i [u_i] start a “wave” to the left [right].
 - The messages of v_i and u_i are delayed $\Theta(\sqrt{n})$ times by the other messages.
 - After $n/2 + \Theta(\sqrt{n})$ round know nodes z_i the total information.
 - Phase 2:
 - Each node z_i distribute the total information to $\Theta(\sqrt{n})$ nodes.
- Note: If n is even, we have always a delay of one and the synchronization is easy.
Gossip on Cycles (Idea of the algorithm)

- Split the cycle in $\Theta(\sqrt{n})$ blocks B_i.
- Within block B_i ($i \in \{1, 2, 3, \ldots, k\}$ with $k \in \Theta(\sqrt{n})$) do the following:
 - Phase 1:
 - The nodes v_i [u_i] start a “wave” to the left [right].
 - The messages of v_i and u_i are delayed $\Theta(\sqrt{n})$ times by the other messages.
 - After $n/2 + \Theta(\sqrt{n})$ round know nodes z_i the total information.
 - Phase 2:
 - Each node z_i distribute the total information to $\Theta(\sqrt{n})$ nodes.
- Note: If n is even, we have always a delay of one and the synchronization is easy.
Gossip on Cycles (Idea of the algorithm)

- Split the cycle in $\Theta(\sqrt{n})$ blocks B_i.
- Within block B_i ($i \in \{1, 2, 3, \cdots, k\}$ with $k \in \Theta(\sqrt{n})$) do the following:
 - **Phase 1:**
 - The nodes v_i [u_i] start a “wave” to the left [right].
 - The messages of v_i and u_i are delayed $\Theta(\sqrt{n})$ times by the other messages.
 - After $n/2 + \Theta(\sqrt{n})$ round know nodes z_i the total information.
 - **Phase 2:**
 - Each node z_i distribute the total information to $\Theta(\sqrt{n})$ nodes.
- Note: If n is even, we have always a delay of one and the synchronization is easy.
Gossip on Cycles (Idea of the algorithm)

- Split the cycle in $\Theta(\sqrt{n})$ blocks B_i.
- Within block $B_i (i \in \{1, 2, 3, \ldots, k\}$ with $k \in \Theta(\sqrt{n})$) do the following:
 - Phase 1:
 - The nodes $v_i [u_i]$ start a “wave” to the left [right].
 - The messages of v_i and u_i are delayed $\Theta(\sqrt{n})$ times by the other messages.
 - After $n/2 + \Theta(\sqrt{n})$ round know nodes z_i the total information.
 - Phase 2:
 - Each node z_i distribute the total information to $\Theta(\sqrt{n})$ nodes.
- Note: If n is even, we have always a delay of one and the synchronization is easy.
Gossip on Cycles (Idea of the algorithm)

- Split the cycle in $\Theta(\sqrt{n})$ blocks B_i.
- Within block B_i ($i \in \{1, 2, 3, \ldots, k\}$ with $k \in \Theta(\sqrt{n})$) do the following:
 - Phase 1:
 - The nodes v_i, u_i start a “wave” to the left [right].
 - The messages of v_i and u_i are delayed $\Theta(\sqrt{n})$ times by the other messages.
 - After $n/2 + \Theta(\sqrt{n})$ round know nodes z_i the total information.
 - Phase 2:
 - Each node z_i distribute the total information to $\Theta(\sqrt{n})$ nodes.
- Note: If n is even, we have always a delay of one and the synchronization is easy.
Gossip on Cycles (Idea of the algorithm)

- Split the cycle in $\Theta(\sqrt{n})$ blocks B_i.
- Within block $B_i \ (i \in \{1, 2, 3, \ldots, k\}$ with $k \in \Theta(\sqrt{n})$) do the following:
 - Phase 1:
 - The nodes $v_i \ [u_i]$ start a “wave” to the left [right].
 - The messages of v_i and u_i are delayed $\Theta(\sqrt{n})$ times by the other messages.
 - After $n/2 + \Theta(\sqrt{n})$ round know nodes z_i the total information.
 - Phase 2:
 - Each node z_i distribute the total information to $\Theta(\sqrt{n})$ nodes.
- Note: If n is even, we have always a delay of one and the synchronization is easy.
Gossip on Cycles (Idea of the algorithm)

- Split the cycle in $\Theta(\sqrt{n})$ blocks B_i.
- Within block B_i ($i \in \{1, 2, 3, \cdots, k\}$ with $k \in \Theta(\sqrt{n})$) do the following:
 - Phase 1:
 - The nodes v_i [u_i] start a “wave” to the left [right].
 - The messages of v_i and u_i are delayed $\Theta(\sqrt{n})$ times by the other messages.
 - After $n/2 + \Theta(\sqrt{n})$ round know nodes z_i the total information.
 - Phase 2:
 - Each node z_i distribute the total information to $\Theta(\sqrt{n})$ nodes.
- Note: If n is even, we have always a delay of one and the synchronization is easy.
Gossip on Cycles (Idea of the algorithm)

- Split the cycle in $\Theta(\sqrt{n})$ blocks B_i.
- Within block B_i ($i \in \{1, 2, 3, \cdots, k\}$ with $k \in \Theta(\sqrt{n})$) do the following:
 - Phase 1:
 - The nodes $v_i, [u_i]$ start a “wave” to the left [right].
 - The messages of v_i and u_i are delayed $\Theta(\sqrt{n})$ times by the other messages.
 - After $n/2 + \Theta(\sqrt{n})$ round know nodes z_i the total information.
 - Phase 2:
 - Each node z_i distribute the total information to $\Theta(\sqrt{n})$ nodes.
- Note: If n is even, we have always a delay of one and the synchronization is easy.
Gossip on Cycles (Idea of the algorithm)

- Split the cycle in $\Theta(\sqrt{n})$ blocks B_i.
- Within block B_i ($i \in \{1, 2, 3, \cdots, k\}$ with $k \in \Theta(\sqrt{n})$) do the following:
 - Phase 1:
 - The nodes $v_i \ [u_i]$ start a “wave” to the left [right].
 - The messages of v_i and u_i are delayed $\Theta(\sqrt{n})$ times by the other messages.
 - After $n/2 + \Theta(\sqrt{n})$ round know nodes z_i the total information.
 - Phase 2:
 - Each node z_i distribute the total information to $\Theta(\sqrt{n})$ nodes.
- Note: If n is even, we have always a delay of one and the synchronization is easy.
Gossip on Cycles (Idea)

Theorem:

We have:

- \(r(C(n)) \leq n/2 + \sqrt{2n} - 1 \) for even \(n \).
- \(r(C(n)) \leq \left\lceil n/2 \right\rceil + \left\lceil 2 \cdot \sqrt{\left\lceil n/2 \right\rceil} \right\rceil - 1 \) for odd \(n \).
- \(r(C(n)) \geq n/2 + \sqrt{2n} - 1 \) for even \(n \).
- \(r(C(n)) \geq \left\lceil n/2 \right\rceil + \left\lceil \sqrt{2n} - 1/2 \right\rceil - 1 \) for odd \(n \).

Proof: See literature.
Gossip on the Hypercube

Theorem:
For all \(m \in \mathbb{N} \) we have: \(r_2(HQ(m)) = m \)

Proof:
- The lower bound is the diameter.
- Upper bound by the following algorithm:

  ```
  for i = 1 to m do
    for all \( a_1, a_2, \ldots, a_{m-1} \in \{0, 1\} \) do in parallel
      \( a_1a_2\cdots a_{i-1}0a_ia_{i+1}\cdots a_{m-1} \) sends to
      \( a_1a_2\cdots a_{i-1}1a_ia_{i+1}\cdots a_{m-1} \)
  ```

Corollary:
For all \(m \in \mathbb{N} \) we have: \(r_2(K(2^m)) = m \)
Gossip on the Hypercube

Theorem:
For all $m \in \mathbb{N}$ we have: $r_2(HQ(m)) = m$

Proof:
- The lower bound is the diameter.
- Upper bound by the following algorithm:

  ```
  for $i = 1$ to $m$ do
    for all $a_1, a_2, \cdots, a_{m-1} \in \{0, 1\}$ do in parallel
      $a_1 a_2 \cdots a_{i-1} 0 a_i a_{i+1} \cdots a_{m-1}$ sends to
      $a_1 a_2 \cdots a_{i-1} 1 a_i a_{i+1} \cdots a_{m-1}$
  ```

Corollary:
For all $m \in \mathbb{N}$ we have: $r_2(K(2^m)) = m$
Gossip on the Hypercube

Theorem:

For all $m \in \mathbb{N}$ we have: $r_2(HQ(m)) = m$

Proof:

- The lower bound is the diameter.
- Upper bound by the following algorithm:

  ```
  for $i = 1$ to $m$ do
    for all $a_1, a_2, \ldots, a_{m-1} \in \{0, 1\}$ do in parallel
      $a_1 a_2 \cdots a_{i-1} 0 a_i a_{i+1} \cdots a_{m-1}$ sends to
      $a_1 a_2 \cdots a_{i-1} 1 a_i a_{i+1} \cdots a_{m-1}$
  ```

Corollary:

For all $m \in \mathbb{N}$ we have: $r_2(K(2^m)) = m$
Gossip on the Hypercube

Theorem:
For all $m \in \mathbb{N}$ we have: $r_2(HQ(m)) = m$

Proof:
- The lower bound is the diameter.
- Upper bound by the following algorithm:

  ```
  for $i = 1$ to $m$ do
  
  for all $a_1, a_2, \ldots, a_{m-1} \in \{0, 1\}$ do in parallel
  
  $a_1a_2\cdots a_{i-1}0a_ia_{i+1}\cdots a_{m-1}$ sends to
  
  $a_1a_2\cdots a_{i-1}1a_ia_{i+1}\cdots a_{m-1}$
  ```

Corollary:
For all $m \in \mathbb{N}$ we have: $r_2(K(2^m)) = m$
CCC and BF (Idea)

- Consider one-way mode:
 - Start with the first phase of the gossip-algorithm for cycles on all cycles.
 - Then each $\Theta(\sqrt{n})$-th node on each cycle knows the total information of its cycles.
 - In $\Theta(\sqrt{n})$ waves distribute this information down and between the cycles.
 - After $\Theta(n)$ steps knows each $\Theta(\sqrt{n})$-th node of each cycle the total information.
 - The final part is the second phase of the gossip-algorithm of cycles on all cycles.
 - All nodes know now the total information.
Consider one-way mode:

- Start with the first phase of the gossip-algorithm for cycles on all cycles.
- Then each $\Theta(\sqrt{n})$-th node on each cycle knows the total information of its cycles.
- In $\Theta(\sqrt{n})$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each $\Theta(\sqrt{n})$-th node of each cycle the total information.
- The final part is the second phase of the gossip-algorithm of cycles on all cycles.
- All nodes know now the total information.
Consider one-way mode:

- Start with the first phase of the gossip-algorithm for cycles on all cycles.
- Then each $\Theta(\sqrt{n})$-th node on each cycle knows the total information of its cycles.
- In $\Theta(\sqrt{n})$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each $\Theta(\sqrt{n})$-th node of each cycle the total information.
- The final part is the second phase of the gossip-algorithm of cycles on all cycles.
- All nodes know now the total information.
Consider one-way mode:

- Start with the first phase of the gossip-algorithm for cycles on all cycles.
- Then each $\Theta(\sqrt{n})$-th node on each cycle knows the total information of its cycles.
- In $\Theta(\sqrt{n})$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each $\Theta(\sqrt{n})$-th node of each cycle the total information.
- The final part is the second phase of the gossip-algorithm of cycles on all cycles.
- All nodes know now the total information.
Consider one-way mode:

- Start with the first phase of the gossip-algorithm for cycles on all cycles.
- Then each $\Theta(\sqrt{n})$-th node on each cycle knows the total information of its cycles.
- In $\Theta(\sqrt{n})$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each $\Theta(\sqrt{n})$-th node of each cycle the total information.
- The final part is the second phase of the gossip-algorithm of cycles on all cycles.
- All nodes know now the total information.
Consider one-way mode:

- Start with the first phase of the gossip-algorithm for cycles on all cycles.
- Then each $\Theta(\sqrt{n})$-th node on each cycle knows the total information of its cycles.
- In $\Theta(\sqrt{n})$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each $\Theta(\sqrt{n})$-th node of each cycle the total information.
- The final part is the second phase of the gossip-algorithm of cycles on all cycles.
- All nodes know now the total information.
CCC and BF (Idea)

- Consider one-way mode:
 - Start with the first phase of the gossip-algorithm for cycles on all cycles.
 - Then each $\Theta(\sqrt{n})$-th node on each cycle knows the total information of its cycles.
 - In $\Theta(\sqrt{n})$ waves distribute this information down and between the cycles.
 - After $\Theta(n)$ steps knows each $\Theta(\sqrt{n})$-th node of each cycle the total information.
 - The final part is the second phase of the gossip-algorithm of cycles on all cycles.
 - All nodes know now the total information.
Consider two-way mode:

- Start with the gossip algorithm for cycles on all cycles.
- Each node of the cycle knows now the total information of its cycle.
- In $\Theta(n/2)$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each node the total information.
Consider two-way mode:

- Start with the gossip algorithm for cycles on all cycles.
- Each node of the cycle knows now the total information of its cycle.
- In $\Theta(n/2)$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each node the total information.
Consider two-way mode:

- Start with the gossip algorithm for cycles on all cycles.
- Each node of the cycle knows now the total information of its cycle.
- In $\Theta(n/2)$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each node the total information.
Consider two-way mode:

- Start with the gossip algorithm for cycles on all cycles.
- Each node of the cycle knows now the total information of its cycle.
- In $\Theta(n/2)$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each node the total information.
Consider two-way mode:

- Start with the gossip algorithm for cycles on all cycles.
- Each node of the cycle knows now the total information of its cycle.
- In $\Theta(n/2)$ waves distribute this information down and between the cycles.
- After $\Theta(n)$ steps knows each node the total information.
Theorem:

Let $k \geq 3$, then we have:

1. $r(\text{CCC}(k)) \leq r(C(k)) + 3k - 1 \leq \left\lceil \frac{7k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 2$.

2. $r(\text{BF}(k)) \leq r(C(k)) + 2k \leq \left\lceil \frac{5k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 1$.

3. $r_2(\text{CCC}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.

4. $r_2(\text{CCC}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.

5. $r_2(\text{BF}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.

6. $r_2(\text{BF}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.
Theorem:

Let $k \geq 3$, then we have:

- $r(\text{CCC}(k)) \leq r(\text{C}(k)) + 3k - 1 \leq \left\lceil \frac{7k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 2$.

- $r(\text{BF}(k)) \leq r(\text{C}(k)) + 2k \leq \left\lceil \frac{5k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 1$.

- $r_2(\text{CCC}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.

- $r_2(\text{CCC}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.

- $r_2(\text{BF}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.

- $r_2(\text{BF}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.
CCC and BF

Theorem:

Let $k \geq 3$, then we have:

- $r(\text{CCC}(k)) \leq r(\text{C}(k)) + 3k - 1 \leq \left\lceil \frac{7k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 2$.
- $r(\text{BF}(k)) \leq r(\text{C}(k)) + 2k \leq \left\lceil \frac{5k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 1$.
- $r_2(\text{CCC}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.
- $r_2(\text{CCC}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.
- $r_2(\text{BF}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.
- $r_2(\text{BF}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.
CC and BF

Theorem:

Let $k \geq 3$, then we have:

- $r(\text{CCC}(k)) \leq r(\text{C}(k)) + 3k - 1 \leq \left\lceil \frac{7k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 2.$

- $r(\text{BF}(k)) \leq r(\text{C}(k)) + 2k \leq \left\lceil \frac{5k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 1.$

- $r_2(\text{CCC}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.

- $r_2(\text{CCC}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.

- $r_2(\text{BF}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.

- $r_2(\text{BF}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.
Theorem:

Let $k \geq 3$, then we have:

- $r(\text{CCC}(k)) \leq r(\text{C}(k)) + 3k - 1 \leq \left\lceil \frac{7k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 2$.
- $r(\text{BF}(k)) \leq r(\text{C}(k)) + 2k \leq \left\lceil \frac{5k}{2} \right\rceil + \left\lceil 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} \right\rceil - 1$.
- $r_2(\text{CCC}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.
- $r_2(\text{CCC}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.
- $r_2(\text{BF}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for even k.
- $r_2(\text{BF}(k)) \leq \left\lceil \frac{k}{2} \right\rceil + 2k + 2 = 5 \cdot \left\lceil \frac{k}{2} \right\rceil$ for odd k.
Theorem:

Let $k \geq 3$, then we have:

- $r(\text{CCC}(k)) \leq r(C(k)) + 3k - 1 \leq \left\lceil \frac{7k}{2} \right\rceil + 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} - 2$.
- $r(\text{BF}(k)) \leq r(C(k)) + 2k \leq \left\lceil \frac{5k}{2} \right\rceil + 2\sqrt{\left\lceil \frac{k}{2} \right\rceil} - 1$.
- $r_2(\text{CCC}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lfloor \frac{k}{2} \right\rfloor$ for even k.
- $r_2(\text{CCC}(k)) \leq \left\lfloor \frac{k}{2} \right\rfloor + 2k + 2 = 5 \cdot \left\lfloor \frac{k}{2} \right\rfloor$ for odd k.
- $r_2(\text{BF}(k)) \leq \frac{k}{2} + 2k = 5 \cdot \left\lfloor \frac{k}{2} \right\rfloor$ for even k.
- $r_2(\text{BF}(k)) \leq \left\lfloor \frac{k}{2} \right\rfloor + 2k + 2 = 5 \cdot \left\lfloor \frac{k}{2} \right\rfloor$ for odd k.
Gossip on Graphs with $2 \cdot m$ Nodes (0. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (0. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (0. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (0. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (0. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (0. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (0. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (0. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)

Implication:
For all $m \in \mathbb{N}$ we have:
$$r_2(K(2^m)) = m$$
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)

Implication:

For all $m \in \mathbb{N}$ we have:

$$r_2(K(2^m)) = m$$

For all $m \in \mathbb{N}$ we have:

$$r_2(K(m)) \leq \lceil \log_2 m \rceil + 1$$
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)

Implication:
For all $m \in \mathbb{N}$ we have:

$$r_2(K(2^m)) = m$$

For all $m \in \mathbb{N}$ we have:

$$r_2(K(m)) \leq \lceil \log m \rceil + 1$$
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)

Implication:

For all $m \in \mathbb{N}$ we have:

$$r_2(K(2^m)) = m$$

For all $m \in \mathbb{N}$ we have:

$$r_2(K(m)) \leq \lceil \log m \rceil + 1$$
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)

Implication:
For all $m \in \mathbb{N}$ we have:
$$r_2(K(2m)) = m$$
For all $m \in \mathbb{N}$ we have:
$$r_2(K(m)) \leq \lceil \log m \rceil + 1$$
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)

Implication:
For all $m \in \mathbb{N}$ we have:
$$r_{2 \cdot m} = m$$

For all $m \in \mathbb{N}$ we have:
$$r_{2 \cdot m} \leq \lceil \log m \rceil + 1$$
Gossip on Graphs with \(2 \cdot m\) Nodes (1. Idea)

Implication: For all \(m \in \mathbb{N}\) we have:

\[r_2(K(2^m)) = m \]

For all \(m \in \mathbb{N}\) we have:

\[r_2(K(m)) \leq \lceil \log m \rceil + 1 \]
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)

Implication:
For all $m \in \mathbb{N}$ we have:
$$r_2(K(2^m)) = m$$

For all $m \in \mathbb{N}$ we have:
$$r_2(K(m)) \leq \lceil \log m \rceil + 1$$
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)

Implication:
For all $m \in \mathbb{N}$ we have:
$$r_2(K(2^m)) = m$$

For all $m \in \mathbb{N}$ we have:
$$r_2(K(m)) \leq \lceil \log m \rceil + 1$$
Gossip on Graphs with $2 \cdot m$ Nodes (1. Idea)

Implication:
- For all $m \in \mathbb{N}$ we have: $r_2(K(2^m)) = m$
- For all $m \in \mathbb{N}$ we have: $r_2(K(m)) \leq \lceil \log m \rceil + 1$
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)

- Too many nodes where inactive for too long time.
- These nodes could not double their information.
- Idea: Try to double the information of any node.
- Detailed idea: In each step each node has an "interval" of information.
- To make the doubling easy split the nodes into two groups.
- Both groups should be the same size.
- In the first step pairs of node from each group share their information.
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)

- Too many nodes where inactive for too long time.
- These nodes could not double their information.
- Idea: Try to double the information of any node.
- Detailed idea: In each step each node has an “interval” of information.
- To make the doubling easy split the nodes into two groups.
- Both groups should be the same size.
- In the first step pairs of node from each group share their information.
Gossip on Graphs with \(2 \cdot m\) Nodes (2. Idea)

- Too many nodes were inactive for too long time.
- These nodes could not double their information.
- **Idea:** Try to double the information of any node.
- Detailed idea: In each step each node has an “interval” of information.
- To make the doubling easy split the nodes into two groups.
- Both groups should be the same size.
- In the first step pairs of node from each group share their information.
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)

- Too many nodes where inactive for too long time.
- These nodes could not double their information.
- Idea: Try to double the information of any node.
- Detailed idea: In each step each node has an “interval” of information.
- To make the doubling easy split the nodes into two groups.
- Both groups should be the same size.
- In the first step pairs of node from each group share their information.
Too many nodes where inactive for too long time.

These nodes could not double their information.

Idea: Try to double the information of any node.

Detailed idea: In each step each node has an “interval” of information.

To make the doubling easy split the nodes into two groups.

Both groups should be the same size.

In the first step pairs of node from each group share their information.
Too many nodes where inactive for too long time.

These nodes could not double their information.

Idea: Try to double the information of any node.

Detailed idea: In each step each node has an “interval” of information.

To make the doubling easy split the nodes into two groups.

Both groups should be the same size.

In the first step pairs of node from each group share their information.
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)

- Too many nodes where inactive for too long time.
- These nodes could not double their information.
- Idea: Try to double the information of any node.
- Detailed idea: In each step each node has an “interval” of information.
- To make the doubling easy split the nodes into two groups.
- Both groups should be the same size.
- In the first step pairs of node from each group share their information.
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes (2. Idea)
Gossip on Graphs with $2 \cdot m$ Nodes

Theorem:

For all $m \in \mathbb{N}$ we have: $r_2(K(2m)) = \lceil \log 2m \rceil$

Proof: Split the nodes in groups $Q[i]$ and $R[i]$ ($0 \leq i \leq m - 1$).

- **algorithm:**

  ```text
  for all $i \in \{0, \cdots, m - 1\}$ do in parallel
    Exchange the information between $Q[i]$ and $R[i]$
  for $t = 1$ to $\lceil \log_2 m \rceil$ do
    for all $i \in \{0, \cdots, m - 1\}$ do in parallel
      Exchange the information between $Q[i]$ and $R[(i + 2^{t-1}) \mod m]$
  ```

- **Invariant:**

 - Let $\alpha[i]$ be the information of $Q[i]$ and $R[i]$ after their initial exchange.
 - After round t know nodes $Q[i]$ and $R[(i + 2^{t-1}) \mod m]$:
 $\cup_{0 \leq j \leq 2^{t-1}} \alpha[(i + j) \mod m]$
 - The invariant is easy to be shown.
Gossip on Graphs with $2 \cdot m$ Nodes

Theorem:

For all $m \in \mathbb{N}$ we have: $r_2(K(2m)) = \lceil \log 2m \rceil$

Proof: Split the nodes in groups $Q[i]$ and $R[i]$ ($0 \leq i \leq m - 1$).

- **algorithm:**
  ```plaintext
  for all $i \in \{0, \ldots, m - 1\}$ do in parallel
  Exchange the information between $Q[i]$ and $R[i]$
  for $t = 1$ to $\lceil \log_2 m \rceil$ do
  for all $i \in \{0, \ldots, m - 1\}$ do in parallel
  Exchange the information between $Q[i]$ and $R[(i + 2^{t-1}) \mod m]$
  ```

- **Invariant:**
 - Let $\alpha[i]$ be the information of $Q[i]$ and $R[i]$ after their initial exchange.
 - After round t know nodes $Q[i]$ and $R[(i + 2^{t-1}) \mod m]$: $\bigcup_{0 \leq j \leq 2^{t-1}} \alpha[(i + j) \mod m]$
 - The invariant is easy to be shown.
Gossip on Graphs with $2 \cdot m$ Nodes

Theorem:
For all $m \in \mathbb{N}$ we have: $r_2(K(2m)) = \lceil \log 2m \rceil$

Proof: Split the nodes in groups $Q[i]$ and $R[i]$ ($0 \leq i \leq m - 1$).

- **algorithm:**

 for all $i \in \{0, \ldots, m - 1\}$ do in parallel

 Exchange the information between $Q[i]$ and $R[i]$

 for $t = 1$ to $\lceil \log_2 m \rceil$ do

 for all $i \in \{0, \ldots, m - 1\}$ do in parallel

 Exchange the information between $Q[i]$ and $R[(i + 2^{t-1}) \mod m]$

- **Invariant:**

 - Let $\alpha[i]$ be the information of $Q[i]$ and $R[i]$ after their initial exchange.
 - After round t know nodes $Q[i]$ and $R[(i + 2^{t-1}) \mod m]$: $\cup_{0 \leq j \leq 2^{t-1}} \alpha[(i + j) \mod m]$

 The invariant is easy to be shown.
Gossip on Graphs with $2 \cdot m$ Nodes

Theorem:

For all $m \in \mathbb{N}$ we have: $r_2(K(2m)) = \lceil \log 2m \rceil$

Proof: Split the nodes in groups $Q[i]$ and $R[i]$ ($0 \leq i \leq m - 1$).

- **algorithm:**

  ```
  for all $i \in \{0, \ldots, m - 1\}$ do in parallel
  
  Exchange the information between $Q[i]$ and $R[i]$
  ```

  ```
  for $t = 1$ to $\lceil \log_2 m \rceil$ do
  ```

  ```
  for all $i \in \{0, \ldots, m - 1\}$ do in parallel
  ```

 Exchange the information between $Q[i]$ and $R[(i + 2^{t-1}) \mod m]$

- **Invariant:**

 - Let $\alpha[i]$ be the information of $Q[i]$ and $R[i]$ after their initial exchange.

 - After round t know nodes $Q[i]$ and $R[(i + 2^{t-1}) \mod m]$:
 $\bigcup_{0 \leq j \leq 2^{t-1}} \alpha[(i + j) \mod m]$

- The invariant is easy to be shown.
Gossip on Graphs with \(2 \cdot m\) Nodes

Theorem:

For all \(m \in \mathbb{N}\) we have: \(r_2(K(2m)) = \lceil \log 2m \rceil\)

Proof: Split the nodes in groups \(Q[i]\) and \(R[i]\) \((0 \leq i \leq m - 1)\).

- **algorithm:**

  ```
  for all \(i \in \{0, \ldots, m - 1\}\) do in parallel
  Exchange the information between \(Q[i]\) and \(R[i]\)
  
  for \(t = 1\) to \(\lceil \log_2 m \rceil\) do
  
  for all \(i \in \{0, \ldots, m - 1\}\) do in parallel
  Exchange the information between \(Q[i]\) and \(R[(i + 2^{t-1}) \mod m]\)
  ```

- **Invariant:**

 - Let \(\alpha[i]\) be the information of \(Q[i]\) and \(R[i]\) after their initial exchange.
 - After round \(t\) know nodes \(Q[i]\) and \(R[(i + 2^{t-1}) \mod m]\):
 \[
 \bigcup_{0 \leq j \leq 2^t - 1} \alpha[(i + j) \mod m]
 \]

 - The invariant is easy to be shown.
Gossip on Graphs with \(2 \cdot m\) Nodes

Theorem:
For all \(m \in \mathbb{N}\) we have: \(r_2(K(2m)) = \lceil \log 2m \rceil\)

Proof: Split the nodes in groups \(Q[i]\) and \(R[i]\) \((0 \leq i \leq m - 1)\).

- **algorithm:**

  ```
  for all \(i \in \{0, \cdots, m-1\}\) do in parallel
  Exchange the information between \(Q[i]\) and \(R[i]\)
  for \(t = 1\) to \(\lceil \log_2 m \rceil\) do
  for all \(i \in \{0, \ldots, m-1\}\) do in parallel
  Exchange the information between \(Q[i]\) and \(R[(i + 2^{t-1}) \mod m]\)
  ```

- **Invariant:**
 - Let \(\alpha[i]\) be the information of \(Q[i]\) and \(R[i]\) after their initial exchange.
 - After round \(t\) know nodes \(Q[i]\) and \(R[(i + 2^{t-1}) \mod m]\):
 \[\cup_{0 \leq j \leq 2^{t-1}} \alpha[(i + j) \mod m]\]
 - The invariant is easy to be shown.
We need an extra round.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (a try)

- We need an extra round.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (a try)

- We need an extra round.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (a try)

- We need an extra round.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
We need an extra round.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (a try)

- We need an extra round.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
We need an extra round.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (a try)

- We need an extra round.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
We need an extra round.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (a try)

- We need an extra round.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (a try)

- We need an extra round.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (a try)

- We need an extra round.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
We need an extra round.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
Gossip on Graphs with \(2 \cdot m + 1\) Nodes (Idea)

- **How could this be an idea?**
- We only have the edges of the first step.
- Idea: We could now choose a small even number of Nodes, which together have the total information.
- These nodes may perform the above gossip algorithm.
- In the last step we repeat the first round.
Gossip on Graphs with \(2 \cdot m + 1\) **Nodes (Idea)**

- How could this be an idea?
- **We only have the edges of the first step.**
- Idea: We could now choose a small even number of Nodes, which together have the total information.
- These nodes may perform the above gossip algorithm.
- In the last step we repeat the first round.
How could this be an idea?

We only have the edges of the first step.

Idea: We could now choose a small even number of Nodes, which together have the total information.

These nodes may perform the above gossip algorithm.

In the last step we repeat the first round.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (Idea)

How could this be an idea?
We only have the edges of the first step.
Idea: We could now choose a small even number of Nodes, which together have the total information.
These nodes may perform the above gossip algorithm.
In the last step we repeat the first round.
Gossip on Graphs with $2 \cdot m + 1$ Nodes (Idea)

- How could this be an idea?
- We only have the edges of the first step.
- Idea: We could now choose a small even number of Nodes, which together have the total information.
- These nodes may perform the above gossip algorithm.
- In the last step we repeat the first round.
Let $n = 2 \cdot m + 1$.

Let $v_0, v_1, v_2, \cdots, v_{n-1}$ be all nodes.

For all $i \in \{0, 1, \cdots, m - 1\}$ the node v_{m+2+i} sends to v_i.

The node $\{v_0, v_1, v_2, \cdots, v_m\}$ have now the total information.

If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_m\}$.

If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_{m+1}\}$.

For all $i \in \{0, 1, \cdots, m - 1\}$ the nodes v_i send to v_{m+2+i}.

Correctness follows direct by the construction.

Running time for $m + 1$ even:
\[
 r_2(K(m+1)) + 2 = \lceil \log_2(m+1) \rceil + 2 = \lceil \log_2 \left(\frac{n+1}{2} \right) \rceil + 2
\]
\[
 = \lceil \log_2(n+1) \rceil + 1 = \lceil \log_2 n \rceil + 1
\]

Running time for $m + 1$ odd:
\[
 r_2(K(m+2)) + 2 = \lceil \log_2(m+2) \rceil + 2 = \lceil \log_2 \left(\frac{n+3}{2} \right) \rceil + 2
\]
\[
 = \lceil \log_2(n+3) \rceil + 1 = \lceil \log_2 n \rceil + 1
\]
Gossip on Graphs with $2 \cdot m + 1$ Nodes

- Let $n = 2 \cdot m + 1$.
- Let $v_0, v_1, v_2, \cdots, v_{n-1}$ be all nodes.
- For all $i \in \{0, 1, \cdots, m-1\}$ the node v_{m+2+i} sends to v_i.
- The node $\{v_0, v_1, v_2, \cdots, v_m\}$ have now the total information.
- If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_m\}$.
- If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_{m+1}\}$.
- For all $i \in \{0, 1, \cdots, m-1\}$ the nodes v_i send to v_{m+2+i}.
- Correctness follows direct by the construction.

Running time for $m + 1$ even:
$$r_2(K(m+1)) + 2 = \lfloor \log_2(m + 1) \rfloor + 2 = \lfloor \log_2 (\frac{n+1}{2}) \rfloor + 2$$
$$= \lfloor \log_2(n + 1) \rfloor + 1 = \lfloor \log_2 n \rfloor + 1$$

Running time for $m + 1$ odd:
$$r_2(K(m+2)) + 2 = \lfloor \log_2(m + 2) \rfloor + 2 = \lfloor \log_2 (\frac{n+3}{2}) \rfloor + 2$$
$$= \lfloor \log_2(n + 3) \rfloor + 1 = \lfloor \log_2 n \rfloor + 1$$
Gossip on Graphs with $2 \cdot m + 1$ Nodes

- Let $n = 2 \cdot m + 1$.
- Let $v_0, v_1, v_2, \cdots, v_{n-1}$ be all nodes.
- For all $i \in \{0, 1, \cdots, m - 1\}$ the node v_{m+2+i} sends to v_i.
- The node $\{v_0, v_1, v_2, \cdots, v_m\}$ have now the total information.
- If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_m\}$.
- If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_{m+1}\}$.
- For all $i \in \{0, 1, \cdots, m - 1\}$ the nodes v_i send to v_{m+2+i}.
- Correctness follows direct by the construction.

Running time for $m + 1$ even:

$$r_2(K(m + 1)) + 2 = \lceil \log_2(m + 1) \rceil + 2 = \lceil \log_2 \left(\frac{n+1}{2}\right) \rceil + 2$$

$$= \lceil \log_2(n + 1) \rceil + 1 = \lceil \log_2 n \rceil + 1$$

Running time for $m + 1$ odd:

$$r_2(K(m + 2)) + 2 = \lceil \log_2(m + 2) \rceil + 2 = \lceil \log_2 \left(\frac{n+3}{2}\right) \rceil + 2$$

$$= \lceil \log_2(n + 3) \rceil + 1 = \lceil \log_2 n \rceil + 1$$
Gossip on Graphs with $2 \cdot m + 1$ Nodes

- Let $n = 2 \cdot m + 1$.
- Let $v_0, v_1, v_2, \cdots, v_{n-1}$ be all nodes.
- For all $i \in \{0, 1, \cdots, m - 1\}$ the node v_{m+2+i} sends to v_i.
- The node $\{v_0, v_1, v_2, \cdots, v_m\}$ have now the total information.
- If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_m\}$.
- If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_{m+1}\}$.
- For all $i \in \{0, 1, \cdots, m - 1\}$ the nodes v_i send to v_{m+2+i}.
- Correctness follows direct by the construction.

Running time for $m + 1$ even:
$$r_2(K(m + 1)) + 2 = \lceil \log_2(m + 1) \rceil + 2 = \lceil \log_2 \left(\frac{n+1}{2}\right) \rceil + 2$$

Running time for $m + 1$ odd:
$$r_2(K(m + 2)) + 2 = \lceil \log_2(m + 2) \rceil + 2 = \lceil \log_2 \left(\frac{n+3}{2}\right) \rceil + 2$$
Gossip on Graphs with $2 \cdot m + 1$ Nodes

- Let $n = 2 \cdot m + 1$.
- Let $v_0, v_1, v_2, \cdots, v_{n-1}$ be all nodes.
- For all $i \in \{0, 1, \cdots, m - 1\}$ the node v_{m+2+i} sends to v_i.
- The node $\{v_0, v_1, v_2, \cdots, v_m\}$ have now the total information.
- If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_m\}$.
- If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_{m+1}\}$.
- For all $i \in \{0, 1, \cdots, m - 1\}$ the nodes v_i send to v_{m+2+i}.
- Correctness follows directly by the construction.

Running time for $m + 1$ even:
$$r_2(K(m + 1)) + 2 = \lceil \log_2(m + 1) \rceil + 2 = \lceil \log_2 \left(\frac{n+1}{2}\right) \rceil + 2$$
$$= \lceil \log_2(n + 1) \rceil + 1 = \lceil \log_2 n \rceil + 1$$

Running time for $m + 1$ odd:
$$r_2(K(m + 2)) + 2 = \lceil \log_2(m + 2) \rceil + 2 = \lceil \log_2 \left(\frac{n+3}{2}\right) \rceil + 2$$
$$= \lceil \log_2(n + 3) \rceil + 1 = \lceil \log_2 n \rceil + 1$$
Gossip on Graphs with $2 \cdot m + 1$ Nodes

- Let $n = 2 \cdot m + 1$.
- Let $v_0, v_1, v_2, \cdots, v_{n-1}$ be all nodes.
- For all $i \in \{0, 1, \cdots, m-1\}$ the node v_{m+2+i} sends to v_i.
- The node $\{v_0, v_1, v_2, \cdots, v_m\}$ have now the total information.
- If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_m\}$.
- If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_{m+1}\}$.
- For all $i \in \{0, 1, \cdots, m-1\}$ the nodes v_i send to v_{m+2+i}.
- Correctness follows direct by the construction.

Running time for $m + 1$ even:
\[
r_2(K(m + 1)) + 2 = \lceil \log_2(m + 1) \rceil + 2 = \lceil \log_2 \left(\frac{n + 1}{2} \right) \rceil + 2
\]
\[
= \lceil \log_2(n + 1) \rceil + 1 = \lceil \log_2 n \rceil + 1
\]

Running time for $m + 1$ odd:
\[
r_2(K(m + 2)) + 2 = \lceil \log_2(m + 2) \rceil + 2 = \lceil \log_2 \left(\frac{n + 3}{2} \right) \rceil + 2
\]
\[
= \lceil \log_2(n + 3) \rceil + 1 = \lceil \log_2 n \rceil + 1
\]
Gossip on Graphs with $2 \cdot m + 1$ Nodes

Let $n = 2 \cdot m + 1$.

Let $v_0, v_1, v_2, \cdots, v_{n-1}$ be all nodes.

For all $i \in \{0, 1, \cdots, m - 1\}$ the node v_{m+2+i} sends to v_i.

The node $\{v_0, v_1, v_2, \cdots, v_m\}$ have now the total information.

If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_m\}$.

If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_{m+1}\}$.

For all $i \in \{0, 1, \cdots, m - 1\}$ the nodes v_i send to v_{m+2+i}.

Correctness follows direct by the construction.

Running time for $m + 1$ even:

$$r_2(K(m+1)) + 2 = \lceil \log_2(m + 1) \rceil + 2 = \lceil \log_2 (\frac{n+1}{2}) \rceil + 2$$

$$= \lceil \log_2(n+1) \rceil + 1 = \lceil \log_2 n \rceil + 1$$

Running time for $m + 1$ odd:

$$r_2(K(m+2)) + 2 = \lceil \log_2(m + 2) \rceil + 2 = \lceil \log_2 (\frac{n+3}{2}) \rceil + 2$$

$$= \lceil \log_2(n+3) \rceil + 1 = \lceil \log_2 n \rceil + 1$$
Gossip on Graphs with $2 \cdot m + 1$ Nodes

- Let $n = 2 \cdot m + 1$.
- Let $v_0, v_1, v_2, \ldots, v_{n-1}$ be all nodes.
- For all $i \in \{0, 1, \ldots, m-1\}$ the node v_{m+2+i} sends to v_i.
- The node $\{v_0, v_1, v_2, \ldots, v_m\}$ have now the total information.
- If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \ldots, v_m\}$.
- If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \ldots, v_{m+1}\}$.
- For all $i \in \{0, 1, \ldots, m-1\}$ the nodes v_i send to v_{m+2+i}.
- Correctness follows direct by the construction.

Running time for $m + 1$ even:
\[
r_2(K(m+1)) + 2 = \lceil \log_2(m+1) \rceil + 2 = \lceil \log_2 \left(\frac{n+1}{2} \right) \rceil + 2 = \lceil \log_2 n \rceil + 1
\]

Running time for $m + 1$ odd:
\[
r_2(K(m+2)) + 2 = \lceil \log_2(m+2) \rceil + 2 = \lceil \log_2 \left(\frac{n+3}{2} \right) \rceil + 2 = \lceil \log_2 n \rceil + 1
\]
Gossip on Graphs with $2 \cdot m + 1$ Nodes

- Let $n = 2 \cdot m + 1$.
- Let $v_0, v_1, v_2, \cdots, v_{n-1}$ be all nodes.
- For all $i \in \{0, 1, \cdots, m - 1\}$ the node v_{m+2+i} sends to v_i.
- The node $\{v_0, v_1, v_2, \cdots, v_m\}$ have now the total information.
- If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_m\}$.
- If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \cdots, v_{m+1}\}$.
- For all $i \in \{0, 1, \cdots, m - 1\}$ the nodes v_i send to v_{m+2+i}.
- Correctness follows directly by the construction.

Running time for $m + 1$ even:

$$r_2(K(m+1)) + 2 = \lceil \log_2(m + 1) \rceil + 2 = \lceil \log_2 \left(\frac{n+1}{2} \right) \rceil + 2$$

Running time for $m + 1$ odd:

$$r_2(K(m+2)) + 2 = \lceil \log_2(m + 2) \rceil + 2 = \lceil \log_2 \left(\frac{n+3}{2} \right) \rceil + 2$$
Gossip on Graphs with $2 \cdot m + 1$ Nodes

- Let $n = 2 \cdot m + 1$.
- Let $v_0, v_1, v_2, \ldots, v_{n-1}$ be all nodes.
- For all $i \in \{0, 1, \ldots, m - 1\}$ the node v_{m+2+i} sends to v_i.
- The node $\{v_0, v_1, v_2, \ldots, v_m\}$ have now the total information.
- If $m + 1$ is even, perform a gossip on the nodes $\{v_0, v_1, v_2, \ldots, v_{m}\}$.
- If $m + 1$ is odd, perform a gossip on the nodes $\{v_0, v_1, v_2, \ldots, v_{m+1}\}$.
- For all $i \in \{0, 1, \ldots, m - 1\}$ the nodes v_i send to v_{m+2+i}.
- Correctness follows direct by the construction.

Running time for $m + 1$ even:
\[
\begin{align*}
 r_2(K(m+1)) + 2 &= \lceil \log_2(m + 1) \rceil + 2 \\
 &= \lceil \log_2(n + 1) \rceil + 1 \\
 &= \lceil \log_2 n \rceil + 1
\end{align*}
\]

Running time for $m + 1$ odd:
\[
\begin{align*}
 r_2(K(m+2)) + 2 &= \lceil \log_2(m + 2) \rceil + 2 \\
 &= \lceil \log_2(n + 3) \rceil + 1 \\
 &= \lceil \log_2 n \rceil + 1
\end{align*}
\]
1^{st} Idea (Let the Knowledge grow)

- We need more rounds.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
1st Idea (Let the Knowledge grow)

- We need more rounds.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
We need more rounds.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
We need more rounds.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
We need more rounds.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
1st Idea (Let the Knowledge grow)

- We need more rounds.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
1st Idea (Let the Knowledge grow)

- We need more rounds.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
We need more rounds.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
1st Idea (Let the Knowledge grow)

- We need more rounds.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
1^{st} Idea (Let the Knowledge grow)

We need more rounds.

A nice proof with this idea will become complicated.

We will try to put some structure into the proof.
1st Idea (Let the Knowledge grow)

- **We need more rounds.**
- **A nice proof with this idea will become complicated.**
- **We will try to put some structure into the proof.**
1st Idea (Let the Knowledge grow)

- We need more rounds.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
1st Idea (Let the Knowledge grow)

- We need more rounds.
- A nice proof with this idea will become complicated.
- We will try to put some structure into the proof.
We need an additional two rounds.

\(\nu_x \) and \(w_y \) alternate as sender and receiver.

The information grows in blocks (intervals) in the nodes.

With this idea we may do the proof.

Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- \(v_x \) and \(w_y \) alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- \(v_x\) and \(w_y\) alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- v_x and w_y alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
We need an additional two rounds.

\(v_x\) and \(w_y\) alternate as sender and receiver.

The information grows in blocks (intervals) in the nodes.

With this idea we may do the proof.

Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- \(v_x\) and \(w_y\) alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
We need an additional two rounds.

\(v_x \) and \(w_y \) alternate as sender and receiver.

The information grows in blocks (intervals) in the nodes.

With this idea we may do the proof.

Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

We need an additional two rounds.

\(v_x \) and \(w_y \) alternate as sender and receiver.

The information grows in blocks (intervals) in the nodes.

With this idea we may do the proof.

Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- v_x and w_y alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- v_x and w_y alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- v_x and w_y alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- v_x and w_y alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- v_x and w_y alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- v_x and w_y alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- v_x and w_y alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- We need an additional two rounds.
- \(v_x\) and \(w_y\) alternate as sender and receiver.
- The information grows in blocks (intervals) in the nodes.
- With this idea we may do the proof.
- Only the first two rounds are special.
2nd Idea (Let the Knowledge grow in a structured way)

- After the first two rounds some node-pairs share their information.
- Consider this situation as the start:
 - All v_x and w_x have one information pair.
 - v_i sends to w_j and the w_x have 2 information pairs.
 - w_i sends to v_j and the v_x have 3 information pairs.
 - v_i sends to w_j and the w_x have 5 information pairs.
 - w_i sends to v_j and the v_x have 8 information pairs.
 - v_i sends to w_j and the w_x have 13 information pairs.
 - w_i sends to v_j and the v_x have 21 information pairs.
 - Thus the grow-rate and the algorithm is clearly visible.
2nd Idea (Let the Knowledge grow in a structured way)

- After the first two rounds some node-pairs share their information.

- Consider this situation as the start:
 - All v_x and w_x have one information pair.
 - v_i sends to w_j and the w_x have 2 information pairs.
 - w_i sends to v_j and the v_x have 3 information pairs.
 - v_i sends to w_j and the w_x have 5 information pairs.
 - w_i sends to v_j and the v_x have 8 information pairs.
 - v_i sends to w_j and the w_x have 13 information pairs.
 - w_i sends to v_j and the v_x have 21 information pairs.
 - Thus the grow-rate and the algorithm is clearly visible.
2nd Idea (Let the Knowledge grow in a structured way)

- After the first two rounds some node-pairs share their information.

- Consider this situation as the start:
 - All v_x and w_x have one information pair.
 - v_i sends to w_j and the w_x have 2 information pairs.
 - w_i sends to v_j and the v_x have 3 information pairs.
 - v_i sends to w_j and the w_x have 5 information pairs.
 - w_i sends to v_j and the v_x have 8 information pairs.
 - v_i sends to w_j and the w_x have 13 information pairs.
 - w_i sends to v_j and the v_x have 21 information pairs.
 - Thus the grow-rate and the algorithm is clearly visible.
2nd Idea (Let the Knowledge grow in a structured way)

- After the first two rounds some node-pairs share their information.

- Consider this situation as the start:
 - All \(v_x \) and \(w_x \) have one information pair.
 - \(v_i \) sends to \(w_j \) and the \(w_x \) have 2 information pairs.
 - \(w_i \) sends to \(v_j \) and the \(v_x \) have 3 information pairs.
 - \(v_i \) sends to \(w_j \) and the \(w_x \) have 5 information pairs.
 - \(w_i \) sends to \(v_j \) and the \(v_x \) have 8 information pairs.
 - \(v_i \) sends to \(w_j \) and the \(w_x \) have 13 information pairs.
 - \(w_i \) sends to \(v_j \) and the \(v_x \) have 21 information pairs.
 - Thus the grow-rate and the algorithm is clearly visible.
2nd Idea (Let the Knowledge grow in a structured way)

- After the first two rounds some node-pairs share their information.
- Consider this situation as the start:
 - All v_x and w_x have one information pair.
 - v_i sends to w_j and the w_x have 2 information pairs.
 - w_i sends to v_j and the v_x have 3 information pairs.
 - v_i sends to w_j and the w_x have 5 information pairs.
 - w_i sends to v_j and the v_x have 8 information pairs.
 - v_i sends to w_j and the w_x have 13 information pairs.
 - w_i sends to v_j and the v_x have 21 information pairs.
- Thus the grow-rate and the algorithm is clearly visible.
2nd Idea (Let the Knowledge grow in a structured way)

- After the first two rounds some node-pairs share their information.
- Consider this situation as the start:
 - All v_x and w_x have one information pair.
 - v_i sends to w_j and the w_x have 2 information pairs.
 - w_i sends to v_j and the v_x have 3 information pairs.
 - v_i sends to w_j and the w_x have 5 information pairs.
 - w_i sends to v_j and the v_x have 8 information pairs.
 - v_i sends to w_j and the w_x have 13 information pairs.
 - w_i sends to v_j and the v_x have 21 information pairs.
 - Thus the grow-rate and the algorithm is clearly visible.
2nd Idea (Let the Knowledge grow in a structured way)

- After the first two rounds some node-pairs share their information.
- Consider this situation as the start:
 - All v_x and w_x have one information pair.
 - v_i sends to w_j and the w_x have 2 information pairs.
 - w_i sends to v_j and the v_x have 3 information pairs.
 - v_i sends to w_j and the w_x have 5 information pairs.
 - w_i sends to v_j and the v_x have 8 information pairs.
 - v_i sends to w_j and the w_x have 13 information pairs.
 - w_i sends to v_j and the v_x have 21 information pairs.
- Thus the grow-rate and the algorithm is clearly visible.
2nd Idea (Let the Knowledge grow in a structured way)

- After the first two rounds some node-pairs share their information.
- Consider this situation as the start:
 - All v_x and w_x have one information pair.
 - v_i sends to w_j and the w_x have 2 information pairs.
 - w_i sends to v_j and the v_x have 3 information pairs.
 - v_i sends to w_j and the w_x have 5 information pairs.
 - w_i sends to v_j and the v_x have 8 information pairs.
 - v_i sends to w_j and the w_x have 13 information pairs.
 - w_i sends to v_j and the v_x have 21 information pairs.
- Thus the grow-rate and the algorithm is clearly visible.
After the first two rounds some node-pairs share their information.

Consider this situation as the start:

- All v_x and w_x have one information pair.
- v_i sends to w_j and the w_x have 2 information pairs.
- w_i sends to v_j and the v_x have 3 information pairs.
- v_i sends to w_j and the w_x have 5 information pairs.
- w_i sends to v_j and the v_x have 8 information pairs.
- v_i sends to w_j and the w_x have 13 information pairs.
- w_i sends to v_j and the v_x have 21 information pairs.
- Thus the grow-rate and the algorithm is clearly visible.
2nd Idea (Let the Knowledge grow in a structured way)

- After the first two rounds some node-pairs share their information.

- Consider this situation as the start:
 - All v_x and w_x have one information pair.
 - v_i sends to w_j and the w_x have 2 information pairs.
 - w_i sends to v_j and the v_x have 3 information pairs.
 - v_i sends to w_j and the w_x have 5 information pairs.
 - w_i sends to v_j and the v_x have 8 information pairs.
 - v_i sends to w_j and the w_x have 13 information pairs.
 - w_i sends to v_j and the v_x have 21 information pairs.
 - Thus the grow-rate and the algorithm is clearly visible.
Let $n = 2m$.

Gossip-Algorithm:

1. $t := 0$;
2. for all $i \in \{0, \ldots, m-1\}$ do in parallel $R[i]$ sends to $Q[i]$;
3. for all $i \in \{0, \ldots, m-1\}$ do in parallel $Q[i]$ sends to $R[i]$;
4. while $fib(2t+1) < m$ do begin
 1. $t := t + 1$;
 2. for all $i \in \{0, \ldots, m-1\}$ do in parallel
 1. $R[(i + fib(2t-1)) \mod m]$ sends to $Q[i]$;
 2. if $fib(2t) < m$ then
 1. for all $i \in \{0, \ldots, m-1\}$ do in parallel
 1. $Q[(i + fib(2t)) \mod m]$ sends to $R[i]$
 end;
Let $n = 2m$.

Gossip-Algorithm:
- $t := 0$;
- for all $i \in \{0, \ldots, m-1\}$ do in parallel $R[i]$ sends to $Q[i]$;
- for all $i \in \{0, \ldots, m-1\}$ do in parallel $Q[i]$ sends to $R[i]$;
- while $fib(2t + 1) < m$ do begin
 - $t := t + 1$;
 - for all $i \in \{0, \ldots, m-1\}$ do in parallel
 - $R[(i + fib(2t - 1)) \mod m]$ sends to $Q[i]$;
 - if $fib(2t) < m$ then
 - for all $i \in \{0, \ldots, m-1\}$ do in parallel
 - $Q[(i + fib(2t)) \mod m]$ sends to $R[i]$
 end;
algorithm

- Let \(n = 2m \).
- Gossip-Algorithm:
 \(t := 0 \);
 \(\text{for all } i \in \{0, \ldots, m-1\} \text{ do in parallel } R[i] \text{ sends to } Q[i]; \)
 \(\text{for all } i \in \{0, \ldots, m-1\} \text{ do in parallel } Q[i] \text{ sends to } R[i]; \)
 \(\text{while } fib(2t+1) < m \text{ do begin} \)
 \(t := t + 1; \)
 \(\text{for all } i \in \{0, \ldots, m-1\} \text{ do in parallel} \)
 \(R[(i + fib(2t-1)) \mod m] \text{ sends to } Q[i]; \)
 \(\text{if } fib(2t) < m \text{ then} \)
 \(\text{for all } i \in \{0, \ldots, m-1\} \text{ do in parallel} \)
 \(Q[(i + fib(2t)) \mod m] \text{ sends to } R[i] \)
 \(\text{end;} \)

\[fib(0) = fib(1) = 1 \]
\[fib(i) = fib(i-1) + fib(i-2) \]
Let $n = 2m$.

Gossip-Algorithm:

$\begin{align*}
& t := 0; \\
& \text{for all } i \in \{0, \ldots, m - 1\} \text{ do in parallel } R[i] \text{ sends to } Q[i]; \\
& \text{for all } i \in \{0, \ldots, m - 1\} \text{ do in parallel } Q[i] \text{ sends to } R[i]; \\
& \text{while } \text{fib}(2t + 1) < m \text{ do begin} \\
& \quad t := t + 1; \\
& \quad \text{for all } i \in \{0, \ldots, m - 1\} \text{ do in parallel} \\
& \quad \quad R[(i + \text{fib}(2t - 1)) \mod m] \text{ sends to } Q[i]; \\
& \quad \text{if } \text{fib}(2t) < m \text{ then} \\
& \quad \quad \text{for all } i \in \{0, \ldots, m - 1\} \text{ do in parallel} \\
& \quad \quad \quad Q[(i + \text{fib}(2t)) \mod m] \text{ sends to } R[i] \\
& \text{end};
\end{align*}$

Algorithm

\begin{align*}
\text{fib}(0) &= \text{fib}(1) = 1 \\
\text{fib}(i) &= \text{fib}(i - 1) + \text{fib}(i - 2)
\end{align*}
Let $n = 2m$.

Gossip-Algorithm:
1. $t := 0$;
2. for all $i \in \{0, \ldots, m-1\}$ do in parallel $R[i]$ sends to $Q[i]$;
3. for all $i \in \{0, \ldots, m-1\}$ do in parallel $Q[i]$ sends to $R[i]$;
4. while $fib(2t + 1) < m$ do begin
 1. $t := t + 1$;
 2. for all $i \in \{0, \ldots, m-1\}$ do in parallel
 1. $R[(i + fib(2t - 1)) \mod m]$ sends to $Q[i]$;
 3. if $fib(2t) < m$ then
 1. for all $i \in \{0, \ldots, m-1\}$ do in parallel
 1. $Q[(i + fib(2t)) \mod m]$ sends to $R[i]$
 end;
One-Way-Gossip

Theorem:

Let $n = 2m$ and $k = \min\{x \mid \text{fib}(x) \geq m\}$. Then we have $r(K(n)) \leq k + 1$.

Proof:

- The algorithm stops, if $\text{fib}(2t + 1) \geq m$ or $\text{fib}(2t) \geq m$ holds.
- The number of rounds within the loop is $2t$ or $2(t - 1) + 1$.
- The total number of rounds is $(k - 1) + 2$.
- Correctness may be proven by the following invariant:
- Let $a[i]$ be the information, which share $R[i]$ and $Q[i]$ after two rounds.
- After t loops we have:
 - $Q[i]$ knows $\cup_{0 \leq j \leq \text{fib}(2t+1)-1} \alpha[(i+j) \mod m]$
 - $R[i]$ knows $\cup_{0 \leq j \leq \text{fib}(2t+2)-1} \alpha[(i+j) \mod m]$
- The correctness is a direct result of this.
One-Way-Gossip

Theorem:
Let \(n = 2m \) and \(k = \min \{ x \mid \text{fib}(x) \geq m \} \). Then we have \(r(K(n)) \leq k + 1 \).

Proof:
- The algorithm stops, if \(\text{fib}(2t + 1) \geq m \) or \(\text{fib}(2t) \geq m \) holds.
- The number of rounds within the loop is \(2t \) or \(2(t - 1) + 1 \).
- The total number of rounds is \((k - 1) + 2 \).
- Correctness may be proven by the following invariant:
- Let \(a[i] \) be the information, which share \(R[i] \) and \(Q[i] \) after two rounds.
- After \(t \) loops we have:
 - \(Q[i] \) knows \(\cup_{0 \leq j \leq \text{fib}(2t+1)-1} a[(i + j) \mod m] \)
 - \(R[i] \) knows \(\cup_{0 \leq j \leq \text{fib}(2t+2)-1} a[(i + j) \mod m] \)
- The correctness is a direct result of this.
Theorem:

Let $n = 2m$ and $k = \min\{x \mid \text{fib}(x) \geq m\}$. Then we have $r(K(n)) \leq k + 1$.

Proof:

- The algorithm stops, if $\text{fib}(2t + 1) \geq m$ or $\text{fib}(2t) \geq m$ holds.

- The number of rounds within the loop is $2t$ or $2(t - 1) + 1$.

- The total number of rounds is $(k - 1) + 2$.

- Correctness may be proven by the following invariant:

- Let $\alpha[i]$ be the information, which share $R[i]$ and $Q[i]$ after two rounds.

- After t loops we have:

 - $Q[i]$ knows $\cup_{0 \leq j \leq \text{fib}(2t+1)-1} \alpha[(i + j) \mod m]$

 - $R[i]$ knows $\cup_{0 \leq j \leq \text{fib}(2t+2)-1} \alpha[(i + j) \mod m]$

- The correctness is a direct result of this.
One-Way-Gossip

Theorem:
Let $n = 2m$ and $k = \min \{x \mid \text{fib}(x) \geq m\}$. Then we have $r(K(n)) \leq k + 1$.

Proof:
- The algorithm stops, if $\text{fib}(2t + 1) \geq m$ or $\text{fib}(2t) \geq m$ holds.
- The number of rounds within the loop is $2t$ or $2(t - 1) + 1$.
- The total number of rounds is $(k - 1) + 2$.
- Correctness may be proven by the following invariant:
 - Let $a[i]$ be the information, which share $R[i]$ and $Q[i]$ after two rounds.
 - After t loops we have:
 - $Q[i]$ knows $\bigcup_{0 \leq j \leq \text{fib}(2t+1)-1} \alpha[(i + j) \mod m]$
 - $R[i]$ knows $\bigcup_{0 \leq j \leq \text{fib}(2t+2)-1} \alpha[(i + j) \mod m]$
- The correctness is a direct result of this.
One-Way-Gossip

Theorem:
Let $n = 2m$ and $k = \min\{x \mid \text{fib}(x) \geq m\}$. Then we have $r(K(n)) \leq k + 1$.

Proof:

- The algorithm stops, if $\text{fib}(2t + 1) \geq m$ or $\text{fib}(2t) \geq m$ holds.
- The number of rounds within the loop is $2t$ or $2(t - 1) + 1$.
- The total number of rounds is $(k - 1) + 2$.
- Correctness may be proven by the following invariant:
 - Let $a[i]$ be the information, which share $R[i]$ and $Q[i]$ after two rounds.
 - After t loops we have:
 - $Q[i]$ knows $\bigcup_{0 \leq j \leq \text{fib}(2t+1)-1} \alpha[(i + j) \mod m]$.
 - $R[i]$ knows $\bigcup_{0 \leq j \leq \text{fib}(2t+2)-1} \alpha[(i + j) \mod m]$.
 - The correctness is a direct result of this.
One-Way-Gossip

\[\text{fib}(0) = \text{fib}(1) = 1 \]
\[\text{fib}(i) = \text{fib}(i - 1) + \text{fib}(i - 2) \]

Theorem:

Let \(n = 2m \) and \(k = \min\{x \mid \text{fib}(x) \geq m\} \). Then we have \(r(K(n)) \leq k + 1 \).

Proof:

- The algorithm stops, if \(\text{fib}(2t + 1) \geq m \) or \(\text{fib}(2t) \geq m \) holds.
- The number of rounds within the loop is \(2t \) or \(2(t - 1) + 1 \).
- The total number of rounds is \((k - 1) + 2 \).
- Correctness may be proven by the following invariant:

 Let \(a[i] \) be the information, which share \(R[i] \) and \(Q[i] \) after two rounds.

 After \(t \) loops we have:
 - \(Q[i] \) knows \(\bigcup_{0 \leq j \leq \text{fib}(2t+1)-1} \alpha[(i + j) \mod m] \)
 - \(R[i] \) knows \(\bigcup_{0 \leq j \leq \text{fib}(2t+2)-1} \alpha[(i + j) \mod m] \)

The correctness is a direct result of this.
One-Way-Gossip

Theorem:
Let $n = 2m$ and $k = \min\{x \mid \text{fib}(x) \geq m\}$. Then we have $r(K(n)) \leq k + 1$.

Proof:

- The algorithm stops, if $\text{fib}(2t + 1) \geq m$ or $\text{fib}(2t) \geq m$ holds.
- The number of rounds within the loop is $2t$ or $2(t - 1) + 1$.
- The total number of rounds is $(k - 1) + 2$.
- Correctness may be proven by the following invariant:
 - Let $a[i]$ be the information, which share $R[i]$ and $Q[i]$ after two rounds.
 - After t loops we have:
 - $Q[i]$ knows $\cup_{0 \leq j \leq \text{fib}(2t+1)-1} \alpha[(i + j) \mod m]$
 - $R[i]$ knows $\cup_{0 \leq j \leq \text{fib}(2t+2)-1} \alpha[(i + j) \mod m]$
 - The correctness is a direct result of this.
One-Way-Gossip

Theorem:
Let $n = 2m$ and $k = \min\{x \mid \text{fib}(x) \geq m\}$. Then we have $r(K(n)) \leq k + 1$.

Proof:
- The algorithm stops, if $\text{fib}(2t + 1) \geq m$ or $\text{fib}(2t) \geq m$ holds.
- The number of rounds within the loop is $2t$ or $2(t - 1) + 1$.
- The total number of rounds is $(k - 1) + 2$.
- Correctness may be proven by the following invariant:
- Let $a[i]$ be the information, which share $R[i]$ and $Q[i]$ after two rounds.
- After t loops we have:
 - $Q[i]$ knows $\bigcup_{0 \leq j \leq \text{fib}(2t+1)-1} \alpha[(i + j) \mod m]$
 - $R[i]$ knows $\bigcup_{0 \leq j \leq \text{fib}(2t+2)-1} \alpha[(i + j) \mod m]$
- The correctness is a direct result of this.
Theorem:

Let $n = 2m$ and $k = \min\{x \mid \text{fib}(x) \geq m\}$. Then we have $r(K(n)) \leq k + 1$.

Proof:

- The algorithm stops, if $\text{fib}(2t + 1) \geq m$ or $\text{fib}(2t) \geq m$ holds.
- The number of rounds within the loop is $2t$ or $2(t - 1) + 1$.
- The total number of rounds is $(k - 1) + 2$.
- Correctness may be proven by the following invariant:
 - Let $a[i]$ be the information, which share $R[i]$ and $Q[i]$ after two rounds.
 - After t loops we have:
 - $Q[i]$ knows $\cup_{0 \leq j \leq \text{fib}(2t+1)-1} \alpha[(i + j) \mod m]$
 - $R[i]$ knows $\cup_{0 \leq j \leq \text{fib}(2t+2)-1} \alpha[(i + j) \mod m]$
 - The correctness is a direct result of this.
One-Way-Gossip

Theorem:
Let \(n = 2m \) and \(k = \min\{x \mid \text{fib}(x) \geq m\} \). Then we have \(r(K(n)) \leq k + 1 \).

Proof:
- The algorithm stops, if \(\text{fib}(2t + 1) \geq m \) or \(\text{fib}(2t) \geq m \) holds.
- The number of rounds within the loop is \(2t \) or \(2(t - 1) + 1 \).
- The total number of rounds is \((k - 1) + 2 \).
- Correctness may be proven by the following invariant:
- Let \(a[i] \) be the information, which share \(R[i] \) and \(Q[i] \) after two rounds.
- After \(t \) loops we have:
 - \(Q[i] \) knows \(\bigcup_{0 \leq j \leq \text{fib}(2t+1)-1} \alpha[(i + j) \mod m] \)
 - \(R[i] \) knows \(\bigcup_{0 \leq j \leq \text{fib}(2t+2)-1} \alpha[(i + j) \mod m] \)
- The correctness is a direct result of this.
One-Way-Gossip

Theorem:
Let $n = 2m - 1$ and $k = \min\{x \mid \text{fib}(x) \geq m\}$. Then we have $r(K(n)) \leq k + 2$.

Proof: Using the same idea as for the two-way mode.

Theorem:
Let n even. Then we have: $r(K(n)) \geq 2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) \frac{n}{2} \rceil$.

Proof: See literature (Idea is given the following).

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
One-Way-Gossip

Theorem:
Let \(n = 2m - 1 \) and \(k = \min\{x \mid \text{fib}(x) \geq m\} \). Then we have \(r(K(n)) \leq k + 2 \).

Proof: Using the same idea as for the two-way mode.

Theorem:
Let \(n \) even. Then we have: \(r(K(n)) \geq 2 + \lceil \log_{\frac{1}{2}(1+\sqrt{5})} \frac{n}{2} \rceil \).

Proof: See literature (Idea is given the following).

<table>
<thead>
<tr>
<th>(n)</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
One-Way-Gossip

Theorem:
Let \(n = 2m - 1 \) and \(k = \min\{x \mid \text{fib}(x) \geq m\} \). Then we have \(r(K(n)) \leq k + 2 \).

Proof: Using the same idea as for the two-way mode.

Theorem:
Let \(n \) even. Then we have: \(r(K(n)) \geq 2 + \left\lceil \log \frac{1}{2} \left(\frac{1}{2} + \sqrt{5}\right) \frac{n}{2} \right\rceil \).

Proof: See literature (Idea is given the following).

<table>
<thead>
<tr>
<th>(n)</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Idea for the lower Bound

- **Situation:**
 - Algorithm with “fibonacci growth”.
 - No idea to enlarge this growth.

- **Construction of a lower bound:**
 - Start with an arbitrary algorithm.
 - Use only the restriction of the algorithm.
 - Abstract.

- We will now try to do the abstraction.

- Try the get the core-problem.

- The core-problem ist:
 - “Fibonacci growth” could not be improved.
Idea for the lower Bound

Situation:

- Algorithm with “fibonacci growth”.
- No idea to enlarge this growth.

Construction of a lower bound:

- Start with an arbitrary algorithm.
- Use only the restriction of the algorithm.
- Abstract.

We will now try to do the abstraction.

Try the get the core-problem.

The core-problem ist:

- “Fibonacci growth” could not be improved.
Idea for the lower Bound

- Situation:
 - Algorithm with “fibonacci growth”.
 - No idea to enlarge this growth.

- Construction of a lower bound:
 - Start with an arbitrary algorithm.
 - Use only the restriction of the algorithm.
 - Abstract.

- We will now try to do the abstraction.

- Try the get the core-problem.

- The core-problem ist:
 - “Fibonacci growth” could not be improved.
Idea for the lower Bound

- **Situation:**
 - Algorithm with “fibonacci growth”.
 - No idea to enlarge this growth.

- **Construction of a lower bound:**
 - Start with an arbitrary algorithm.
 - Use only the restriction of the algorithm.
 - Abstract.

We will now try to do the abstraction.

Try the get the core-problem.

The core-problem ist:
- “Fibonacci growth” could not be improved.
Idea for the lower Bound

- **Situation:**
 - Algorithm with “fibonacci growth”.
 - No idea to enlarge this growth.

- **Construction of a lower bound:**
 - **Start with an arbitrary algorithm.**
 - Use only the restriction of the algorithm.
 - Abstract.

- We will now try to do the abstraction.

- Try the get the core-problem.

- The core-problem ist:
 - “Fibonacci growth” could not be improved.
Idea for the lower Bound

- Situation:
 - Algorithm with “fibonacci growth”.
 - No idea to enlarge this growth.

- Construction of a lower bound:
 - Start with an arbitrary algorithm.
 - Use only the restriction of the algorithm.
 - Abstract.

- We will now try to do the abstraction.

- Try the get the core-problem.

- The core-problem ist:
 - “Fibonacci growth” could not be improved.
Idea for the lower Bound

Situation:
- Algorithm with “fibonacci growth”.
- No idea to enlarge this growth.

Construction of a lower bound:
- Start with an arbitrary algorithm.
- Use only the restriction of the algorithm.
- Abstract.

We will now try to do the abstraction.

Try the get the core-problem.

The core-problem ist:
- “Fibonacci growth” could not be improved.
Idea for the lower Bound

Situation:
- Algorithm with “fibonacci growth”.
- No idea to enlarge this growth.

Construction of a lower bound:
- Start with an arbitrary algorithm.
- Use only the restriction of the algorithm.
- Abstract.

We will now try to do the abstraction.

Try the get the core-problem.

The core-problem ist:
- “Fibonacci growth” could not be improved.
Idea for the lower Bound

- **Situation:**
 - Algorithm with “fibonacci growth”.
 - No idea to enlarge this growth.

- **Construction of a lower bound:**
 - Start with an arbitrary algorithm.
 - Use only the restriction of the algorithm.
 - Abstract.

- We will now try to do the abstraction.

- **Try the get the core-problem.**

- **The core-problem ist:**
 - “Fibonacci growth” could not be improved.
Idea for the lower Bound

- Situation:
 - Algorithm with “fibonacci growth”.
 - No idea to enlarge this growth.

- Construction of a lower bound:
 - Start with an arbitrary algorithm.
 - Use only the restriction of the algorithm.
 - Abstract.

- We will now try to do the abstraction.

- Try the get the core-problem.

- The core-problem ist:
 - “Fibonacci growth” could not be improved.
Idea for the lower Bound

Situation:
- Algorithm with “fibonacci growth”.
- No idea to enlarge this growth.

Construction of a lower bound:
- Start with an arbitrary algorithm.
- Use only the restriction of the algorithm.
- Abstract.

We will now try to do the abstraction.

Try the get the core-problem.

The core-problem ist:
- “Fibonacci growth” could not be improved.
1. Abstraction

Definition:

The **Network Counting Problem**:

- **Given a directed graph** \(G = (V, E) \).
- Each node stores a number.
- Initial just the number 1 is stored.
- The receiver add the number from the sender to his number after one communication.
- The objective is: all nodes should store a number larger then \(|V| \).
- With \(nc(G) \) we denote the minimal rounds to achieve this objective.

Lemma:

For any graph \(G \) we have: \(r(G) \geq nc(G) \).
1. Abstraction

Definition:

The **Network Counting Problem**:

- Given a directed graph \(G = (V, E) \).
- Each node stores a number.
- Initial just the number 1 is stored.
- The receiver add the number from the sender to his number after one communication.
- The objective is: all nodes should store a number larger then \(|V|\).
- With \(nc(G) \) we denote the minimal rounds to achieve this objective.

Lemma:

For any graph \(G \) we have: \(r(G) \geq nc(G) \).
1. Abstraction

Definition:

The **Network Counting Problem**:

- Given a directed graph $G = (V, E)$.
- Each node stores a number.
- **Initial just the number 1 is stored.**
- The receiver add the number from the sender to his number after one communication.
- The objective is: all nodes should store a number larger then $|V|$.
- With $nc(G)$ we denote the minimal rounds to achieve this objective.

Lemma:

For any graph G we have: $r(G) \geq nc(G)$.
1. Abstraction

Definition:

The **Network Counting Problem**:

- Given a directed graph $G = (V, E)$.
- Each node stores a number.
- Initial just the number 1 is stored.
- The receiver add the number from the sender to his number after one communication.
- The objective is: all nodes should store a number larger than $|V|$.
- With $nc(G)$ we denote the minimal rounds to achieve this objective.

Lemma:

For any graph G we have: $r(G) \geq nc(G)$.
1. Abstraction

Definition:

The **Network Counting Problem**:
- Given a directed graph $G = (V, E)$.
- Each node stores a number.
- Initial just the number 1 is stored.
- The receiver add the number from the sender to his number after one communication.
- **The objective is:** all nodes should store a number larger than $|V|$.
- With $nc(G)$ we denote the minimal rounds to achieve this objective.

Lemma:

For any graph G we have: $r(G) \geq nc(G)$.
1. Abstraction

Definition:

The **Network Counting Problem**:

- Given a directed graph $G = (V, E)$.
- Each node stores a number.
- Initial just the number 1 is stored.
- The receiver adds the number from the sender to his number after one communication.
- The objective is: all nodes should store a number larger than $|V|$.
- With $nc(G)$ we denote the minimal rounds to achieve this objective.

Lemma:

For any graph G we have: $r(G) \geq nc(G)$.
1. Abstraction

Definition:

The **Network Counting Problem**:

- Given a directed graph $G = (V, E)$.
- Each node stores a number.
- Initial just the number 1 is stored.
- The receiver add the number from the sender to his number after one communication.
- The objective is: all nodes should store a number larger then $|V|$.
- With $nc(G)$ we denote the minimal rounds to achieve this objective.

Lemma:

For any graph G we have: $r(G) \geq nc(G)$.
1. Abstraction

Definition:

The **Network Counting Problem**:

- Given a directed graph $G = (V, E)$.
- Each node stores a number.
- Initial just the number 1 is stored.
- The receiver add the number from the sender to his number after one communication.
- The objective is: all nodes should store a number larger than $|V|$.
- With $nc(G)$ we denote the minimal rounds to achieve this objective.

Lemma:

For any graph G we have: $r(G) \geq nc(G)$.
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \ldots , v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \ldots , 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.
- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$.
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \cdots, v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \cdots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.
- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \cdots, v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \cdots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.

- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \cdots , v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \cdots , 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.
- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$.
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \cdots, v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \cdots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.

- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \ldots, v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \cdots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.
- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$
2. Abstraction

Let $G = (V, E)$ be a directed Graph.

- Each node v_i stores after t rounds the number z_i^t.

- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \cdots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.

- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$.
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \ldots, v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \ldots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.
- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$.
Let $G = (\{v_1, v_2, v_3, \cdots, v_n\}, E)$ be a directed Graph.

Each node v_i stores after t rounds the number z_i^t.

One situation of the network counting problem could be described by a vector:
- Initial: $(1, 1, 1, \cdots, 1)^T$.
- After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.

One round of an algorithm for the network counting problem is given by a matrix B:
- A is a $n \times n$ matrix.
- $a_{ij} = 1$ node j sends to node i.
- A contains on the diagonal only ones.
- A has in each row at most two ones.
- A has in each column at most two ones.
- If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
- Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$.
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \ldots, v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \ldots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.
- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$.
2. Abstraction

Let $G = (\{v_1, v_2, v_3, \cdots, v_n\}, E)$ be a directed Graph.

- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:

 - Initial: $(1, 1, 1, \cdots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.

One round of an algorithm for the network counting problem is given by a matrix B:

- A is a $n \times n$ matrix.
- $a_{ij} = 1$ node j sends to node i.
- A contains on the diagonal only ones.
- A has in each row at most two ones.
- A has in each column at most two ones.
- If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
- Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \cdots, v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \cdots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.
- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$.
2. Abstraction

- Let $G = (\{v_1, v_2, v_3, \cdots, v_n\}, E)$ be a directed Graph.
- Each node v_i stores after t rounds the number z_i^t.
- One situation of the network counting problem could be described by a vector:
 - Initial: $(1, 1, 1, \cdots, 1)^T$.
 - After t rounds: $(z_1^t, z_2^t, z_3^t, z_n^t)^T$.
- One round of an algorithm for the network counting problem is given by a matrix B:
 - A is a $n \times n$ matrix.
 - $a_{ij} = 1$ node j sends to node i.
 - A contains on the diagonal only ones.
 - A has in each row at most two ones.
 - A has in each column at most two ones.
 - If $a_{ij} = a_{kl} = 1$ ($i \neq j \neq k \neq l$), then we have $l \neq i \neq k$ and $l \neq j \neq k$.
 - Thus we get: $A \cdot (z_1^t, z_2^t, z_3^t, z_n^t)^T = (z_1^{t+1}, z_2^{t+1}, z_3^{t+1}, z_n^{t+1})^T$.
We consider now matrices of the above form.

These are matrices A, for which there is a transformation T with:

\[
TAT^{-1} = \begin{pmatrix}
B & & & 0 \\
& B & & \\
& & \ddots & \\
0 & & & 1
\end{pmatrix}.
\]

and $B = \begin{pmatrix} 11 \\ 01 \end{pmatrix}$.

We will estimate the growth, which these matrices provide for the network counting problem.
2. Abstraction (Continuation)

- We consider now matrices of the above form.
- These are matrices A, for which there is a transformation T with:

$$ TAT^{-1} = \begin{pmatrix} B & 0 \\ B & 0 \\ 0 & 1 \\ \vdots & \vdots & \ddots & \ddots & 1 \end{pmatrix} $$

and $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- We will estimate the growth, which these matrices provide for the network counting problem.
2. Abstraction (Continuation)

- We consider now matrices of the above form.
- These are matrices A, for which there is a transformation T with:

$$TAT^{-1} = \begin{pmatrix} B & 0 \\ B & \ddots \\ \vdots & \ddots & B \\ 0 & \ldots & \ldots & 1 \\ \end{pmatrix}.$$

and $B = \begin{pmatrix} 11 \\ 01 \end{pmatrix}$.

- We will estimate the growth, which these matrices provide for the network counting problem.
Recollection (Norm, 3. Abstraction)

- Let \(\|\cdot\|\) be the vector norm over \(\mathbb{R}^n\). Then we have:
 - \(\|x\| = 0 \iff x = 0^n\),
 - \(\|\alpha \cdot x\| = |\alpha| \cdot \|x\|\),
 - \(\|x + y\| \leq \|x\| + \|y\|\)
 - this holds for all \(\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n\)

- The matrix norm for a vector norm \(\|\cdot\|\) is defined by \(\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}\). Then we have:
 - \(\|A\| = 0 \iff A = 0\)
 - \(\|A + B\| \leq \|A\| + \|B\|\)
 - \(\|\alpha A\| = \alpha \cdot \|A\|\)
 - \(\|A \cdot B\| \leq \|A\| \cdot \|B\|\)
 - \(\|A \cdot x\| \leq \|A\| \cdot \|x\|\)
 - this holds for all \(A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0\).

- Here we use: \(\|x\| = \sqrt{\sum_{i=1}^{n} |x_i|^2}\) for ein \(x = (x_1, .., x_n)\),

- Known: \(\|A\| = \text{Spectral Norm}(A) = \sqrt{|\lambda_{\text{max}}(A^T \cdot A)|}\) with: \(\lambda_{\text{max}}\) is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

- Let $||\cdot||$ be the vector norm over \mathbb{R}^n. Then we have:
 - $||x|| = 0 \iff x = 0^n,$
 - $||\alpha \cdot x|| = |\alpha| \cdot ||x||$,
 - $||x + y|| \leq ||x|| + ||y||$
 - this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

- The matrix norm for a vector norm $||\cdot||$ is defined by $||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$. Then we have:
 - $||A|| = 0 \iff A = 0$
 - $||A + B|| \leq ||A|| + ||B||$
 - $||\alpha A|| = |\alpha| \cdot ||A||$
 - $||A \cdot B|| \leq ||A|| \cdot ||B||$
 - $||A \cdot x|| \leq ||A|| \cdot ||x||$
 - this holds for all $A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

- Here we use: $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, \ldots, x_n)$,

- Known: $||A|| = \text{Spectral Norm}(A) = \sqrt{\lambda_{\text{max}}(A^T \cdot A)}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

- Let $||\cdot||$ be the vector norm over \mathbb{R}^n. Then we have:
 - $||x|| = 0 \Leftrightarrow x = 0^n$,
 - $||\alpha \cdot x|| = |\alpha| \cdot ||x||$,
 - $||x + y|| \leq ||x|| + ||y||$
 - this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

- The matrix norm for a vector norm $||\cdot||$ is defined by $||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$. Then we have:
 - $||A|| = 0 \Leftrightarrow A = 0$
 - $||A + B|| \leq ||A|| + ||B||$
 - $||\alpha A|| = |\alpha| \cdot ||A||$
 - $||A \cdot B|| \leq ||A|| \cdot ||B||$
 - $||A \cdot x|| \leq ||A|| \cdot ||x||$
 - this holds for all $A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

- Here we use: $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, .., x_n)$,

- Known: $||A|| = \text{Spectral Norm}(A) = \sqrt{\lambda_{\text{max}}(A^T \cdot A)}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

- Let $||.||$ be the vector norm over \mathbb{R}^n. Then we have:
 - $||x|| = 0 \Leftrightarrow x = 0^n$,
 - $||\alpha \cdot x|| = |\alpha| \cdot ||x||$,
 - $||x + y|| \leq ||x|| + ||y||$
 - this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

- The matrix norm for a vector norm $||.||$ is defined by $||A|| = sup_{x \neq 0} \frac{||Ax||}{||x||}$. Then we have:
 - $||A|| = 0 \Leftrightarrow A = 0$
 - $||A + B|| \leq ||A|| + ||B||$
 - $||\alpha A|| = |\alpha| \cdot ||A||$
 - $||A \cdot B|| \leq ||A|| \cdot ||B||$
 - $||A \cdot x|| \leq ||A|| \cdot ||x||$
 - this holds for all $A, B \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

- Here we use: $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, .., x_n)$,

- Known: $||A|| = \text{Spectral Norm}(A) = \sqrt{|\lambda_{\text{max}}(A^T \cdot A)|}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

Let \(\|..\| \) be the vector norm over \(\mathbb{R}^n \). Then we have:

- \(\|x\| = 0 \iff x = 0^n \)
- \(\|\alpha \cdot x\| = |\alpha| \cdot \|x\| \)
- \(\|x + y\| \leq \|x\| + \|y\| \)

- this holds for all \(\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n \)

The matrix norm for a vector norm \(\|..\| \) is defined by \(\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} \). Then we have:

- \(\|A\| = 0 \iff A = 0 \)
- \(\|A + B\| \leq \|A\| + \|B\| \)
- \(\|\alpha A\| = \alpha \cdot \|A\| \)
- \(\|A \cdot B\| \leq \|A\| \cdot \|B\| \)
- \(\|A \cdot x\| \leq \|A\| \cdot \|x\| \)

- this holds for all \(A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0 \).

Here we use: \(\|x\| = \sqrt{\sum_{i=1}^{n} |x_i|^2} \) for \(x = (x_1, .., x_n) \),

- Known: \(\|A\| = \text{Spectral Norm}(A) = \sqrt{\lambda_{\text{max}}(A^T \cdot A)} \) with: \(\lambda_{\text{max}} \) is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

- Let $\| \cdot \|$ be the vector norm over \mathbb{R}^n. Then we have:
 - $\|x\| = 0 \iff x = 0^n$,
 - $\|\alpha \cdot x\| = |\alpha| \cdot \|x\|$,
 - $\|x + y\| \leq \|x\| + \|y\|$,
 - this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

- The matrix norm for a vector norm $\| \cdot \|$ is defined by $\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$.
 Then we have:
 - $\|A\| = 0 \iff A = 0$
 - $\|A + B\| \leq \|A\| + \|B\|$
 - $\|\alpha A\| = \alpha \cdot \|A\|$
 - $\|A \cdot B\| \leq \|A\| \cdot \|B\|$
 - $\|A \cdot x\| \leq \|A\| \cdot \|x\|$
 - this holds for all $A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

- Here we use: $\|x\| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, \ldots, x_n)$,

- Known: $\|A\| = \text{Spectral Norm}(A) = \sqrt{|\lambda_{\text{max}}(A^T \cdot A)|}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

- Let $||..||$ be the vector norm over \mathbb{R}^n. Then we have:
 - $||x|| = 0 \Leftrightarrow x = 0^n$,
 - $||\alpha \cdot x|| = |\alpha| \cdot ||x||$,
 - $||x + y|| \leq ||x|| + ||y||$
 - this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

- The matrix norm for a vector norm $||..||$ is defined by $||A|| = sup_{x \neq 0} \frac{||Ax||}{||x||}$.
 Then we have:
 - $||A|| = 0 \Leftrightarrow A = 0$
 - $||A + B|| \leq ||A|| + ||B||$
 - $||\alpha A|| = \alpha \cdot ||A||$
 - $||A \cdot B|| \leq ||A|| \cdot ||B||$
 - $||A \cdot x|| \leq ||A|| \cdot ||x||$
 - this holds for all $A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

- Here we use: $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, .., x_n)$,

- Known: $||A|| = $ Spectral Norm(A) = $\sqrt{|\lambda_{max}(A^T \cdot A)|}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

- Let $\|..\|$ be the vector norm over \mathbb{R}^n. Then we have:
 - $\|x\| = 0 \iff x = 0^n$,
 - $\|\alpha \cdot x\| = |\alpha| \cdot \|x\|$,
 - $\|x + y\| \leq \|x\| + \|y\|$,
 - this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

- The matrix norm for a vector norm $\|..\|$ is defined by $\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$. Then we have:
 - $\|A\| = 0 \iff A = 0$
 - $\|A + B\| \leq \|A\| + \|B\|$
 - $\|\alpha A\| = |\alpha| \cdot \|A\|$
 - $\|A \cdot B\| \leq \|A\| \cdot \|B\|$
 - $\|A \cdot x\| \leq \|A\| \cdot \|x\|$
 - this holds for all $A, B \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

 Here we use: $\|x\| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, .., x_n)$,

- Known: $\|A\| = \text{Spectral Norm}(A) = \sqrt{\lambda_{max}(A^T \cdot A)}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

- Let $||\cdot||$ be the vector norm over \mathbb{R}^n. Then we have:
 - $||x|| = 0 \iff x = 0^n$,
 - $||\alpha \cdot x|| = |\alpha| \cdot ||x||$,
 - $||x + y|| \leq ||x|| + ||y||$
 - this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

- The matrix norm for a vector norm $||\cdot||$ is defined by $||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$.
 Then we have:
 - $||A|| = 0 \iff A = 0$
 - $||A + B|| \leq ||A|| + ||B||$
 - $||\alpha A|| = \alpha \cdot ||A||$
 - $||A \cdot B|| \leq ||A|| \cdot ||B||$
 - $||A \cdot x|| \leq ||A|| \cdot ||x||$
 - this holds for all $A, B \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

- Here we use: $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, \ldots, x_n)$,

- Known: $||A|| = \text{Spectral Norm}(A) = \sqrt{|\lambda_{max}(A^T \cdot A)|}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

- Let $||.||$ be the vector norm over \mathbb{R}^n. Then we have:
 - $||x|| = 0 \iff x = 0^n$,
 - $||\alpha \cdot x|| = |\alpha| \cdot ||x||$,
 - $||x + y|| \leq ||x|| + ||y||$
 - this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

- The matrix norm for a vector norm $||.||$ is defined by $||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$. Then we have:
 - $||A|| = 0 \iff A = 0$
 - $||A + B|| \leq ||A|| + ||B||$
 - $||\alpha A|| = \alpha \cdot ||A||$
 - $||A \cdot B|| \leq ||A|| \cdot ||B||$
 - $||A \cdot x|| \leq ||A|| \cdot ||x||$
 - this holds for all $A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

- Here we use: $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, .., x_n)$,

- Known: $||A|| = \text{Spectral Norm}(A) = \sqrt{|\lambda_{max}(A^T \cdot A)|}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

Let $||.||$ be the vector norm over \mathbb{R}^n. Then we have:
- $||x|| = 0 \iff x = 0^n$,
- $||\alpha \cdot x|| = |\alpha| \cdot ||x||$,
- $||x + y|| \leq ||x|| + ||y||$
- this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

The matrix norm for a vector norm $||.||$ is defined by $||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$.
Then we have:
- $||A|| = 0 \iff A = 0$
- $||A + B|| \leq ||A|| + ||B||$
- $||\alpha A|| = |\alpha| \cdot ||A||$
- $||A \cdot B|| \leq ||A|| \cdot ||B||$
- $||A \cdot x|| \leq ||A|| \cdot ||x||$
- this holds for all $A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

Here we use: $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, \ldots, x_n)$,

Known: $||A|| = \text{Spectral Norm}(A) = \sqrt{\lambda_{\text{max}}(A^T \cdot A)}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

Let $||.||$ be the vector norm over \mathbb{R}^n. Then we have:

- $||x|| = 0 \iff x = 0^n$,
- $||\alpha \cdot x|| = |\alpha| \cdot ||x||$,
- $||x + y|| \leq ||x|| + ||y||$
- this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

The matrix norm for a vector norm $||.||$ is defined by $||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$. Then we have:

- $||A|| = 0 \iff A = 0$
- $||A + B|| \leq ||A|| + ||B||$
- $||\alpha A|| = \alpha \cdot ||A||$
- $||A \cdot B|| \leq ||A|| \cdot ||B||$
- $||A \cdot x|| \leq ||A|| \cdot ||x||$
- this holds for all $A, B \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

Here we use: $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for each $x = (x_1, \ldots, x_n)$,

Known: $||A|| = $ Spectral Norm$(A) = \sqrt{\lambda_{max}(A^T \cdot A)}$ with: λ_{max} is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

- Let \(\|\cdot\| \) be the vector norm over \(\mathbb{R}^n \). Then we have:
 - \(\|x\| = 0 \iff x = 0^n \)
 - \(\|\alpha \cdot x\| = |\alpha| \cdot \|x\| \)
 - \(\|x + y\| \leq \|x\| + \|y\| \)
 - this holds for all \(\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n \)

- The matrix norm for a vector norm \(\|\cdot\| \) is defined by \(\|A\| = \text{sup}_{x \neq 0} \frac{\|Ax\|}{\|x\|} \).
 Then we have:
 - \(\|A\| = 0 \iff A = 0 \)
 - \(\|A + B\| \leq \|A\| + \|B\| \)
 - \(\|\alpha A\| = \alpha \cdot \|A\| \)
 - \(\|A \cdot B\| \leq \|A\| \cdot \|B\| \)
 - \(\|A \cdot x\| \leq \|A\| \cdot \|x\| \)
 - this holds for all \(A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0 \).

- Here we use: \(\|x\| = \sqrt{\sum_{i=1}^{n} |x_i|^2} \) for \(\text{ein } x = (x_1, \ldots, x_n) \),

- Known: \(\|A\| = \text{Spectral Norm}(A) = \sqrt{\lambda_{\text{max}}(A^T \cdot A)} \) with: \(\lambda_{\text{max}} \) is the largest Eigenvalue.
Recollection (Norm, 3. Abstraction)

Let $\|\cdot\|$ be the vector norm over \mathbb{R}^n. Then we have:

- $\|x\| = 0 \iff x = 0^n$,
- $\|\alpha \cdot x\| = |\alpha| \cdot \|x\|$,
- $\|x + y\| \leq \|x\| + \|y\|$
- this holds for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n$

The matrix norm for a vector norm $\|\cdot\|$ is defined by $\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$.

Then we have:

- $\|A\| = 0 \iff A = 0$
- $\|A + B\| \leq \|A\| + \|B\|$
- $\|\alpha A\| = \alpha \cdot \|A\|$
- $\|A \cdot B\| \leq \|A\| \cdot \|B\|$
- $\|A \cdot x\| \leq \|A\| \cdot \|x\|$
- this holds for all $A, B \in \mathbb{R}^{n^2}, x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \alpha \geq 0$.

Here we use: $\|x\| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for ein $x = (x_1, .., x_n)$,

Known: $\|A\| = $ Spectral Norm$(A) = \sqrt{|\lambda_{\text{max}}(A^T \cdot A)|}$ with: λ_{max} is the largest Eigenvalue.
2. Abstraction (Continuation)

- We compute the spectral norm:

 \[\|A\| = \|TAT^{-1}\| = \|B\| \]

 \[B^T \cdot B = \begin{pmatrix} 10 \\ 11 \end{pmatrix} \begin{pmatrix} 11 \\ 01 \end{pmatrix} = \begin{pmatrix} 11 \\ 12 \end{pmatrix} \]

 \[\Rightarrow (2 - \lambda)(1 - \lambda) - 1 = 0 \]

 \[\Rightarrow \lambda^2 - 3\lambda + 1 = 0 \]

 \[\Rightarrow \lambda_{\text{max}}(B^T B) = \frac{3}{2} + \sqrt{\frac{5}{4}} \]

 \[\|A\| = \sqrt{\lambda_{\text{max}}(A^T A)} = \frac{1}{2} (1 + \sqrt{5}) \]
2. Abstraction (Continuation)

- We compute the spectral norm:
 \[||A|| = ||TAT^{-1}|| = ||B||. \]

- \[B^T \cdot B = \begin{pmatrix} 10 \\ 11 \end{pmatrix} \begin{pmatrix} 11 \\ 01 \end{pmatrix} = \begin{pmatrix} 11 \\ 12 \end{pmatrix}. \]

- \[(2 - \lambda)(1 - \lambda) - 1 = 0 \]

- \[\lambda^2 - 3\lambda + 1 = 0 \]

- \[\lambda_{\text{max}}(B^T B) = \frac{3}{2} + \sqrt{\frac{5}{4}} \]

- \[||A|| = \sqrt{\lambda_{\text{max}}(A^T A)} = \frac{1}{2}(1 + \sqrt{5}) \]
2. Abstraction (Continuation)

- We compute the spectral norm:
- $||A|| = ||TAT^{-1}|| = ||B||$.
- $B^T \cdot B = \begin{pmatrix} 10 \\ 11 \end{pmatrix} \begin{pmatrix} 11 \\ 01 \end{pmatrix} = \begin{pmatrix} 11 \\ 12 \end{pmatrix}$.
- $\Rightarrow (2 - \lambda)(1 - \lambda) - 1 = 0$
- $\Rightarrow \lambda^2 - 3\lambda + 1 = 0$
- $\Rightarrow \lambda_{\text{max}}(B^T B) = \frac{3}{2} + \sqrt{\frac{5}{4}}$
- $\Rightarrow ||A|| = \sqrt{\lambda_{\text{max}}(A^T A)} = \frac{1}{2}(1 + \sqrt{5})$
2. Abstraction (Continuation)

- We compute the spectral norm:
- \(\|A\| = \|TAT^{-1}\| = \|B\| \).
- \(B^T \cdot B = \begin{pmatrix} 10 \\ 11 \end{pmatrix} \begin{pmatrix} 11 \\ 01 \end{pmatrix} = \begin{pmatrix} 11 \\ 12 \end{pmatrix} \).
- \((2 - \lambda)(1 - \lambda) - 1 = 0 \)
- \(\lambda^2 - 3\lambda + 1 = 0 \)
- \(\Rightarrow \lambda_{\text{max}}(B^T B) = \frac{3}{2} + \sqrt{\frac{5}{4}} \)
- \(\|A\| = \sqrt{\lambda_{\text{max}}(A^T A)} = \frac{1}{2} (1 + \sqrt{5}) \)
2. Abstraction (Continuation)

- We compute the spectral norm:
 \[\|A\| = \|TAT^{-1}\| = \|B\|. \]
 \[B^T \cdot B = \begin{pmatrix} 10 \\ 11 \end{pmatrix} \begin{pmatrix} 11 \\ 01 \end{pmatrix} = \begin{pmatrix} 11 \\ 12 \end{pmatrix}. \]
 \[\Rightarrow (2 - \lambda)(1 - \lambda) - 1 = 0 \]
 \[\Rightarrow \lambda^2 - 3\lambda + 1 = 0 \]
 \[\Rightarrow \lambda_{\text{max}}(B^T B) = \frac{3}{2} + \sqrt{\frac{5}{4}} \]
 \[\|A\| = \sqrt{\lambda_{\text{max}}(A^T A)} = \frac{1}{2}(1 + \sqrt{5}) \]
2. Abstraction (Continuation)

- We compute the spectral norm:
 \[||A|| = ||TAT^{-1}|| = ||B||.\]
- \[B^T \cdot B = \begin{pmatrix} 10 \\ 11 \end{pmatrix} \begin{pmatrix} 11 \\ 01 \end{pmatrix} = \begin{pmatrix} 11 \\ 12 \end{pmatrix}.\]
- \[\Rightarrow (2 - \lambda)(1 - \lambda) - 1 = 0 \]
- \[\Rightarrow \lambda^2 - 3\lambda + 1 = 0 \]
- \[\Rightarrow \lambda_{\text{max}}(B^T B) = \frac{3}{2} + \sqrt{\frac{5}{4}} \]
- \[||A|| = \sqrt{\lambda_{\text{max}}(ATA)} = \frac{1}{2} (1 + \sqrt{5}) \]
2. Abstraction (Continuation)

- We compute the spectral norm:
 - \(\|A\| = \|TAT^{-1}\| = \|B\| \).
 - \(B^T \cdot B = \begin{pmatrix} 10 & 11 \\ 11 & 01 \end{pmatrix} = \begin{pmatrix} 11 \\ 12 \end{pmatrix} \).
 - \((2 - \lambda)(1 - \lambda) - 1 = 0 \)
 - \(\lambda^2 - 3\lambda + 1 = 0 \)
 - \(\lambda_{max}(B^T B) = \frac{3}{2} + \sqrt{\frac{5}{4}} \)
 - \(\|A\| = \sqrt{\lambda_{max}(A^T A)} = \frac{1}{2} (1 + \sqrt{5}) \)
Theorem:

A algorithm, solving the network counting problem needs \(2 + \lceil \log_{\frac{1}{2}}(1+\sqrt{5}) \frac{n}{2} \rceil\) rounds.

Proof:

- Let \(A_j, 1 \leq j \leq r\) be matrices, which solve the problem in \(r\) rounds.
- \(\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdots A_2 A_1 (1, 1, \cdots, 1)\).
- \(\|\alpha\| \leq (\prod_{i=1}^{r-2} \|A_i\|) \cdot \|(1, \ldots, 1)\| \leq (\frac{1}{2} (1 + \sqrt{5}))^{r-2} \cdot \sqrt{n}\)
- Let \(\inf(i, t)\) be the number, which have the nodes \(v_i\) after \(t\) rounds.
- After round \(t\) we have: \(\inf(i, t) \geq n\) for all \(i \in \{1, 2, \cdots, n\}\).
- After round \(t - 1\) we have: \(\inf(i, t - 1) \geq n\) for at least \(n/2\) nodes.
- There could be some \(i\) with: \(\inf(i, t - 2) \geq n\).
- But if \(\alpha_i < n\) and \(\inf(i, t - 1) \geq n\), then there exists \(j\) with: \(\alpha_i + \alpha_j \geq n\).
Theorem:

A algorithm, solving the network counting problem needs $2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) \frac{n}{2} \rceil$ rounds.

Proof:

- Let $A_j, 1 \leq j \leq r$ be matrices, which solve the problem in r rounds.
- $\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdot \ldots \cdot A_2 \cdot A_1 \cdot (1, 1, \cdots, 1)$.
- $||\alpha|| \leq (\prod_{i=1}^{r-2} ||A_i||) \cdot ||(1, \ldots, 1)|| \leq (\frac{1}{2}(1 + \sqrt{5}))^{r-2} \cdot \sqrt{n}$
- Let $\inf(i, t)$ be the number, which have the nodes v_i after t rounds.
- After round t we have: $\inf(i, t) \geq n$ for all $i \in \{1, 2, \cdots, n\}$.
- After round $t - 1$ we have: $\inf(i, t - 1) \geq n$ for at least $n/2$ nodes.
- There could be some i with: $\inf(i, t - 2) \geq n$.
- But if $\alpha_i < n$ and $\inf(i, t - 1) \geq n$, then there exists j with: $\alpha_i + \alpha_j \geq n$.
Theorem:

A algorithm, solving the network counting problem needs $2 + \left\lceil \log_{\frac{1}{2}} \left(1 + \sqrt{5} \right) \frac{n}{2} \right\rceil$ rounds.

Proof:

- Let $A_j, 1 \leq j \leq r$ be matrices, which solve the problem in r rounds.
- $\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdots A_2 \cdot A_1 \cdot (1, 1, \cdots, 1)$.
- $||\alpha|| \leq \left(\prod_{i=1}^{r-2} ||A_i|| \right) \cdot ||(1, \ldots, 1)|| \leq \left(\frac{1}{2} (1 + \sqrt{5}) \right)^{r-2} \cdot \sqrt{n}$
- Let $inf(i, t)$ be the number, which have the nodes v_i after t rounds.
- After round t we have: $inf(i, t) \geq n$ for all $i \in \{1, 2, \cdots, n\}$.
- After round $t - 1$ we have: $inf(i, t - 1) \geq n$ for at least $n/2$ nodes.
- There could be some i with: $inf(i, t - 2) \geq n$.
- But if $\alpha_i < n$ and $inf(i, t - 1) \geq n$, then there exists j with: $\alpha_i + \alpha_j \geq n$.
Theorem:

A algorithm, solving the network counting problem needs \(2 + \lceil \log \frac{1}{2} (1 + \sqrt{5}) \frac{n}{2} \rceil\) rounds.

Proof:

- Let \(A_j, 1 \leq j \leq r\) be matrices, which solve the problem in \(r\) rounds.
- \(\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdots A_2 A_1 \cdot (1, 1, \cdots, 1)\).
- \(|\alpha| \leq \left(\prod_{i=1}^{r-2} ||A_i|| \right) \cdot ||(1, \ldots, 1)|| \leq \left(\frac{1}{2} (1 + \sqrt{5}) \right)^{r-2} \cdot \sqrt{n}\)
- Let \(\inf(i, t)\) be the number, which have the nodes \(v_i\) after \(t\) rounds.
- After round \(t\) we have: \(\inf(i, t) \geq n\) for all \(i \in \{1, 2, \cdots, n\}\).
- After round \(t - 1\) we have: \(\inf(i, t - 1) \geq n\) for at least \(n/2\) nodes.
- There could be some \(i\) with: \(\inf(i, t - 2) \geq n\).
- But if \(\alpha_i < n\) and \(\inf(i, t - 1) \geq n\), then there exists \(j\) with: \(\alpha_i + \alpha_j \geq n\).
Theorem:

A algorithm, solving the network counting problem needs $2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) \frac{n}{2} \rceil$ rounds.

Proof:

- Let $A_j, 1 \leq j \leq r$ be matrices, which solve the problem in r rounds.
- $\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdots A_2 \cdot A_1 \cdot (1,1,\cdots,1)$.
- $||\alpha|| \leq (\prod_{i=1}^{r-2} ||A_i||) \cdot ||(1,\ldots,1)|| \leq (\frac{1}{2}(1 + \sqrt{5}))^{r-2} \cdot \sqrt{n}$
- Let $inf(i, t)$ be the number, which have the nodes v_i after t rounds.
- After round t we have: $inf(i, t) \geq n$ for all $i \in \{1, 2, \cdots, n\}$.
- After round $t - 1$ we have: $inf(i, t - 1) \geq n$ for at least $n/2$ nodes.
- There could be some i with: $inf(i, t - 2) \geq n$.
- But if $\alpha_i < n$ and $inf(i, t - 1) \geq n$, then there exists j with: $\alpha_i + \alpha_j \geq n$.
Theorem:
A algorithm, solving the network counting problem needs \(2 + \lceil \log_{\frac{1}{2}}(1+\sqrt{5}) \frac{n}{2} \rceil\) rounds.

Proof:
- Let \(A_j, 1 \leq j \leq r\) be matrices, which solve the problem in \(r\) rounds.
- \(\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdot \cdots \cdot A_2 \cdot A_1 \cdot (1, 1, \cdots, 1)\).
- \(|\alpha| \leq (\prod_{i=1}^{r-2} ||A_i||) \cdot ||(1, \ldots, 1)|| \leq (\frac{1}{2}(1 + \sqrt{5}))^{r-2} \cdot \sqrt{n}\)
- Let \(\text{inf}(i, t)\) be the number, which have the nodes \(v_i\) after \(t\) rounds.
- After round \(t\) we have: \(\text{inf}(i, t) \geq n\) for all \(i \in \{1, 2, \cdots, n\}\).
- After round \(t - 1\) we have: \(\text{inf}(i, t - 1) \geq n\) for at least \(n/2\) nodes.
- There could be some \(i\) with: \(\text{inf}(i, t - 2) \geq n\).
- But if \(\alpha_i < n\) and \(\text{inf}(i, t - 1) \geq n\), then there exists \(j\) with: \(\alpha_i + \alpha_j \geq n\).
Theorem:

A algorithm, solving the network counting problem needs \(2 + \lceil \log \frac{1}{2} (1 + \sqrt{5}) \frac{n}{2} \rceil\) rounds.

Proof:

- Let \(A_j, 1 \leq j \leq r\) be matrices, which solve the problem in \(r\) rounds.
- \(\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdot \cdots \cdot A_2 \cdot A_1 \cdot (1, 1, \cdots, 1)\).
- \(\|\alpha\| \leq \left(\prod_{i=1}^{r-2} \|A_i\| \right) \cdot \|(1, \ldots, 1)\| \leq \left(\frac{1}{2} (1 + \sqrt{5}) \right)^{r-2} \cdot \sqrt{n}\)
- Let \(\inf(i, t)\) be the number, which have the nodes \(v_i\) after \(t\) rounds.
- After round \(t\) we have: \(\inf(i, t) \geq n\) for all \(i \in \{1, 2, \cdots, n\}\).
- After round \(t - 1\) we have: \(\inf(i, t - 1) \geq n\) for at least \(n/2\) nodes.
- There could be some \(i\) with: \(\inf(i, t - 2) \geq n\).
- But if \(\alpha_i < n\) and \(\inf(i, t - 1) \geq n\), then there exists \(j\) with: \(\alpha_i + \alpha_j \geq n\).
Theorem:

A algorithm, solving the network counting problem needs \(2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) \frac{n}{2} \rceil\) rounds.

Proof:

- Let \(A_j, 1 \leq j \leq r\) be matrices, which solve the problem in \(r\) rounds.
- \(\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdots A_2 \cdot A_1 \cdot (1, 1, \cdots, 1)\).
- \(\|\alpha\| \leq \left(\prod_{i=1}^{r-2} \|A_i\| \right) \cdot \|(1, \ldots, 1)\| \leq (\frac{1}{2} (1 + \sqrt{5}))^{r-2} \cdot \sqrt{n}\)
- Let \(\text{inf}(i, t)\) be the number, which have the nodes \(v_i\) after \(t\) rounds.
- After round \(t\) we have: \(\text{inf}(i, t) \geq n\) for all \(i \in \{1, 2, \cdots, n\}\).
- After round \(t - 1\) we have: \(\text{inf}(i, t - 1) \geq n\) for at least \(n/2\) nodes.
- There could be some \(i\) with: \(\text{inf}(i, t - 2) \geq n\).
- But if \(\alpha_i < n\) and \(\text{inf}(i, t - 1) \geq n\), then there exists \(j\) with: \(\alpha_i + \alpha_j \geq n\).
Theorem:

A algorithm, solving the network counting problem needs \(2 + \left\lceil \log \frac{1}{2} \left(1 + \sqrt{5} \right) \frac{n}{2} \right\rceil\) rounds.

Proof:

- Let \(A_j, 1 \leq j \leq r\) be matrices, which solve the problem in \(r\) rounds.
- \(\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdot \cdots \cdot A_2 \cdot A_1 \cdot (1, 1, \cdots, 1)\).
- \(\|\alpha\| \leq \left(\prod_{i=1}^{r-2} \|A_i\| \right) \cdot \|(1, \ldots, 1)\| \leq \left(\frac{1}{2} (1 + \sqrt{5}) \right)^{r-2} \cdot \sqrt{n}\)
- Let \(\inf(i, t)\) be the number, which have the nodes \(v_i\) after \(t\) rounds.
- After round \(t\) we have: \(\inf(i, t) \geq n\) for all \(i \in \{1, 2, \cdots, n\}\).
- After round \(t - 1\) we have: \(\inf(i, t - 1) \geq n\) for at least \(n/2\) nodes.
- There could be some \(i\) with: \(\inf(i, t - 2) \geq n\).
- But if \(\alpha_i < n\) and \(\inf(i, t - 1) \geq n\), then there exists \(j\) with: \(\alpha_i + \alpha_j \geq n\).
Continuation

\[\alpha := (\alpha_1, \alpha_2, \ldots, \alpha_n)^T = A_{r-2} \cdots A_2 \cdot A_1 \cdot (1, 1, \ldots, 1) \]

- Let
 - \(c_1\) be the number of cases with: \(\alpha_i \geq n\),
 - \(c_2\) be the number of cases with: \(\alpha_i < n\) and \(\alpha_j \geq n\),
 - \(c_3\) be the number of cases with: \(\alpha_i < n\), \(\alpha_j < n\) and \(\alpha_i + \alpha_j \geq n\).

- Then we have: \(c_1 \geq c_2\) and \(c_1 + c_2 + c_3 \geq n/2\).

- Thus we also get: \(2c_1 + c_3 \geq \frac{n}{2}\)

- \[\|\alpha\| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2} (2c_1 + c_3)} \geq \frac{n}{2} \sqrt{n} .\]

- We already have:
 \[\|\alpha\| \leq (\prod_{i=1}^{r-2} \|A_i\|) \cdot \|(1, \ldots, 1)\| \leq (\frac{1}{2} (1 + \sqrt{5}))^{r-2} \cdot \sqrt{n}.\]

- And we get:
 \[\frac{n}{2} \cdot \sqrt{n} \leq \|\alpha\| \leq \Phi^{r-2} \cdot \sqrt{n},\]

- From which we conclude:
 \[r \geq 2 + \left\lceil \log_{\frac{1}{2} (1 + \sqrt{5})} \frac{n}{2} \right\rceil \]
Let:

- c_1 be the number of cases with: $\alpha_i \geq n$,
- c_2 be the number of cases with: $\alpha_i < n$ and $\alpha_j \geq n$,
- c_3 be the number of cases with: $\alpha_i < n$, $\alpha_j < n$ and $\alpha_i + \alpha_j \geq n$.

Then we have: $c_1 \geq c_2$ and $c_1 + c_2 + c_3 \geq n/2$.

Thus we also get: $2c_1 + c_3 \geq \frac{n}{2}$

$$||\alpha|| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2} (2c_1 + c_3)} \geq \frac{n}{2} \sqrt{n}.$$

We already have:

$$||\alpha|| \leq (\prod_{i=1}^{r-2} ||A_i||) \cdot ||(1, ..., 1)|| \leq (\frac{1}{2} (1 + \sqrt{5}))^{r-2} \cdot \sqrt{n}.$$

And we get:

$$\frac{n}{2} \cdot \sqrt{n} \leq ||\alpha|| \leq \Phi^{r-2} \cdot \sqrt{n},$$

From which we conclude:

$$r \geq 2 + \left\lceil \log_{\frac{1}{2} (1 + \sqrt{5})} \frac{n}{2} \right\rceil$$
Continuation

\(\alpha := (\alpha_1, \alpha_2, \ldots, \alpha_n)^T = A_{r-2} \cdot \ldots \cdot A_2 \cdot A_1 \cdot (1, 1, \ldots, 1) \)

- Let
 - \(c_1 \) be the number of cases with: \(\alpha_i \geq n \),
 - \(c_2 \) be the number of cases with: \(\alpha_i < n \) and \(\alpha_j \geq n \),
 - \(c_3 \) be the number of cases with: \(\alpha_i < n, \alpha_j < n \) and \(\alpha_i + \alpha_j \geq n \).

- Then we have: \(c_1 \geq c_2 \) and \(c_1 + c_2 + c_3 \geq n/2 \).
- Thus we also get: \(2c_1 + c_3 \geq \frac{n}{2} \)
- \(\|\alpha\| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2} (2c_1 + c_3)} \geq \frac{n}{2} \sqrt{n}. \)
- We already have:
 \[\|\alpha\| \leq (\prod_{i=1}^{r-2} \|A_i\|) \cdot \|(1, \ldots, 1)\| \leq \left(\frac{1}{2} (1 + \sqrt{5})\right)^{r-2} \cdot \sqrt{n}. \]
- And we get:
 \[\frac{n}{2} \cdot \sqrt{n} \leq \|\alpha\| \leq \Phi^{r-2} \cdot \sqrt{n}, \]
- From which we conclude:
 \[r \geq 2 + \left\lceil \log \left(\frac{1}{2} (1 + \sqrt{5}) \cdot \frac{n}{2} \right) \right\rceil \]
Continuation

\(\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdots A_2 \cdot A_1 \cdot (1, 1, \cdots, 1) \)

- Let
 - \(c_1 \) be the number of cases with: \(\alpha_i \geq n \),
 - \(c_2 \) be the number of cases with: \(\alpha_i < n \) and \(\alpha_j \geq n \),
 - \(c_3 \) be the number of cases with: \(\alpha_i < n, \alpha_j < n \) and \(\alpha_i + \alpha_j \geq n \).

- Then we have: \(c_1 \geq c_2 \) and \(c_1 + c_2 + c_3 \geq \frac{n}{2} \).
- Thus we also get: \(2c_1 + c_3 \geq \frac{n}{2} \).
- \(\|\alpha\| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2} (2c_1 + c_3)} \geq \frac{n}{2} \sqrt{n} \).
- We already have:
 \[\|\alpha\| \leq \left(\prod_{i=1}^{r-2} \|A_i\| \right) \cdot \|(1, \ldots, 1)\| \leq \left(\frac{1}{2} (1 + \sqrt{5}) \right)^{r-2} \cdot \sqrt{n}. \]
- And we get:
 \[\frac{n}{2} \cdot \sqrt{n} \leq \|\alpha\| \leq \Phi^{r-2} \cdot \sqrt{n}, \]
- From which we conclude:
 \[r \geq 2 + \left\lceil \log_2 \frac{1}{2} (1 + \sqrt{5}) \frac{n}{2} \right\rceil \]
Continuation

$$\alpha := (\alpha_1, \alpha_2, \ldots, \alpha_n)^T = A_{r-2} \cdot \ldots \cdot A_2 \cdot A_1 \cdot (1, 1, \ldots, 1)$$

Let

- c_1 be the number of cases with: $\alpha_i \geq n$,
- c_2 be the number of cases with: $\alpha_i < n$ and $\alpha_j \geq n$,
- c_3 be the number of cases with: $\alpha_i < n$, $\alpha_j < n$ and $\alpha_i + \alpha_j \geq n$.

Then we have: $c_1 \geq c_2$ and $c_1 + c_2 + c_3 \geq n/2$.

Thus we also get: $2c_1 + c_3 \geq \frac{n}{2}$

$$\|\alpha\| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2} \left(2c_1 + c_3\right)} \geq \frac{n}{2} \sqrt{n}.$$

We already have:

$$\|\alpha\| \leq \left(\prod_{i=1}^{r-2} \|A_i\| \right) \cdot \|(1, \ldots, 1)\| \leq \left(\frac{1}{2} (1 + \sqrt{5}) \right)^{r-2} \cdot \sqrt{n}.$$

And we get:

$$\frac{n}{2} \cdot \sqrt{n} \leq \|\alpha\| \leq \Phi^{r-2} \cdot \sqrt{n},$$

From which we conclude:

$$r \geq 2 + \left\lceil \log_{\frac{1}{2} (1 + \sqrt{5})} \frac{n}{2} \right\rceil$$
Continuation

\[\alpha := (\alpha_1, \alpha_2, \ldots, \alpha_n)^T = A_{r-2} \cdot \cdots \cdot A_2 \cdot A_1 \cdot (1, 1, \ldots, 1) \]

- Let
 - \(c_1 \) be the number of cases with: \(\alpha_i \geq n \),
 - \(c_2 \) be the number of cases with: \(\alpha_i < n \) and \(\alpha_j \geq n \),
 - \(c_3 \) be the number of cases with: \(\alpha_i < n, \alpha_j < n \) and \(\alpha_i + \alpha_j \geq n \).

- Then we have: \(c_1 \geq c_2 \) and \(c_1 + c_2 + c_3 \geq n/2 \).
- Thus we also get: \(2c_1 + c_3 \geq \frac{n}{2} \)

\[\|\alpha\| = \sqrt{\sum_{i=1}^n \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2}(2c_1 + c_3)} \geq \frac{n}{2} \sqrt{n}. \]

- We already have:
 \[\|\alpha\| \leq \left(\prod_{i=1}^{r-2} \|A_i\| \right) \cdot \|(1, \ldots, 1)\| \leq \left(\frac{1}{2}(1 + \sqrt{5}) \right)^{r-2} \cdot \sqrt{n}. \]

- And we get:
 \[\frac{n}{2} \cdot \sqrt{n} \leq \|\alpha\| \leq \Phi^{r-2} \cdot \sqrt{n}, \]

- From which we conclude:
 \[r \geq 2 + \left\lceil \log_{\frac{1}{2}(1+\sqrt{5})} \frac{n}{2} \right\rceil \]
Continuation

Let

- c_1 be the number of cases with: $\alpha_i \geq n$,
- c_2 be the number of cases with: $\alpha_i < n$ and $\alpha_j \geq n$,
- c_3 be the number of cases with: $\alpha_i < n$, $\alpha_j < n$ and $\alpha_i + \alpha_j \geq n$.

Then we have: $c_1 \geq c_2$ and $c_1 + c_2 + c_3 \geq n/2$.

Thus we also get: $2c_1 + c_3 \geq \frac{n}{2}$

$$||\alpha|| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2}(2c_1 + c_3)} \geq \frac{n}{2} \sqrt{n}.$$

We already have:

$$||\alpha|| \leq \left(\prod_{i=1}^{r-2} ||A_i|| \right) \cdot ||(1, \ldots, 1)|| \leq \left(\frac{1}{2} (1 + \sqrt{5}) \right)^{r-2} \cdot \sqrt{n}.$$

And we get:

$$\frac{n}{2} \cdot \sqrt{n} \leq ||\alpha|| \leq \Phi^{r-2} \cdot \sqrt{n},$$

From which we conclude:

$$r \geq 2 + \left\lceil \log_{\frac{1}{2} (1 + \sqrt{5})} \frac{n}{2} \right\rceil.$$
Continuation

\[\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdots A_2 \cdot A_1 \cdot (1, 1, \cdots, 1) \]

- Let
 - \(c_1 \) be the number of cases with: \(\alpha_i \geq n \),
 - \(c_2 \) be the number of cases with: \(\alpha_i < n \) and \(\alpha_j \geq n \),
 - \(c_3 \) be the number of cases with: \(\alpha_i < n, \alpha_j < n \) and \(\alpha_i + \alpha_j \geq n \).

Then we have: \(c_1 \geq c_2 \) and \(c_1 + c_2 + c_3 \geq n/2 \).

Thus we also get: \(2c_1 + c_3 \geq \frac{n}{2} \)

\[\|\alpha\| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2} (2c_1 + c_3)} \geq \frac{n}{2} \sqrt{n}. \]

We already have:

\[\|\alpha\| \leq \left(\prod_{i=1}^{r-2} \|A_i\| \right) \cdot \|(1, \ldots, 1)\| \leq \left(\frac{1}{2} (1 + \sqrt{5}) \right)^{r-2} \cdot \sqrt{n}. \]

And we get:

\[\frac{n}{2} \cdot \sqrt{n} \leq \|\alpha\| \leq \Phi^{r-2} \cdot \sqrt{n}, \]

From which we conclude:

\[r \geq 2 + \left[\log_{\frac{1}{2}(1+\sqrt{5})} \left(\frac{n}{2} \right) \right] \]
Continuation

\[\alpha := (\alpha_1, \alpha_2, \ldots, \alpha_n)^T = A_{r-2} \cdots A_2 \cdot A_1 \cdot (1, 1, \ldots, 1) \]

- Let
 - \(c_1 \) be the number of cases with: \(\alpha_i \geq n \),
 - \(c_2 \) be the number of cases with: \(\alpha_i < n \) and \(\alpha_j \geq n \),
 - \(c_3 \) be the number of cases with: \(\alpha_i < n \), \(\alpha_j < n \) and \(\alpha_i + \alpha_j \geq n \).

- Then we have: \(c_1 \geq c_2 \) and \(c_1 + c_2 + c_3 \geq n/2 \).
- Thus we also get: \(2c_1 + c_3 \geq \frac{n}{2} \)
- \(||\alpha|| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2}(2c_1 + c_3)} \geq \frac{n}{2} \sqrt{n} \).
- We already have:
 \[||\alpha|| \leq (\prod_{i=1}^{r-2} ||A_i||) \cdot ||(1, \ldots, 1)|| \leq (\frac{1}{2} (1 + \sqrt{5}))^{r-2} \cdot \sqrt{n}. \]
- And we get:
 \[\frac{n}{2} \cdot \sqrt{n} \leq ||\alpha|| \leq \Phi^{r-2} \cdot \sqrt{n}, \]
- From which we conclude:
 \[r \geq 2 + \left[\log \frac{1}{2} (1 + \sqrt{5}) \frac{n}{2} \right] \]
Continuation

$$\alpha := (\alpha_1, \alpha_2, \cdots, \alpha_n)^T = A_{r-2} \cdots A_2 A_1 \cdot (1, 1, \cdots, 1)$$

- Let
 - $$c_1$$ be the number of cases with: $$\alpha_i \geq n$$,
 - $$c_2$$ be the number of cases with: $$\alpha_i < n$$ and $$\alpha_j \geq n$$,
 - $$c_3$$ be the number of cases with: $$\alpha_i < n$$, $$\alpha_j < n$$ and $$\alpha_i + \alpha_j \geq n$$.

Then we have: $$c_1 \geq c_2$$ and $$c_1 + c_2 + c_3 \geq n/2$$.

Thus we also get: $$2c_1 + c_3 \geq \frac{n}{2}$$.

-$$||\alpha|| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} \geq \sqrt{c_1 n^2 + c_3 \cdot 2 \cdot \frac{n^2}{4}} \geq n \cdot \sqrt{\frac{1}{2} (2c_1 + c_3)} \geq \frac{n}{2} \sqrt{n}.$$.

We already have:

$$||\alpha|| \leq (\prod_{i=1}^{r-2} ||A_i||) \cdot ||(1, \ldots, 1)|| \leq (\frac{1}{2} (1 + \sqrt{5}))^{r-2} \cdot \sqrt{n}.$$.

And we get:

$$\frac{n}{2} \cdot \sqrt{n} \leq ||\alpha|| \leq \Phi^{r-2} \cdot \sqrt{n},$$

From which we conclude:

$$r \geq 2 + \lceil \log_{\frac{1}{2} (1 + \sqrt{5})} \frac{n}{2} \rceil$$.
Quality of these Bounds

Lemma:

Let \(n = 2m \) and let:

- \(t_1 := 1 + k \), with \(k \) is the smallest number with \(m \leq F(k) \) and
- \(t_2 := 2 + \lceil \log_{\frac{1}{2}} (1 + \sqrt{5}) m \rceil \).

Then we have \(t_1 = t_2 \) for infinite many \(m \) and \(t_1 \leq t_2 + 1 \) for all \(m \).

Proof:

- Let \(\Phi = \frac{1}{2} (1 + \sqrt{5}) \).
- Then we have: \(\Phi^2 = \Phi + 1 \).
- Furthermore we have \(\Phi^{i-2} \leq F(i) \leq \Phi^{i-1} \) for all \(i \geq 2 \).
- Consider \(n \in \mathbb{N} \) with: \(n = 2 \cdot F(k) \) for some \(k \).
 - Then we have: \(t_1 = k + 1 \) and
 \[t_2 = 2 + \lceil \log_\Phi F(k) \rceil = 2 + k - 1 = k + 1. \]
 - From which we get: \(t_1 = t_2 \) for these \(n \).
Quality of these Bounds

Lemma:
Let $n = 2m$ and let:
- $t_1 := 1 + k$, with k is the smallest number with $m \leq F(k)$ and
- $t_2 := 2 + \lceil \log_{\frac{1}{2}}(1+\sqrt{5}) \cdot m \rceil$.

Then we have $t_1 = t_2$ for infinite many m and $t_1 \leq t_2 + 1$ for all m.

Proof:
- Let $\Phi = \frac{1}{2}(1 + \sqrt{5})$.
- Then we have: $\Phi^2 = \Phi + 1$.
- Furthermore we have $\Phi^{i-2} \leq F(i) \leq \Phi^{i-1}$ for all $i \geq 2$.
- Consider $n \in \mathbb{N}$ with: $n = 2 \cdot F(k)$ for some k.
 - Then we have: $t_1 = k + 1$ and $t_2 = 2 + \lceil \log_\Phi F(k) \rceil = 2 + k - 1 = k + 1$.
 - From which we get: $t_1 = t_2$ for these n.
Quality of these Bounds

Lemma:
Let \(n = 2m \) and let:
- \(t_1 := 1 + k \), with \(k \) is the smallest number with \(m \leq F(k) \) and
- \(t_2 := 2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) \cdot m \rceil \).

Then we have \(t_1 = t_2 \) for infinite many \(m \) and \(t_1 \leq t_2 + 1 \) for all \(m \).

Proof:
- Let \(\Phi = \frac{1}{2} (1 + \sqrt{5}) \).
- Then we have: \(\Phi^2 = \Phi + 1 \).
- Furthermore we have \(\Phi^{i-2} \leq F(i) \leq \Phi^{i-1} \) for all \(i \geq 2 \).
- Consider \(n \in \mathbb{N} \) with: \(n = 2 \cdot F(k) \) for some \(k \).
 - Then we have: \(t_1 = k + 1 \) and
 \[t_2 = 2 + \lceil \log_{\Phi} F(k) \rceil = 2 + k - 1 = k + 1. \]
 - From which we get: \(t_1 = t_2 \) for these \(n \).
Quality of these Bounds

Lemma:
Let \(n = 2m \) and let:
- \(t_1 := 1 + k \), with \(k \) is the smallest number with \(m \leq F(k) \) and
- \(t_2 := 2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) m \rceil \).

Then we have \(t_1 = t_2 \) for infinite many \(m \) and \(t_1 \leq t_2 + 1 \) for all \(m \).

Proof:
- Let \(\Phi = \frac{1}{2}(1 + \sqrt{5}) \).
- Then we have: \(\Phi^2 = \Phi + 1 \).
- Furthermore we have \(\Phi^{i-2} \leq F(i) \leq \Phi^{i-1} \) for all \(i \geq 2 \).
- Consider \(n \in \mathbb{N} \) with: \(n = 2 \cdot F(k) \) for some \(k \).
 - Then we have: \(t_1 = k + 1 \) and \n \[t_2 = 2 + \lceil \log_{\Phi} F(k) \rceil = 2 + k - 1 = k + 1. \]
 - From which we get: \(t_1 = t_2 \) for these \(n \).
Quality of these Bounds

Lemma:

Let $n = 2m$ and let:

- $t_1 := 1 + k$, with k is the smallest number with $m \leq F(k)$ and
- $t_2 := 2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) m \rceil$.

Then we have $t_1 = t_2$ for infinite many m and $t_1 \leq t_2 + 1$ for all m.

Proof:

- Let $\Phi = \frac{1}{2}(1 + \sqrt{5})$.
- Then we have: $\Phi^2 = \Phi + 1$.
- Furthermore we have $\Phi^{i-2} \leq F(i) \leq \Phi^{i-1}$ for all $i \geq 2$.
- Consider $n \in \mathbb{N}$ with: $n = 2 \cdot F(k)$ for some k.
 - Then we have: $t_1 = k + 1$ and
 $t_2 = 2 + \lceil \log_{\Phi} F(k) \rceil = 2 + k - 1 = k + 1$.
 - From which we get: $t_1 = t_2$ for these n.
Lemma:

Let $n = 2m$ and let:

- $t_1 := 1 + k$, with k is the smallest number with $m \leq F(k)$ and
- $t_2 := 2 + \lceil \log_{\frac{1}{2}}(1+\sqrt{5})^m \rceil$.

Then we have $t_1 = t_2$ for infinite many m and $t_1 \leq t_2 + 1$ for all m.

Proof:

- Let $\Phi = \frac{1}{2}(1 + \sqrt{5})$.
- Then we have: $\Phi^2 = \Phi + 1$.
- Furthermore we have $\Phi^{i-2} \leq F(i) \leq \Phi^{i-1}$ for all $i \geq 2$.
- Consider $n \in \mathbb{N}$ with: $n = 2 \cdot F(k)$ for some k.
 - Then we have: $t_1 = k + 1$ and
 $$t_2 = 2 + \lceil \log_{\Phi} F(k) \rceil = 2 + k - 1 = k + 1.$$
 - From which we get: $t_1 = t_2$ for these n.
Quality of these Bounds

Lemma:

Let \(n = 2m \) and let:

- \(t_1 := 1 + k \), with \(k \) is the smallest number with \(m \leq F(k) \) and
- \(t_2 := 2 + \lceil \log_{ \frac{1}{2}} \left(1 + \sqrt{5} \right) m \rceil \).

Then we have \(t_1 = t_2 \) for infinite many \(m \) and \(t_1 \leq t_2 + 1 \) for all \(m \).

Proof:

- Let \(\Phi = \frac{1}{2} \left(1 + \sqrt{5} \right) \).
- Then we have: \(\Phi^2 = \Phi + 1 \).
- Furthermore we have \(\Phi^{i-2} \leq F(i) \leq \Phi^{i-1} \) for all \(i \geq 2 \).
- Consider \(n \in \mathbb{N} \) with: \(n = 2 \cdot F(k) \) for some \(k \).
 - Then we have: \(t_1 = k + 1 \) and
 \[t_2 = 2 + \lceil \log_{ \Phi} F(k) \rceil = 2 + k - 1 = k + 1. \]
 - From which we get: \(t_1 = t_2 \) for these \(n \).
Quality of these Bounds

Lemma:

Let $n = 2m$ and let:

- $t_1 := 1 + k$, with k is the smallest number with $m \leq F(k)$ and
- $t_2 := 2 + \lceil \log_{1/2} (1 + \sqrt{5}) m \rceil$.

Then we have $t_1 = t_2$ for infinite many m and $t_1 \leq t_2 + 1$ for all m.

Proof:

- Let $\Phi = \frac{1}{2} (1 + \sqrt{5})$.
- Then we have: $\Phi^2 = \Phi + 1$.
- Furthermore we have $\Phi^{i-2} \leq F(i) \leq \Phi^{i-1}$ for all $i \geq 2$.
- Consider $n \in \mathbb{N}$ with: $n = 2 \cdot F(k)$ for some k.
 - Then we have: $t_1 = k + 1$ and $t_2 = 2 + \lceil \log_{\Phi} F(k) \rceil = 2 + k - 1 = k + 1$.
 - From which we get: $t_1 = t_2$ for these n.
Quality of these Bounds

Lemma:

Let $n = 2m$ and let:
- $t_1 := 1 + k$, with k is the smallest number with $m \leq F(k)$ and
- $t_2 := 2 + \lceil \log_{\frac{1}{2}} (1 + \sqrt{5}) \cdot m \rceil$.

Then we have $t_1 = t_2$ for infinite many m and $t_1 \leq t_2 + 1$ for all m.

Proof:

- Let $\Phi = \frac{1}{2} (1 + \sqrt{5})$.
- Then we have: $\Phi^2 = \Phi + 1$.
- Furthermore we have $\Phi^{i-2} \leq F(i) \leq \Phi^{i-1}$ for all $i \geq 2$.
- Consider $n \in \mathbb{N}$ with: $n = 2 \cdot F(k)$ for some k.
 - Then we have: $t_1 = k + 1$ and $t_2 = 2 + \lceil \log_{\Phi} F(k) \rceil = 2 + k - 1 = k + 1$.
 - From which we get: $t_1 = t_2$ for these n.
Quality of these Bounds

Lemma:

Let $n = 2m$ and let:

- $t_1 := 1 + k$, with k is the smallest number with $m \leq F(k)$ and
- $t_2 := 2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) m \rceil$.

Then we have $t_1 = t_2$ for infinite many m and $t_1 \leq t_2 + 1$ for all m.

Proof:

- Let $\Phi = \frac{1}{2}(1 + \sqrt{5})$.
- Then we have: $\Phi^2 = \Phi + 1$.
- Furthermore we have $\Phi^{i-2} \leq F(i) \leq \Phi^{i-1}$ for all $i \geq 2$.
- Consider $n \in \mathbb{N}$ with: $n = 2 \cdot F(k)$ for some k.
 - Then we have: $t_1 = k + 1$ and
 $$t_2 = 2 + \lceil \log_{\Phi} F(k) \rceil = 2 + k - 1 = k + 1.$$
 - From which we get: $t_1 = t_2$ for these n.
Quality of these Bounds (Part 2)

Lemma:

Let $n = 2m$ and let:

- $t_1 := 1 + k$, with k is the smallest number with $m \leq F(k)$ and
- $t_2 := 2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) \cdot m \rceil$.

Then we have $t_1 = t_2$ for infinite many m and $t_1 \leq t_2 + 1$ for all m.

Proof:

- Setze $\Phi = \frac{1}{2}(1 + \sqrt{5})$.
- Then we have $\Phi^{i-2} \leq F(i) \leq \Phi^{i-1}$ for all $i \geq 2$.
- Let $n = 2 \cdot m$ arbitrary.
 - Let i be defined by: $\Phi^{i-1} < m \leq \Phi^i$, then we have: $t_2 = 2 + i$.
 - Let k be the smallest number with $F(k) \geq m$.
 - Note: $\Phi^{k-2} \leq F(k) \leq \Phi^{k-1}$.
 - Then we have: $i = k - 1$ oder $i = k - 2$.
 - From which we conclude: $t_1 = k + 1 \leq i + 3$.
Lemma:

Let $n = 2m$ and let:
- $t_1 := 1 + k$, with k is the smallest number with $m \leq F(k)$ and
- $t_2 := 2 + \lceil \log_{1/2} \left(1 + \sqrt{5}\right) m \rceil$.

Then we have $t_1 = t_2$ for infinite many m and $t_1 \leq t_2 + 1$ for all m.

Proof:

- Setze $\Phi = \frac{1}{2} (1 + \sqrt{5})$.
- Then we have $\Phi^{i-2} \leq F(i) \leq \Phi^{i-1}$ for all $i \geq 2$.
- Let $n = 2 \cdot m$ arbitrary.
 - Let i be defined by: $\Phi^{i-1} < m \leq \Phi^i$, then we have: $t_2 = 2 + i$.
 - Let k be the smallest number with $F(k) \geq m$.
 - Note: $\Phi^{k-2} \leq F(k) \leq \Phi^{k-1}$.
 - Then we have: $i = k - 1$ oder $i = k - 2$.
 - From which we conclude: $t_1 = k + 1 \leq i + 3$.
Lemma:

Let \(n = 2m \) and let:

- \(t_1 := 1 + k \), with \(k \) is the smallest number with \(m \leq F(k) \) and
- \(t_2 := 2 + \lceil \log_{\frac{1}{2}}(1 + \sqrt{5}) m \rceil \).

Then we have \(t_1 = t_2 \) for infinite many \(m \) and \(t_1 \leq t_2 + 1 \) for all \(m \).

Proof:

- Setze \(\Phi = \frac{1}{2}(1 + \sqrt{5}) \).
- Then we have \(\Phi^{i-2} \leq F(i) \leq \Phi^{i-1} \) for all \(i \geq 2 \).
- Let \(n = 2 \cdot m \) arbitrary.
 - Let \(i \) be defined by: \(\Phi^{i-1} < m \leq \Phi^i \), then we have: \(t_2 = 2 + i \).
 - Let \(k \) be the smallest number with \(F(k) \geq m \).
 - Note: \(\Phi^{k-2} \leq F(k) \leq \Phi^{k-1} \).
 - Then we have: \(i = k - 1 \) oder \(i = k - 2 \).
 - From which we conclude: \(t_1 = k + 1 \leq i + 3 \).
Quality of these Bounds (Part 2)

Lemma:

Let \(n = 2m \) and let:

- \(t_1 := 1 + k \), with \(k \) is the smallest number with \(m \leq F(k) \) and
- \(t_2 := 2 + \lceil \log_{\frac{1}{2}}(1+\sqrt{5}) \cdot m \rceil \).

Then we have \(t_1 = t_2 \) for infinite many \(m \) and \(t_1 \leq t_2 + 1 \) for all \(m \).

Proof:

- Setze \(\Phi = \frac{1}{2}(1 + \sqrt{5}) \).
- Then we have \(\Phi^{i-2} \leq F(i) \leq \Phi^{i-1} \) for all \(i \geq 2 \).
- Let \(n = 2 \cdot m \) arbitrary.
 - Let \(i \) be defined by: \(\Phi^{i-1} < m \leq \Phi^{i} \), then we have: \(t_2 = 2 + i \).
 - Let \(k \) be the smallest number with \(F(k) \geq m \).
 - Note: \(\Phi^{k-2} \leq F(k) \leq \Phi^{k-1} \).
 - Then we have: \(i = k - 1 \) oder \(i = k - 2 \).
 - From which we conclude: \(t_1 = k + 1 \leq i + 3 \).
Quality of these Bounds (Part 2)

Lemma:

Let $n = 2m$ and let:
- $t_1 := 1 + k$, with k is the smallest number with $m \leq F(k)$ and
- $t_2 := 2 + \lceil \log_{\frac{1}{2}}(1+\sqrt{5}) m \rceil$.

Then we have $t_1 = t_2$ for infinite many m and $t_1 \leq t_2 + 1$ for all m.

Proof:

- Setze $\Phi = \frac{1}{2}(1 + \sqrt{5})$.
- Then we have $\Phi^{i-2} \leq F(i) \leq \Phi^{i-1}$ for all $i \geq 2$.
- Let $n = 2 \cdot m$ arbitrary.
 - Let i be defined by: $\Phi^{i-1} < m \leq \Phi^i$, then we have: $t_2 = 2 + i$.
 - Let k be the smallest number with $F(k) \geq m$.
 - Note: $\Phi^{k-2} \leq F(k) \leq \Phi^{k-1}$.
 - Then we have: $i = k - 1$ oder $i = k - 2$.
 - From which we conclude: $t_1 = k + 1 \leq i + 3$.
Summary (Telefon-Mode)

| Graph | $|V|$ | diam | Lower Bound | Upper Bound |
|---------|------------|------|--------------------------------------|------------------------------------|
| K_n | n | 1 | $\lceil \log_2 n \rceil + \text{odd}(n)$ | $\lceil \log_2 n \rceil + \text{odd}(n)$ |
| H_k | 2^k | k | $n - \text{even}(n)$ | $n - \text{even}(n)$ |
| P_n | n | $n - 1$ | $\lceil \frac{n}{2} \rceil + \text{odd}(n)$ | $\lceil \frac{n}{2} \rceil + \text{odd}(n)$ |
| C_n | n | $\lfloor \frac{5k}{2} \rfloor - 2$ | $2k - 1$ | $2k - 1$ |
| CCC_k | $k \cdot 2^k$ | $\lfloor \frac{3k}{2} \rfloor$ | $1.9770k$ | $2.25 \cdot k + o(k)$ |
| SE_k | 2^k | k | $1.5965k$ | $2k + 5$ |
| BF_k | $k \cdot 2^k$ | k | $1.5965k$ | $2k + 5$ |
| DB_k | 2^k | | $1.5965k$ | $2k + 5$ |
Summary (Telegraph-Mode)

| Graph | $|V|$ | diam | Lower Bound | Upper Bound |
|--------|--------|------|------------------------|----------------------|
| K_n | n | 1 | $1.44 \log_2 n$ | $1.44 \log_2 n$ |
| H_k | 2^k | k | $1.44 k$ | $1.88 k$ |
| P_n | n | $n-1$| $n + \text{odd}(n)$ | $n + \text{odd}(n)$ |
| C_n | n even | $\lceil \frac{n}{2} \rceil$ | $\frac{n}{2} + \lceil \sqrt{2n} \rceil - 1$ | $\frac{n}{2} + \lceil \sqrt{2n} \rceil - 1$ |
| | n odd | $\lceil \frac{n}{2} \rceil$ | $\lceil \frac{n}{2} \rceil + \lceil \sqrt{2n - \frac{1}{2}} \rceil - 1$ | $\lceil \frac{n}{2} \rceil + 2 \sqrt{\lceil \frac{n}{2} \rceil} - 1$ |
| CCC_k| $k \cdot 2^k$ | $\lceil \frac{5k}{2} \rceil - 2$ | $\lceil \frac{5k}{2} \rceil - 2$ | $\lceil \frac{7k}{2} \rceil + 2 \sqrt{\lceil \frac{k}{2} \rceil} - 2$ |
| SE_k | 2^k | $2k-1$ | $2k-1$ | $3k+3$ |
| BF_k | $k \cdot 2^k$ | $\lceil \frac{3k}{2} \rceil$ | $1.9770k$ | $\lceil \frac{5k}{2} \rceil + 2 \sqrt{\lceil \frac{k}{2} \rceil} - 1$ |
| DB_k | 2^k | k | $1.5965k$ | $3k+3$ |
Results

Lemma

\[\text{edp}-r_1(G) \leq \min_{u \in V(G)} \{ \text{edp}-a_u(G) + \text{edp}-b_u(G) \} = 2 \cdot \text{edp}-b_{\min}(G) \]
\[\text{edp}-r_2(G) \leq 2 \cdot \text{edp}-b_{\min}(G) - 1 \]

Lemma

For any graph \(G_n \) of \(n \) nodes, \(n \geq 2 \),

- \(\lceil \log_2 n \rceil \leq \text{edp}-r_2(G_n) \leq 2 \cdot \lceil \log_2 n \rceil + 1 \),
- \(\log_b(\lfloor n/2 \rfloor) + 2 \leq \text{edp}-r_1(G_n) \leq 2 \cdot \lceil \log_2 n \rceil + 2 \).
Results

Lemma

For each complete binary tree T_2^h of depth $h \geq 3$ (and $n = 2^{h+1} - 1$ nodes),

- $2h + 3 = 2 \cdot \lceil \log_2 n \rceil + 1 \leq edp-r_1(C2T_h) \leq 2h + 4$,
- $2h + 2 = 2 \cdot \lceil \log_2 n \rceil \leq edp-r_2(C2T_h) \leq 2h + 3$.

Lemma

\[
edp-r_2(Gr_n^2) = 1.5 \cdot \log_2 n - \log_2 \log_2 n \pm O(1) \\
edp-r_2(Pl(n, h)) \geq 1.5 \log_2 n - \log_2 \log_2 n - 0.5 \log_2 h - 2
\]
Lemma

For $d \geq 3$

(i) $edp-r_2(Gr_n^d) = (1 + 1/d) \cdot \log_2 n - \log_2 n \log_2 n \pm O(d)$,

(ii) $edp-r_1(Gr_n^d) \leq (\log_2 b + (2 - \log_2 b)/d) \cdot \log_2 n + O(d)$

$= (1.44\ldots + 0.56\ldots/d) \cdot \log_2 n + O(d)$.

Lemma

For every $X_k \in \{BF_k, CCC_k, Q_k\}$ of n nodes and dimension k, $edp-r_1(X_k) \leq r_1(K_n) + O(\log_2 \log_2 n)$.

Lemma

For every $Y_k \in \{BF_k, CCC_k\}$ of n nodes and dimension k, $edp-r_2(Y_k) \leq r_2(K_n) + O(\log_2 \log_2 n)$.
Literature

Legende

■ : Nicht relevant
■ : Grundlagen, die implizit genutzt werden
■ : Idee des Beweises oder des Vorgehens
■ : Struktur des Beweises oder des Vorgehens
■ : Vollständiges Wissen