Exercise 2.1
(4 points)

Discuss the security of the following protocol. A wants to send a message m to B. For this, A and B generate n strings of length $|m|$. Then, they send the following messages:

\[
\begin{array}{c}
A & m, a_1, \ldots, a_n \\
A & m \oplus a_1 \\
A & m \oplus a_1 \oplus b_1 \\
A & m \oplus a_2 \oplus b_1 \\
A & m \oplus a_2 \oplus b_2 \\
A & \vdots \\
A & m \oplus a_n \oplus b_{n-1} \\
A & m \oplus a_n \oplus b_n \\
A & m \oplus b_n \\
B & b_1, \ldots, b_n \\
\end{array}
\]

The protocol is an extension of the protocol without secure key-exchange presented in the lecture. Is this protocol for $n \geq 2$ secure?

Exercise 2.2
(4 points)

Construct a public-key system based on the following NP-complete problem:

SUBSET PRODUCT

Input: $A = (a_1, \ldots, a_n) \in \mathbb{N}^n$ and $b \in \mathbb{N}$.

Problem: Is there a subset $I \subseteq \{1, \ldots, n\}$ with $\prod_{i \in I} a_i = b$?
Hint: Add to the plaintext, coded as 0-1-sequence, an appropriated padding in order to ensure a necessary condition on the number of ones in the sequence.

Exercise 2.3
(4 points)

Let \(p_1, \ldots, p_n \) be distinct prime numbers, \(P = \prod_{i=1}^n p_i \), and \(A = (a_1, \ldots, a_n) \), where \(a_i = P/p_i \).

Prove: The knapsack problem with input \((A, \alpha)\) can be solved efficiently for all \(\alpha \in \mathbb{N} \).

Exercise 2.4
(4 points)

A number \(\alpha \in \mathbb{N} \) is called *representable* by a knapsack vector \(A \) if the knapsack problem with input \((A, \alpha)\) is solvable.

Prove:

(a) Each knapsack vector \(B \) of length \(n \) has at least as many representable numbers as the knapsack vector \(A_n = (1, 2, 3, 4, \ldots, n) \), for all \(n \in \mathbb{N} \).

(b) Each knapsack vector \(B \) of length \(n \) has at most as many representable numbers as the knapsack vector \(A'_n = (1, 2, 4, 8, \ldots, 2^{n-1}) \), for all \(n \in \mathbb{N} \).

Note: In a knapsack vector \(A = (a_1, \ldots, a_n) \) all numbers \(a_i \) are distinct.

Deadline: Thursday, November 02, 2017, 10:15 a.m.,
in the lecture or in the box in front of the i1.