Contents I

1 Introduction
 - Line-Graph and Coloring
 - Edge-Colouring
 - Theorems
2 Hardness of the Edge-Colouring
 - Proof of Hoyer
3 Algorithms
 - Matching on Bipartite Graphs
 - Proof of König
 - Proof of Vizing
4 Colour with Greed
 - Simple Bounds
 - Algorithm
5 Examples
6 Theorem of Brooks
 - Statements
 - Proof
7 Girth
 - Statements
 - Proof
8 Colouring with known $\chi(G)$
 - Basics
 - Theorems
9 Complexity
 - Negative Theorems
 - Positive Theorems
Definition of Coloring

- A graph $G = (V, E)$ is k-colorable iff:
 - $\exists f : V \mapsto \{1, ..., k\} : \forall (a, b) \in E, f(a) \neq f(b)$.
 - The mapping f is called coloring of G.
 - $\chi(G)$ is the chromatic number $\chi(G)$ of G, iff
 - G is $\chi(G)$-colorable, but G is not $(\chi(G) - 1)$-colorable.

Definition

Sei $G = (V, E)$ Graph.

\[
\begin{align*}
\alpha(G) & = \max \{ |V'| ; \ V' \subseteq V \land \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) & = \max \{ |V'| ; \ V' \subseteq V \land \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) & = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \\
& \quad \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \end{align*}
\]
Line-Graphs

Definition (Line-Graphs)

Let $G = (V, E)$ be an undirected graph. $L(G) = (E, E')$ is called line-graph of G, iff

$$E' = \{(e, e') | e, e' \in E \land e \cap e' \neq \emptyset\}.$$

A graph H is called line-graph, iff a graph G exists, with $L(G) = H$.

![Line-Graph Diagram](diagram.png)
Example 1
Example 2

\[\chi(G) \]
Example 3
Introduction

Hardness

Algorithms

Colour with Greed

Brooks

Girth

Colouring $\chi(G)$

Complexity

2:6 Edge-Colouring

Edge-Colouring I

Definition

The Edge-Colouring-Problem for a graph G corresponds to the node-colouring of $L(G)$:

$$\chi'(G) = \chi(L(G)).$$

Theorem (Vizing 1965)

$$\chi'(K_{2n}) = 2n - 1 \text{ and } \chi'(K_{2n+1}) = 2n + 1.$$

Theorem

$$\chi'(G) \geq \omega(L(G)) \geq \Delta(G).$$
Edge-Colouring II

Theorem (Holyer)

The \(d\)-Edge-Colouring-Problem is NP-complete for \(d \geq 3\).

Theorem (König 1916)

Any bipartite graph with degree \(\Delta\) is \(\Delta\) edge-colourable (Running-Time \(O(nm)\)).

Theorem (Vizing 1964)

Any graph with degree \(\Delta\) is \(\Delta + 1\) edge-colourable (Running-Time \(O(nm)\)).
This component assembles a negation.

- W.l.o.g. \((a, b)\) and \((h, i)\) are coloured the same and
- \((c, d), (j, k), (g, l)\) use three different colours.

We will use this to represent variables and
will use an odd cycle to represent the clauses.
Proof II (Holyer)

1. Case: \((h, i)\) and \((l, g)\) are coloured equal.

The colour \((i, e)\) and \((i, j)\) and show in the following:

- \((a, b)\) and \((h, i)\) are coloured the same and
- \((c, d)\), \((j, k)\), \((g, l)\) use three different colours.

2. Case: \((j, k)\) and \((l, g)\) are coloured the same.

In a same way we may proof:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b)\), \((h, i)\), \((g, l)\) use three different colours.
3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.

Case 3a: \((i, j)\) has the same colour as \((l, g)\)

Show in the following:

This case does not happen.
3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use another colour.

Case 3b: \((i, j)\) use the third colour.

Show in the following:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
4. Case: \((h, i), (j, k)\) and \((l, g)\) are coloured with three different colours.

Show in the following:
- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
Proof VI (Holyer)

- We will now merge two of these constructions to create a more powerful one.
- This new construction has three “Exits” (pairs of dedicated edges).
- An exit has the value “false” iff both edges are colours the same (otherwise “true”).
- For this new component we have:
 - If the left [or right] exit is “false”, then all exits are “false”.
 - If the left [right] exit is “true”, then the right [left] exit is “true”.

![Diagram of the new construction with three exits](image)
Proof VI.a (Holyer)
Proof VI.b (Holyer)
Proof VI.c (Holyer)
Proof VI (Holyer)

- We combine now at least three components in a cyclic way, to represent a variable.
- This component has at least three “Exits” (pairs of dedicated edges).
- For this component holds:
- All exits have the same logical value.
Proof VII (Holyer)

- To verify a clause the exits [may be after an additional negation] of the corresponding literals are joined with an odd cycle.
- For this component we have:
- If all exits have the value “false”, then we need four colours.
Theorem of Hall

Definition

Let $G = (V_1, V_2, E)$ be a bipartite graph, and $A \subseteq V_1$. We denote:

$$\Gamma(A) = \{v \in V_2 \mid (v, w) \in E, w \in A\}.$$

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exits a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

Corollary

Every regular bipartite Graph $G = (V_1, V_2, E)$ with $|V_1| = |V_2|$ contains a complete matching.
Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exists a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\[
\begin{align*}
\implies \text{simple:} \\
&\quad \text{Let } M \text{ be a matching with } |M| = |V_1| \text{ and let } A \subseteq V_1 \text{ arbitrary.} \\
&\quad |\Gamma(A)| = |\{v \in V_2 \mid (v, w) \in E, w \in A\}|. \\
&\quad |\Gamma(A)| \geq |\{v \in V_2 \mid (v, w) \in M, w \in A\}|. \\
&\quad |\Gamma(A)| \geq |A|.
\end{align*}
\]
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exits a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

\[|\Gamma(A)| \geq |A|. \]

\[
\iff \text{by contradiction:}
\]

- Let M be the largest matching with $|M| < |V_1|$.
- Let $A_1 = \{v \in V_1 \mid \exists b \in V_2 : \{v, b\} \in M\}$.
- Let $A_2 = \{v \in V_2 \mid \exists b \in V_1 : \{v, b\} \in M\}$.
- Let $a \in V_1 \setminus A_1$.
- $\Gamma(a) \subset A_2$, because M is the largest matching.
- Any alternating path starting from a reaches only nodes in $A_1' \cup A_2'$ with $A_i' \subset A_i$ and $|A_1'| = |A_2'|$.
- Thus we have $\Gamma(A_1' \cup \{a\}) \subset A_2'$.
- $|A_1' \cup \{a\}| > |A_2'|$.

Proof (König)

Theorem (König)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

- Show how to colour an edge (a, b) in $O(n)$ time.
- Let c_a, c_b be the unused colours at the nodes a, b.
- If $c_a = c_b$, we may colour (a, b) with c_a.
- Observe now the graph $H_{a,b}$, who consists only of edges coloured with c_a, c_b.
- $H_{a,b}$ consists of a disjoined set of paths and cycles.
- a and b are the endpoints of two different paths.
- Thus we may exchange the colours of one path.
- Running-Time: store for each node and colour the corresponding edge.
Theorem (Vizing)

Any graph with degree Δ is $\Delta + 1$ edge-colourable (Running-Time $O(nm)$).

- Proof by induction on the number of edges.
- Let $\Delta = \Delta(G)$ and $e = (x, y) \in E$.
- For $G - e$ exists an edge colouring $c : E \setminus \{e\} \mapsto \{1, 2, \cdots, \Delta + 1\}$.
- Note: At each node are $\Delta + 1 - \deg(v) \geq 1$ colours free.
- For $v \in V$ let F_v be the set of free colours.
- If $F_x \cap F_y \neq \emptyset$ holds we may colour (x, y).
- So assume for the following: $F_x \cap F_y = \emptyset$
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\}\) of neighbours of \(x\) and \(\{b_1, b_2, \ldots, b_k\}\) of colours with:

- \(y_1 = y\) and
- \(b_j \in F_{y_j}\) and
- \(c((x, y_{j+1})) = b_j\) and
- \(\{y_1, y_2, \ldots, y_k\}\) are different.

If in round \(k\) the following hold:

The edge \((x, y_k)\) could be recoloured to colour \(f \in F_x \cap F_{y_k}\) with \(f \not\in \{b_1, b_2, \ldots, b_{k-1}\}\).

Then do the following:

- \(c((x, y_k)) = f\)
- \(c((x, y_i)) = b_i\) for \(1 \leq i < k\).

We call this operation \(\text{Shift}(k, f)\).
Proof II (Vizing)

- We will now construct such a sequence.
- What happens if the recolouring is not possible.
- Then we have: \(y_{k+1} \in \{y_1, y_2, \ldots, y_k\} \),
- I.e. \(y_{k+1} = y_i \) and \(b_k = b_{i-1} \).
- Then we have \(i \neq 1 \) and \(i \neq k \).
- Let \(a \in F_x \).
- Consider \(H(a, b_k) \); the subgraph using the colours \(a \) and \(b_k \).
- In each component of \(H(a, b_k) \) the colours may be exchanged.
- At the node \(y_k \) starts a path \(P \) of \(H(a, b_k) \).
- Let \(z \) be the other endpoint of path \(P \).
Proof III (Vizing)

- Recall $a \in F_x$.
- Recall $b_k \in F_{y_{i-1}}$.
- Note P contains no edges of the form (x, y_j) $(1 \leq j \leq k)$
 with the exception of (x, y_i).
- If $z = x$ holds, we also have (x, y_i) in P.
- We will now consider the following cases:
 - $z = x$
 - $z = y_{i-1}$
 - $z \not\in (x, y_{i-1})$. I.e. $z \not\in \{y_1, y_2, \ldots, y_k\}$
Proof IIIa (Vizing)

- Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and
- P contains no edges of the form (x, y_j) ($j \in \{1, \ldots, k\setminus\{i\}\}$
- If $z = x$ holds, we also have (x, y_i) in P.
- Case: $z = x$
 - Exchange the colour on P.
 - Then the colour $b_k = b_{i-1}$ is not used at x.
 - Do $Shift(i - 1, b_{i-1})$ as the final step.
Proof IIIb (Vizing)

- **Note:** $a \in F_x$, $b_k \in F_{y_{i-1}}$ and
- P contains no edges of the form $(x, y_j) (j \in \{1, \ldots, k\} \setminus \{i\})$
- If $z = x$ holds, we also have (x, y_i) in P.

Case: $z = y_{i-1}$

- Both edges at the ends of P are coloured with a.
- Exchange the colours on P.
- After this, the colour a is not used at y_{i-1}.
- Do $\text{Shift}(i - 1, a)$ as the final step.
Proof IIIC (Vizing)

- Note: \(a \in F_x, b_k \in F_{y_{i-1}} \) and
- \(P \) contains no edges of the form \((x, y_j) \ (j \in \{1, \ldots, k\} \setminus \{i\})\)
- If \(z = x \) holds, we also have \((x, y_i)\) in \(P \).

Case: \(z \not\in (x, y_{i-1}) \)
- Exchange the colours on the path \(P \) (if there are edges).
- Then the colour \(a \) is not used at \(y_k \).
- Do \(\text{Shift}(k, a) \) as the last step.
Some Bounds

Note
Let $G = (V, E)$ be a graph. Then the following hold: $\chi(G) \geq \omega(G)$.

Note
Let $G = (V, E)$ be a graph with $|V| = n$. Then we have: $\chi(G) \geq n/\alpha(G)$.

Theorem
Let $G = (V, E)$ be a graph with $|E| = m$. Then: $\chi(G)(\chi(G) - 1) \leq 2m$.

- Let $k = \chi(G)$.
- There exist k independent sets I_i with $i \in \{1, \ldots, k\}$.
- Between I_i and I_j ($i \neq j$) exists at least one edge.
- From which we get $k \cdot (k - 1)/2$ edges in total.
Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: $GreedyColour(G, \sigma)$.

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

Colour: $c(v_1) := 1$.

Colour: $c(v_i) := \min\{k \in \mathbb{N} \mid k \neq c(u) \ \forall u \in \Gamma(v_i) \cap V_{i-1}\}$

Number of colours: $GreedyColour(G, \sigma) := |\{c(v) \mid v \in V\}|$.

We have: $\chi(G) \leq GreedyColour(G, \sigma) \leq \Delta(G) + 1$.

For odd cycles and cliques holds:

- $\chi(G) = GreedyColour(G, \sigma) = \Delta(G) + 1$.

Running time: $O(|V| + |E|)$
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
 - $E_n = \{\{v_i, w_j\} | v_i \in V_n, w_j \in W_n, i \neq j\}$

 Note: $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n))$.

 $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n)) = n$.

 But $\chi(B_n) = 2$.
Error-Analysis

Theorem

- Let $\varepsilon, \delta > 0$ and $c < 1$.
- For large enough n exists graphs G_n with:
 - $\chi(G_n) \leq n^\varepsilon$ and
 - on $o(n^{-\delta})$ orderings Greedy will use $c \cdot n / \log n$ colours.

Lemma

There is an ordering σ^* with: $\text{GreedyColour}(G, \sigma^*) = \chi(G)$.

Lemma

$\min_{\sigma \in S_n} \text{GreedyColour}(G, \sigma) = \chi(G)$ hold.
Improvements

- Note: for v_i are at most $d_{G_i}(v_i)$ colours unusable.
- Let $b(\sigma) = \max_{1 \leq i \leq n} d_{G_i}(v_i)$ with $\sigma = (v_1, v_2, \ldots, v_n)$.
- $\chi(G) \leq \min_{\sigma \in S_n} b(\sigma)$
- The ordering σ which gives the minimum is constructable.
 - Choose v_n with the minimal degree.
 - Recursively compute the ordering on $G \setminus v_n$.
- Such an ordering is called: “smallest-last”
Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subseteq G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

1. $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subseteq G} \delta(H)$
2. Let H^* be a subgraph of G with: $\delta(H^*) = \max_{H \subseteq G} \delta(H)$.
3. Let j be the smallest index with: H^* is a subgraph of G_j for some permutation σ. Then we get:
 1. $\max_{H \subseteq G} \delta(H) = \delta(H^*) \leq d_{H^*}(v_j) \leq d_{G_j}(v_j) \leq b(\sigma)$
 2. Furthermore: $\max_{H \subseteq G} \delta(H) \leq \min_{\sigma \in S_n} b(\sigma)$.
 3. The claim follows by: $\min_{\sigma \in S_n} b(\sigma) \leq b(\sigma_{sl})$.
Lemma

Let $G = (V, E)$ and σ_{sl} smallest-last ordering. Then the following hold:

$$\chi(G) \leq \text{GreedyColour}(G, \sigma_{sl}) \leq 1 + \max_{H \subseteq G} \delta(H)$$

Running Time: $O(|V| + |E|)$.
Lemma

Let $G = (V, E)$ connected and not $\Delta(G)$-regular. Then $\chi(G) \leq \Delta(G)$ holds.

- Let v_1 a node with $d(v_1) < \Delta(G)$.
- Choose ordering $\sigma = (v_1, v_2, v_3, \ldots, v_n)$ by breadth-first-search from v_1.
- Call $\text{GreedyColour}(G, \sigma^{-1})$. Then the following hold:
 - $d(v_1) < \Delta(G)$, d.h. $c(v_1) \leq \Delta(G)$
 - v_i has a non-coloured neighbour, thus $c(v_i) \leq \Delta(G)$ holds.
Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected, consider block B:
 - If B is regular, then B is not $\Delta(G)$-regular.
 - If B is not regular, colour the graph using the above algorithm.
 - In both cases we use at most $\Delta(G)$ colours.

- If G two-connected and not regular, then colour again using the above algorithm

- If G two-connected and regular, continue as follows:
Proof

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
- If G is two-connected and not regular: (done)
- If G is two-connected and regular, then continue:
 - Choose v_1 with neighbours v_{n-1} and v_n, who are not neighbours,
 - such that $G - \{v_{n-1}, v_n\}$ is still connected.
 - Compute $v_2, v_3, \ldots, v_{n-2}$ using breadth-first-search from v_1 on $G - \{v_{n-1}, v_n\}$.
 - Colour with $\text{GreedyColour}(G, \sigma^{-1})$.
 - v_{n-1} and v_n get the same colour.
 - Thus at most $\Delta(G) - 1$ colours are not usable for v_1.
Lemma

Let $G = (V, E)$ two-connected, regular with at least three nodes. Let G be no clique nor a cycle. Then there exists $x, y \in V$ with $\text{dist}(x, y) = 2$ and $G - x - y$ is connected.

- Let $v \in V$ with $d(v) = \Delta(G)$.
- Then is $H := G[\{v\} \cup \Gamma(v)]$ not complete.
- Thus there exists x', y' in $\Gamma(v)$ with $\text{dist}(x', y') = 2$.
- If $G - \{x', y'\}$ is connected, we are done!
- If not, is x', y' a minimal separator.
- We have $\Delta(G) \geq 3$ and $d(v) \geq 3$.
- Let C be the component in $G - \{x', y'\}$, which contains v.

\[\begin{array}{c}
\text{Lemma} \\
\text{Let } G = (V, E) \text{ two-connected, regular with at least three nodes. Let } G \text{ be no clique nor a cycle. Then there exists } x, y \in V \text{ with } \text{dist}(x, y) = 2 \text{ and } G - x - y \text{ is connected.}
\end{array} \]
Implications

- There exists x in C with x is neighboured to x' or y'.
- This hold for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $\text{dist}(x, y) = 2$.
- We will now show that $G - \{x, y\}$ is connected.

- x' and y' are in $G - \{x, y\}$ connected.
- Show: Each node in $G - \{x, y\}$ is connected with x' or y'.
- $G - x$ is connected.
- Each node from $C - x$ is connected by a path P with x' or y', without using y.
- $G - y$ is connected.
- Each node from $(V \setminus C) - y$ is connected by a path P with x' or y', without using x.
- Running time: $O(|V| + |E|)$.

![Diagram of a graph with nodes and edges connecting different components.](image)
Theorems

Theorem (Mycielski’s)

For each number \(k \) there is a graph \(G \) with:
1. \(\chi(G) = k \) and
2. \(\omega(G) = 2 \).

Theorem (Erdös)

For each numbers \(k, l \) there is a graph \(G \) with:
1. \(\chi(G) = k \) and
2. The shortest cycle has length \(l \).

We will show only the first theorem:
- \(M_i \) has no triangles.
- \(\chi(M_i) = i \).
Proof (Construction)

- $M_3 = C_5$
- Let v_1, v_2, \ldots, v_n be the nodes of M_k.
- M_{k+1} has the following additional nodes u_1, u_2, \ldots, u_n and w.
- Add the following edges:
 - $\{w, u_i\}$ for $1 \leq i \leq n$ and
 - $\{u_i, x\}$ iff $\{v_i, x\} \in E(M_k)$.
Proof (Construction)

- Note:
 - \(\{ u_1, u_2, \ldots, u_n \} \) is a stable set.
 - \(\Gamma(v_i) \) is a stable set.
 - Thus there are no triangles in \(M_{k+1} \).

- \(\chi(M_{k+1}) \leq k + 1 \):
 - \(c(w) = k + 1 \) and
 - \(c(u_i) = c(v_i) \).
Proof (Construction)

- If \(\chi(M_{k+1}) = k \), we have:
 - w.l.o.g.: \(c(w) = k \) and therefore:
 - \(\{ c(v_i) \mid 1 \leq i \leq n \} = \{1, 2, \ldots, k\} \),
 - \(\{ c(u_i) \mid 1 \leq i \leq n \} = \{1, \ldots, k-1\} \),
 - Choose a colouring \(c \) with |\(\{ i \mid c(v_i) = k \} \)| minimal.
 - If \(k \neq c(v_i) \neq c(u_i) \) for some \(i \),
 - change the colours: \(c(u_i) := c(v_i) \).
 - Let \(v_j \) be a node with \(c(v_j) = k \).
 - Then we have:
 - \(\{ c(a) \mid a \in \Gamma(v_j) \} = \{1, \ldots, k-1\} \)
 - \(\{ c(a) \mid a \in \Gamma(u_j) \} = \{1, \ldots, k\} \)
 - Contradiction!
Computing the Colouring

Theorem (Widgerson 1983)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(\sqrt{n})$ colouring.

Proof:

- If $\chi(G) = 3$ holds, $\chi(G[\Gamma(v)]) \leq 2$ is true.
- We colour the nodes by checking their degree:
- As long as there is a node v with $\deg_G(v) \geq \sqrt{n}$ colour $\Gamma(v)$ using two colours
- After at most \sqrt{n} steps we get a subgraph with at most \sqrt{n} nodes.
- Colour this subgraph with new colours.
- The number of colours is at most: $2 \cdot \sqrt{n} + \sqrt{n} = 3 \cdot \sqrt{n}$.
- Detailed analysis show: $\sqrt{8 \cdot n}$.
Computing the Colouring

Theorem (Blum 1994)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(n^{3/8})$ colouring.

Theorem (Karger, Motwani, Sudan 1994)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(n^{1/4})$ colouring.

Theorem (Blum, Karger 1996)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(n^{3/14})$ colouring.
The 3-colouring-problem is for graphs of degree ≤ 4 NP-complete. The k-colouring-problem is NP-complete.

Let $k \geq 3$ and $c = 1/(2 + 3 \cdot \log(k + 1))$. Then the k-colouring-problem on graphs with girth $\lceil c \log c \rceil$ is NP-complete.

The colouring-problem could not be approximated by a constant factor (Assuming $\mathcal{P} \neq \mathcal{NP}$).

To compute a 4-colouring for a 3-colourable graph is NP-hard.
Lemma

If $\mathcal{P} \neq \mathcal{NP}$, *then there is no polynomial time algorithm with an approximation-factor of $\frac{4}{3}$ for the colouring-problem.*

Theorem (Garry, Johnson 1976)

If $\mathcal{P} \neq \mathcal{NP}$, *then there is no polynomial time algorithm with an approximation-factor of 2 for the colouring-problem.*

Theorem (Land, Jannakakis 1993)

If $\mathcal{P} \neq \mathcal{NP}$, *then there is for any* $\varepsilon > 0$ *no polynomial time algorithm with an approximation-factor of* n^ε *for the colouring-problem.*

Theorem (Feige, Kilian 1996)

If $\mathcal{P} \neq \mathcal{ZPP}$, *then there is for any* $\varepsilon > 0$ *no polynomial time algorithm with an approximation-factor of* $n^{1-\varepsilon}$ *for the colouring-problem.*
Lemma

Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.

- If $|V| \leq 2/c$ then just colour G:
 - Colour the graph by greedy algorithm using all permutations of the nodes.
 - Running time: $O((2/c)! \cdot \left(\frac{2}{c}\right)!)$.
 - Running time: $O(1)$ and error factor 1.

- If $|V| > 2/c$ then colour G:
 - Split $V(G)$ in $\lfloor c \cdot n \rfloor$ Parts of size $\lfloor n/\lfloor c \cdot n \rfloor \rfloor$ or $\lceil n/\lfloor c \cdot n \rfloor \rceil$.
 - Each part has size $\leq \frac{n}{cn-1} + 1 \leq \frac{2}{c} = O(1)$.
 - Each part may be coloured optimal in constant time.
 - Total number of colours: $\lfloor cn \rfloor \cdot \chi(G) \leq cn$.
Theorem (Johnson 1974)

The colouring-problem could be approximated within a factor of $O(n / \log n)$ in time $O(nm)$.

Theorem

The colouring-problem could be efficiently approximated within a factor of $O(n \log n - 3(\log \log n)/2)$.
Questions

- How hard is the edge-colouring-problem?
- How many colours needed to colour the edges of a clique?
- How could the edges of a bipartite graph be coloured?
- What is the upper bound for the number of colours for the edge-colouring?
- What is the idea of the proof of Vizing?
- How hard is the node-colouring-problem?
- What bounds are known?
- What error is possible when using greedy-colouring?
Legend

n : Not of relevance

g : implicitly used basics

i : idea of proof or algorithm

s : structure of proof or algorithm

w : Full knowledge