Contents I

1. Intersection-Graphs
 - Basics
 - Problems

2. Interval-graphs
 - Introduction
 - Colouring
 - Independent Sets and Cliques

3. Permutation-Graphs
 - Introduction
 - Colouring

4. Arc-Graphs

5. Circle-Graphs
 - Introduction
 - Colouring
 - Construction
 - Colourings
 - Independent Sets and Cliques

6. Concluding Remarks
 - Segment-graphs
 - Disk-graphs
 - Overview
Basics

- A graph consists of nodes, which are “connected” by some relation.
- Often we have objects, for which some relation exists.
- Possible relations:
 - Objects have some common property.
 - Objects are neighbours.
 - Objects have some limited distance.
 - Objects intersect.
- We define intersection-graphs using the later relation.
Definition

A graph $G = (V, E)$ is called intersection-graph of a set \mathcal{M} of objects, iff $G = (V, E)$ is isomorphic to $H = (\mathcal{M}, \{\{a, b\} \mid a \cap b \neq \emptyset\})$. \mathcal{M} is called the intersection representation of G.

Possible families of objects are:
- Intervals on a line.
- Arc of a circle.
- Chords of a circle.
- Circles in the plane.
- Parallelograms between two lines.
 And lots more.

By using different classes of object we get different graph classes.
Colouring

Definition

- A graph $G = (V, E)$ is k-colourable iff:
 - $\exists f : V \mapsto \{1, \ldots, k\} : \forall (a, b) \in E, f(a) \neq f(b)$.
- The function f is called a **colouring** of G.

Definition

- $\chi(G)$ is the **chromatic number** $\chi(G)$ of G, iff
 - G is $\chi(G)$-colourable, but is not $(\chi(G) - 1)$-colourable.
Colouring Problems

Definition

The graph-to-colour problem is the following:
Input: G a graph
Output: Optimal colouring of G.

Definition

The colouring problem is the following:
Input: $k \in \mathbb{N}$ and a graph G
Output: Is G k-colourable?

Definition

The k-colouring problem is the following:
Input: G a Graph
Output: Is G k-colourable?
Definition

- A graph $G = (V, E)$ contains an independent set of size k, iff
- $\exists S \subseteq V : |S| = k \land \forall a, b \in S, a \neq b : (a, b) \notin E$.

Definition

- $\alpha(G)$ denotes the size of the largest independent set:
- G contains an independent set of size $\alpha(G)$, but no independent set of size $\alpha(G) + 1$.
Definitions

Definition

Let $G = (V, E)$ be a graph.

\[
\alpha(G) = \max\{ |V'| ; \ V' \subseteq V \land \ \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) = \max\{ |V'| ; \ V' \subseteq V \land \ \forall a, b \in V' : (a, b) \notin E \} \\
\chi(G) = \min\{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\chi'(G) = \min\{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\]

More notations:

$\omega(G) = \alpha'(G)$,
$\alpha(G) = \omega'(G) = \beta_0(G)$,
$\kappa(G) = \chi'(G)$.
First simple Example

- Time of activity of a register (construction of a compiler)
- Program segments: \(\cdots \text{Read}(A) \cdots \text{Write}(B) \cdots \)
- Living time of a variable \(A \): Maximal interval
 - Starting with a \(\text{Write}(A) \).
 - Ending by the last \(\text{Read}(A) \).
 - Such that no further \(\text{Write}(A) \) is between this two points.

- Problem: how many registers are needed?
- D.h. assign for each living time of a variable a register.
- Example: \((0, 10), (3, 7), (9, 20), (25, 50), (12, 34), (6, 16), (17, 26), (11, 46), (23, 26), (30, 46), (19, 27)\)
Definition (Interval-graphs)

- A graph $G = (V, E)$ is called interval-graph, iff it is the intersection graph of a set of intervals on a line.
- An interval-graph is called proper, iff no interval is contained in an other interval.
Idea: look for independent sets.
Idea: check the intervals from left to the right (sorted by the left endpoints):
Model and Colouring (Invariant)

Determine the invariant:
Colouring of Interval-graphs (Algorithm)

Theorem

The graph-to-colour problem is for interval-graphs in time $O(n \log(n))$ solvable.

1. Sort the intervals by their left endpoints.
2. Check all endpoints e from the left to the right.
3. If e is the starting point of an interval, colour it with the smallest free colour.
4. If e is the ending point of an interval I is, free the colour of I.

Invariant

If a node v is coloured with colour k, then v is part of a k-clique.
Example of independent set problem on interval-graphs

1. Sort the intervals by their starting points.
2. Go through all starting points e from left to right.
3. Store for each interval I the size of a maximal independent set of intervals, which contain I as the rightmost interval.
Independent Set Problem for Interval-graphs

Theorem

Finding a maximal independent set is solvable in time $O(n \log(n))$ on interval-graphs.

1. Sweep through the start- and endpoints of intervals from left to right.
2. Store for each endpoint e the size of a maximal independent set of intervals, which is placed to the left of e.
3. While sweeping from left to right do:
 1. If e is a starting point of interval (e, f) and there is no endpoint to the left of e, then let $S(f) = 1$.
 2. If e is a starting point of interval (e, f), then compute: largest endpoint e' to the left of e and let $S(f) = S(e') + 1$.
 3. If e is an endpoint of interval (a, e), then compute: largest endpoint e' to the left of e and to the right of a. If that exists, then let $S(e) = \max(S(e'), S(e))$.

Maximal Clique on Interval-graphs

Theorem

Finding a maximal clique is solvable in time $O(n \log(n))$ *on interval-graphs.*

Remark

Very many problems are efficient solvable on interval-graphs.
A permutation-graph is the intersection graph of a set of lines, which are drawn between two parallel lines.
Example and Colouring

The invariant is the same as the one on interval-graphs.
The graph-to-colour problem is solvable in time $O(n \log(n))$ on permutation-graphs.

Idea: Analog algorithms as on intervall-graphs.

Finding a maximal independent set is solvable in time $O(n \log(n))$ on permutation-graphs.

Idea: Analog algorithms as on intervall-graphs.

Finding a maximal clique is solvable in time $O(n \log(n))$ on permutation-graphs.

Idea: Analog algorithms as on intervall-graphs.
Definition (Arc-Graph)

- A graph $G = (V, E)$ is called arc-graph,
- iff he is the intersection graph of a set of arcs on a circle.
- A arc-graph is called proper, iff no arc in contained in an other arc.

Remark

An interval-graph is an arc-graph.

Question:

Are the algorithms for interval-graphs adaptable to arc-graphs.
Reasoning for the above Results

- Question, what is the reason that the above problems are efficient solvable on interval-graphs?
- Consider the “flow of information”, i.e.:
- Which information is used (stored) when the algorithms move from left to right.
- One could think, all $k!$ colourings should be considered (stored).
- But, the colourings are exchangeable.
- Thus only the optimal colouring at each position is stored.

Question:

What is the situation on arc-graphs?
Colouring on Arc-Graphs (Idea)

- Consider the flow of information.
- What information has to be considered when moving around the circle?
- The colouring are not exchangeable because the end the colours have to match.
- Thus we may have to consider $k!$ colourings.
- If k is constant, then the problem is in \mathcal{P}
- IF k is not constant, then the problem could be in \mathcal{NPC}.
The k-colouring problem on arc-graphs is solvable in polynomial time.

Idea: Consider all $k!$ colourings.

1. W.l.o.g.: The graph contains no $k + 1$ clique.
2. Otherwise we search analog as on interval-graphs for the largest clique.
3. Colour an some maximal k'-Clique.
4. Colour the arcs in a clockwise order.
5. At most $k!$ colourings are considered (stored) during this process.
6. Check at the end if some colouring do not contradict with the first one.
7. Running time: $O(k!^2 \cdot n \log n) = O(n \log n)$
Colouring Problem on Arc-Graphs

Theorem

The colouring problem on arc-graphs NP-complete.

Idea: Reduction to the word problem for symmetric groups.

Definition

The word problem for symmetric groups is the following:

Input: $\pi \in S_k$ (Word and symmetric group) and $S_1, S_2, \cdots S_n$ subgroups

Output: Holds: $\pi \in S_1 \circ S_2 \circ \cdots \circ S_n$
Colouring Problem on Arc-Graphs

\[
\begin{align*}
\pi(1) &= 3 \\
\pi(2) &= 1 \\
\pi(3) &= 2 \\
\pi(4) &= 5 \\
\pi(6) &= 6
\end{align*}
\]

\[
S_1 = \{2, 4\} \\
S_2 = \{4, 6\} \\
S_3 = \{1, 3\} \\
S_4 = \{1, 6\}
\]
Circle-Graphs

Definition (Circle-Graphs)

- A graph \(G = (V, E) \) is called circle-graph,
- iff it is the intersection graph of a set of chords within one circle.

Definition (Overlap-Graph)

- A graph \(G = (V, E) \) is called overlap-graph,
- iff it is definable by the overlapping of a set of intervals on a line.
- Let \(I \) be a set of intervals.
- Then the corresponding overlap-graph is:
 \[G = (I, \{(a, b) \mid a, b \in I \land a \cap b \neq \emptyset \land a \neq \emptyset \land a \cap b \neq \emptyset\}) \]
Example
Statements on Circle-Graphs

Lemma

1. An interval-graph is an arc-graph.
2. A proper arc-graph is a circle-graph.
3. A permutation-graph is a circle-graph.
4. A graph G is a circle-graph, iff G is a overlap-graph.

Just show: a graph G is a circle-graph, iff G is a overlap-graph.

- Chord A from $r \cdot e^{i \cdot a}$ to $r \cdot e^{i \cdot a'}$ becomes interval $A' = (a, a')$ $(0 \leq a < a' < 2 \cdot \pi)$.
- Chord B from $r \cdot e^{i \cdot b}$ to $r \cdot e^{i \cdot b'}$ becomes interval $b' = (b, b')$ $(0 \leq b < b' < 2 \cdot \pi)$.
- The chord A crosses B, iff $a < b < a' < b'$ oder $b < a < b' < a'$.
- Interval A' has an overlap with B, iff $a < b < a' < b'$ oder $b < a < b' < a'$.
A graph G is a circle-graph, iff G is a overlap-graph
Colouring of Circle-Graphs (Idea)

- What is the flow of information?
- Crossing chords “limit” the flow of information.
- But: information about the colouring of pairs of chords could be an idea.
- Thus, the 4-colouring problem on circle-graphs could be NP-complete.
- And the 3-colouring on circle-graphs could still be in \mathcal{P}.
Colouring Problems (Overview)

Theorem

The 4-colouring problem on circle-graphs is NP-complete.

Theorem

*The 3-colouring problem on circle-graphs is solvable in time $O(n \log(n))$.***
4-Colouring Problem on Circle-Graphs

- Reduction from the 3-SAT Problem.
- For a given 3-SAT formula \mathcal{F} we construct a circle-graph G.
- It has to hold: \mathcal{F} satisfiable \iff G 4-colourable.
- Problem: Coding of logical values by the colouring of cords.
- Idea: Each pair of chord (a, b) codes a logical value of v.
- Holding: $v \iff f(a) = f(b)$ for a colouring f.
- Construct some kind of “circuit”.
Component Negation I \((x = \neg y)\)
Overview
The Negation

Negation II: \(x = \neg y \)

\[
\begin{array}{ccccc}
\neg & a & b & \neg & \neg
\end{array}
\]

Combination of Colours

<table>
<thead>
<tr>
<th>x</th>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>2,3</td>
<td>4,4</td>
<td>1,2</td>
</tr>
<tr>
<td>1,1</td>
<td>2,3</td>
<td>4,4</td>
<td>1,3</td>
</tr>
<tr>
<td>1,1</td>
<td>2,4</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>1,1</td>
<td>2,3</td>
<td>4,4</td>
<td>2,3</td>
</tr>
<tr>
<td>1,1</td>
<td>2,4</td>
<td>3,3</td>
<td>2,4</td>
</tr>
<tr>
<td>1,1</td>
<td>3,4</td>
<td>2,2</td>
<td>3,4</td>
</tr>
</tbody>
</table>
Some Simple Components

Negation II:
\[x = \neg y \]

Equality:
\[x = y \]

Static XOR:
\[x = y \oplus e \]
Equality: \((x = y = z)\)

- \(\neg y \Rightarrow a_1 \Rightarrow a_2 \Rightarrow \neg z\)
- \(\neg y \Rightarrow b_1 \Rightarrow \neg x\)
- \(y \Rightarrow \neg a_1 \Rightarrow \neg a_2 \Rightarrow z\)
- \(y \Rightarrow \neg a_2 \Rightarrow b_2 \Rightarrow \neg b_1 \Rightarrow x\)
- A colouring is possible in all cases.
Equality: \((x = x' \land y = y')\)
Equality \((x = y = z)\)

\[x = y = z \]

\[x = x' \text{ and } y = y' \]
More Simple Components

Weak Or:
\(\neg x \land \neg z \Rightarrow \neg y \)

Weak Negation:
\(\neg x \Rightarrow y \) and \(\neg y \Rightarrow x \)

True:
\(x = true \)
Or \((x \lor y = z)\)

- \(\neg x \land \neg y \Rightarrow \neg x_3 \land \neg y_1 \Rightarrow z_3 \Rightarrow \neg z\)
- \(x \Rightarrow \neg x' \Rightarrow z_1 \Rightarrow z\)
- \(y \Rightarrow \neg y' \Rightarrow z_4 \Rightarrow z\)
- A colouring is possible in all cases.
Static Simple Clause

\[x_2 = x'_2 \text{ and } (x_1 \oplus e_1) \lor (x_2 \oplus e_2) \lor (x_3 \oplus e_3) = true \]
Multiple Equality \((x_i = y_i)\) [with Transport \((z_0 = z_k)\)]
Clause \((x_i = y_i \text{ und } c_i \text{ satisfied})\)
Formula (all c_i are satisfied)
Colouring problems

Theorem

The k-colouring problem on circle-graphs is NP-complete for $k \geq 4$.

Theorem

The $(2 \cdot k - 1)$-colouring problem on circle-graphs with clique size k is NP-complete for $k \geq 3$.

Theorem

A circle-graph with clique size k is always $(3 \cdot k)$-colourable.
Independet Set and Clique

Theorem

Finding a maximal independent set is solvable in time $O(n \log(n))$ on circle-graphs.

Theorem

Finding a maximal clique is solvable in time $O(n \log(n))$ on circle-graphs.
Concluding Remarks

Theorem

On an interval graph G we may in time $O(n \log(n))$ compute $\chi(G), \alpha(G)$ and $\omega(G)$.

Theorem

On a permutation graph G we may in time $O(n \log(n))$ compute $\chi(G), \alpha(G)$ and $\omega(G)$.

Theorem

The k-colouring problem on arc-graphs is solvable in polynomial time, but the colouring problem for arc-graphs is NP-complete.

Theorem

The 3-colouring on circle-graphs is solvable in time $O(n \log(n))$. The k-colouring problem on circle-graphs is NP-complete for $k \geq 4$.
Conclusions

- Colouring (and many more problems) on interval graphs are easy.
- k-colouring on arc-graphs is easy.
- Colouring on arc-graphs is hard.
- 4-colouring problem on circle-graphs is hard.
- 3-colouring problem on circle-graphs is easy.
- k-colouring problem on circle-graphs is hard for $k > 3$.
g-Segment-graphs

Definition (g-Segment-graphs)

- A graph $G = (V, E)$ is called g-Segment-graph, iff
- it is the intersection-graph of a set of chords within a regular g-polygon.

Lemma

We have:

1. A permutation-graph is a circle-graph.
2. A permutation-graph is a g-segment-graph.
3. A proper arc-graph is a circle-graph.
4. There are proper arc-graphs, which are not g-segment-graphs.
Disk-graphs

Definition (Disk-graphs)

- A graph \(G = (V, E) \) is called disk-graph, iff
- it is a intersection-graph of a set of disks in the plane.

Definition (Unit-Disk-graphs)

- A graph \(G = (V, E) \) is called unit-disk-graph, iff
- it is a intersection-graph of a set of equally sized disks in the plane.
Overview of the Results

<table>
<thead>
<tr>
<th></th>
<th>k-Col.</th>
<th>Col.</th>
<th>Opt-Col</th>
<th>Ind.</th>
<th>Clique</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervall</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
</tr>
<tr>
<td>Permut.</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
</tr>
<tr>
<td>Circle-G.</td>
<td>\mathcal{NPC}</td>
<td>\mathcal{NPC}</td>
<td>\mathcal{NP}-hard</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
</tr>
<tr>
<td>g-Segment</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
</tr>
<tr>
<td>Disk-G.</td>
<td>\mathcal{NPC}</td>
<td>\mathcal{NPC}</td>
<td>\mathcal{NP}-hard</td>
<td>\mathcal{NPC}</td>
<td>\mathcal{P}</td>
<td>\mathcal{NPC}</td>
</tr>
<tr>
<td>Planar</td>
<td>\mathcal{NPC}</td>
<td>\mathcal{NPC}</td>
<td>\mathcal{NP}-hard</td>
<td>\mathcal{NPC}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
</tr>
<tr>
<td>k-Planar</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
<td>\mathcal{P}</td>
</tr>
</tbody>
</table>
Questions

- How is the colouring problem solvable on interval graphs?
- How is the colouring problem solvable on permutation graphs?
- How is the independent set problem solved on arc-graphs and cycle-graphs?
- How is the clique problem solved on arc-graphs?
- Why is the colouring problem on arc-graphs hard?
- What is the idea of the reduction of the 4-colouring problem on cycle-graphs?
Legend

n : Not of relevance

\(g \) : implicitly used basics

\(i \) : idea of proof or algorithm

\(s \) : structure of proof or algorithm

\(w \) : Full knowledge