Algorithmic Graph Theory (SS2016)
Chapter 5
Perfect Graphs

Walter Unger

Lehrstuhl für Informatik 1

13:20, December 21, 2018
Contents I

1. **Introduction**
 - Reminder
 - Definition
 - Bipartite Graphs
 - Comparability Graphs
 - Statements
 - Interval Graphs

2. **Theorems**
 - Statements
 - Recognition
 - Algorithmen
 - An alternative Characterisation
 - Statements

3. **Chordal Graphs**
 - Definition
 - Statements
 - Recognition
 - Algorithmen
 - An alternative Characterisation
 - Statements

4. **Clique-Separators**
 - Chordal Graphs
 - Clique-Separator
 - Fill-In
 - MES
 - Clique-Separable
Reminder 1

- Colouring is hard!
- Colouring is NP-complete.
- Colouring is not approximable.
- There are no good bounds known.
- Question: is there a graph class with good bounds?
Definition

Let $G = (V, E)$ be a graph.

$$
\alpha(G) = \max \{ |V'| : V' \subset V \land \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) = \max \{ |V'| : V' \subset V \land \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) = \min \{ k : \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\bar{\chi}(G) = \min \{ k : \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
$$

Further notations:
$$
\omega(G) = \bar{\alpha}(G), \\
\alpha(G) = \bar{\omega}(G) = \beta_0(G), \\
\kappa(G) = \bar{\chi}(G)
$$
Statements I

Theorem

Let $G = (V, E)$ be a graph. Then we have:

$$\alpha(G) = \overline{\alpha(G)} \text{ and } \chi(G) = \overline{\chi(G)}$$

Proof:

$$\alpha(G) = \max\{ |V'| \mid V' \subseteq V \land \forall a, b \in V' : (a, b) \not\in E \}$$

$$\omega(G) = \max\{ |V'| \mid V' \subseteq V \land \forall a, b \in V' : (a, b) \in E \}$$

$$\chi(G) = \min\{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \not\in E \}$$

$$\overline{\chi}(G) = \min\{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}$$
Introduction
Theorems
Chordal Graphs
Clique-Separators

Statements II

Theorem

Let $G = (V, E)$ be a graph with $n = |V|$. Then we have:

$$\frac{n}{\alpha(G)} \leq \chi(G) \leq n - \alpha(G) + 1.$$

Proof:

$$\alpha(G) = \max \{ |V'| ; \ V' \subset V \land \forall a, b \in V' : (a, b) \notin E \}$$

$$\chi(G) = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}$$
Statements III

Theorem

Let $G = (V, E)$ be a graph with $n = |V|$. Then we have:

$$2\sqrt{n} \leq \chi(G) + \overline{\chi}(G) \leq n + 1$$

$$n \leq \chi(G) \cdot \overline{\chi}(G) \leq \left(\frac{n+1}{2}\right)^2.$$

Idea of proof:

$$\chi(G) = \min\{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i: 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}$$

$$\overline{\chi}(G) = \min\{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i: 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}$$

Consider the two Coverings as a grid.
Statements III

\[2 \sqrt{n} \leq \chi(G) + \chi(G) \leq n + 1\]
\[n \leq \chi(G) \cdot \chi(G) \leq \left(\frac{n+1}{2}\right)^2.\]
Definition

A graph $G = (V, E)$ is called:

1. **χ**-perfect, iff for all node-induced subgraphs H of G holds: $\chi(H) = \omega(H)$.
2. **α**-perfect, iff for all node-induced subgraphs H of G holds: $\kappa(H) = \alpha(H)$.
3. perfect, if it is **χ**-perfect [and **α**-perfect].

\[
\begin{align*}
\alpha(G) &= \max \{ |V'| ; V' \subseteq V \land \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) &= \max \{ |V'| ; V' \subseteq V \land \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) &= \min \{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\overline{\chi}(G) &= \min \{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\end{align*}
\]
Definitions

Definition

A graph $G = (V, E)$ is called:

1. χ-perfect, iff for all node-induced subgraphs H of G holds: $\chi(H) = \omega(H)$.
2. α-perfect, iff for all node-induced subgraphs H of G holds: $\kappa(H) = \alpha(H)$.
3. perfect, if it is χ-perfect [and α-perfect].

Definition

A property \mathcal{E} of a graph $G = (V, E)$ is called hereditary, iff the property holds for each node-induced subgraph of G.

\[\omega(G) = \overline{\omega}(G), \quad \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \quad \kappa(G) = \overline{\chi}(G) \]
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- Outerplanar graphs: no
- Maximal outerplanar graphs: yes
- Maximal planar graphs: no (following slide)
- Bipartite graphs: yes
- K-Trees: yes
- Complement of a bipartite graph: yes (following slides)
- Cycles of odd length ≥ 5: no
- Linegraphs of bipartite graphs: yes (following slides)
Example Planar

\[\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Complement of a bipartite Graph

Lemma

The complement of a bipartite graph is \(\chi\)-perfect.

Proof:

- Note, that the class is hereditary.
- Show \(\chi(\overline{G}) = \omega(\overline{G})\).
- So we have to prove: \(\kappa(G) = \alpha(G)\).
- By the theorem of König we get:
 - Take a maximum matching \(M\) with \(|M| = a\).
 - Assume that \(b\) nodes are not covered by \(M\).
 - Then we have: \(\alpha(G) = a + b\) and
 - \(\kappa(G) = a + b\).
Lemma

Linegraphs of bipartite graphs are χ-perfect.

Proof:

- Note, that the class is hereditary.
- Let G bipartite graph and $H = L(G)$.
- Then we have by the construction of the linegraph:
 - $\omega(H) = \Delta(G)$ and
 - $\chi(H) = \chi'(G)$.
- Furthermore is already known: $\chi'(G) = \Delta(G)$.
- Thus we have: $\omega(H) = \Delta(G) = \chi'(G) = \chi(H)$.

\[\omega(G) = \overline{\omega}(G), \ \alpha(G) = \overline{\omega}(G) = \beta_0(G), \ \kappa(G) = \overline{\chi}(G) \]
Definition

A relation \leq is called partial ordering, iff:

- Reflexive: $x \leq x$
- Transitive: $x \leq y \land y \leq z \implies x \leq z$
- Antisymmetric: $x \leq y \land y \leq x \implies x = y$

- Two elements are called comparable, if $x \leq y$ oder $y \leq x$.
- A set of pairwise comparable elements is called a chain.
- A set of pairwise not comparable elements is called an anti-chain.
- y covers x ($x \preceq y$), if $x \leq y$ and $x \leq a \leq y \implies a \in \{x, y\}$.
- This is called a PO-set
- The PO-set is denoted by P_{\preceq}.

\[\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Definition

A graph $G = (V, E)$ is called **comparability graph**, if there is a partial ordering \leq on V, with:

$\{x, y\} \in E$ iff. x and y are comparable.

- Example: bipartite graphs.
- Comparability graphs are transitive orientable.
- Example: transitive orientation of a bipartite graph.
Lemma

Let $P\leq$ be a PO-set. The maximal length of a chain is equal to the minimal number of anti-chains in which $P\leq$ may be partitioned.

\leq : Clear!

\geq :

- x minimal: $\forall a \in P_{\leq} : a \leq x \implies a = x$
- From this we may define a height function $h(x)$.
- Let $x = z_1 \leq z_1 \leq \ldots \leq z_{h_y} = y$ be the longest chain of length $h(y)$.
- The elements of the same height form an anti-chain.
- We have defined a partition of $h(y)$ anti-chains.

$$\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G)$$
Theorem

Comparability graphs are χ-*perfect.*

Proof: clear!

Note: $\chi(G) \leq \omega(G)$ holds.

Lemma

Let $P \leq$ *be a PO-set. The maximal length of a anti-chain is equal to the minimal number of chains in which* $P \leq$ *may be partitioned.*

Definition

A topological ordering of $G = (V, A)$ *is an ordering of the nodes* $\rho : V \mapsto \{1, 2, \ldots, n\}$ *with:*

$(u, v) \in A \implies \rho(u) < \rho(v).$

Lemma

The colouring problem may be solved in linear time on comparability graphs by using a topological ordering.
Statements

Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

Theorem

*For a graph G are the following statements equivalent:
 * G is an interval graph.
 * G contains no induced C_4 and \overline{G} is a comparability graph.
 * The maximal cliques of G may be ordered such that, the cliques which have a common node, follow in the ordering each other.*
First Observations

Theorem

The disjoint union of \(\chi \)-perfect graphs is a \(\chi \)-perfect graph.

Theorem

The identification of two \(\chi \)-perfect graphs at a clique gives a \(\chi \)-perfect graph.

Theorem

A graph \(G \) is \(\chi \)-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: \(\forall H \subset G : \exists I : \omega(H - I) \leq \omega(H) - 1 \) and \(I \) is an independent set.
Theorem

A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subseteq G : \exists I : \omega(H - I) \leq \omega(H) - 1$.

Proof:

\implies:
- Because $\chi(G) = \omega(G)$ holds,
- will each colour-class hit all maximum-cliques.

\impliedby:
- We may show by induction over $|V(H)|$:

$$\chi(H) \leq \chi(H - I) + 1 \overset{\text{V.}}{\iff} \omega(H - I) + 1 \leq \omega(H).$$
Strong perfect Graphs

Definition

A graph $G = (V, E)$ is called strong perfect, iff for each node-induced subgraph exists an independent set, which hits all maximal cliques.

Theorem

A strong perfect graph is also perfect.

Theorem

The problems for $\chi(G), \alpha(G), \omega(G), \kappa(G)$ are on χ-perfect graphs solvable in polynomial time.

Note: Proof uses the Ellipsoid Method.
Theorem

The following statements are equivalent for graphs $G = (V, E)$:

1. G is χ-perfect.
2. G is α-perfect
3. For all node-induced subgraphs $H = (V', E')$ of G holds: $\alpha(H) \cdot \omega(H) \geq |V'|$.

Theorem

Perfect Graphs are closed under complement.
Statements II

Lemma

If a node x *of a* χ-*perfect graph* G *is substituted by a* χ-*perfect graph* H, *then we get a* χ-*perfect graph* G_H.

Proof:

- Construct an independent set I, which hits all maximum cliques.
- Colour G with $\chi(G)$ colours.
- Let I_x be the set of nodes with the same colour as x.
- Let I_H be an independent set in H, which hits all maximum-cliques in H.
- Let: $I = I_x \setminus \{x\} \cup I_H$
- Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and
 - because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, than contains C a maximum-clique of H
 - and therefore hits I_H also C.
Lemma

If a node x of a α-perfect graph G is substituted by an independent set S, then we get a α-perfect graph G_S.

- It is sufficient to add just one node y as a copy of x.
- We consider two cases:
 - x is in an independent set S of size $\alpha(G)$.
 - x is not in an independent set S of size $\alpha(G)$.
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is in an independent set S of size $\alpha(G)$.

- Thus $S \cup \{y\}$ is an independent set and $\alpha(G_{\{y\}}) = \alpha(G) + 1$ holds.
- Because $\mathcal{K} \cup \{y\}$ is a clique cover of $G_{\{y\}}$, we get:
 - $\kappa(G_{\{y\}}) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G_{\{y\}}) \leq \kappa(G_{\{y\}})$.

$\omega(G) = \omega(G) = \omega(G) = \omega(G) = \omega(G) = \omega(G) = \omega(G)$
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is not in an independent set S of size $\alpha(G)$.

- Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
- Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
- Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
- And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
- Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
- By induction we get:
 \[\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1. \]
- Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
- Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that α-perfect induces χ-perfect):

- Let G be a α-perfect graph.
- We will use induction over $n = |V(G)|$.
- The statement holds clearly for $n \leq 3$. Let $n \geq 4$.
- For all induces real subgraphs of G holds the statement.
- Thus we have to show $\chi(G) \leq \omega(G)$.
- If G has an independent set S, which hists all maximum cliques,
 then $\omega(G \setminus S) = \omega(G) - 1$ holds.
- Thus we get: $\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)$.
- Therefore we assume in the following, that G has not an independent set S, which hists all maximum cliques.
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{S \in S \mid v_i \in C_S\}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

\[
|V(H)| = \sum_{v_i \in V(G)} h_i = \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S| = \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S| = \sum_{S \in S} |C_S| = \omega(G) \cdot |S|
\]
Proof

\begin{itemize}
\item By Construction of \(H \) we have \(\omega(H) \leq \omega(G) \).
\item Then it holds (note in the following: \(|T \cap C_S| \leq 1 \) and \(|S \cap C_S| = 0 \)):

\[
\alpha(H) = \max_{T \in S} \sum_{x_i \in T} h_i = \max_{T \in S} \sum_{S \in S} |T \cap C_S| \leq |S| - 1
\]

\item Furthermore we get:

\[
\kappa(H) \geq \frac{|V(H)|}{\omega(H)} = \frac{|V(H)|}{\omega(G)} = |S|.
\]

\item Thus we get the following contradiction:

\[
\kappa(H) \geq |S| > |S| - 1 \geq \alpha(H).
\]
\end{itemize}
Definition

A graph $G = (V, E)$ is called minimal imperfect, iff it is not perfect and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem

A minimal imperfect graph is either an odd cycle of length ≥ 5 or its complement.

Theorem

The Recognition of perfect graphs is in \mathcal{P}.
Definition
A graph $G = (V, E)$ is called minimal imperfect, iff it is not perfect and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem
A minimal imperfect graph is either an odd cycle of length ≥ 5 or its complement.

Theorem
*The Recognition of perfect graphs is in \mathcal{P}.***
Definition

A graph G is called chordal, iff it induces no C_k for $k \geq 4$.

Note: I.e. G does not contain a C_k as induced subgraph.
Note: are sometimes also called triangulated.
Examples:

- Intervall-graphs
- Maximal outer-planar graphs
- K-trees
Theorem

A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\(\implies\)):
- Let S be a inclusion minimal separator is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is shortest path P_i from u to v in H_i.
- Thus three is a cycle given by P_1 and P_2.
- There is an edges $\{u, v\}$.
Theorem

A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\Longleftarrow):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
Simplicial Nodes

Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighboured nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
- $H_i \cup S$ contains a simplicial node.
- This node is also simplicial node in G.

![Diagram of simplicial nodes](image.png)
Theorem

Chordal graphs and their complements are perfect.

- **Proof (just using chordal graphs):**
 - By induction.
 - Let G be no clique.
 - Then contains G a separating clique C.
 - $G - C$ splits into components H_i, with $i \geq 2$.
 - $H_i \cup C$ are perfect.
 - Thus G is perfect.

- **Proof (using the complement of chordal graphs):**
 - Identify clique in G, which hists all independent sets.
 - Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.
Chordal Graphs and PES

Theorem

A graph is chordal, iff it has a PES.

Show: \(\iff\).

- Let \(C\) be a cycle in \(G\).
- Let \(u\) be the first node in \(C\) under the ordering \(\rho\).
- Thus the neighbours of \(u\) are connected.
- Thus \(G\) is chordal.

Show: \(\implies\).

- Choose simplicial node \(v\) and let \(\rho(v) = 1\).
- Compute recursively more nodes of \(G - v\).
Theorem

Chordal graphs could be recognized in polynomial time.

Proof: determine a PES (on the next slides).

Theorem

Chordal graphs could be recognized in time $O(n^2 \cdot m)$.

Theorem

Chordal graphs could be recognized in time $O(n + m)$.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:

- Compute the PES in a reverse fashion.
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.
A total ordering ρ on V is a PES, iff for all pairs of nodes v_i, v_j, which are connected by a path, for which for all inner nodes u $\rho(u) < \min(\rho(v_i), \rho(v_j))$ holds, then follows that these nodes v_i, v_j are connected by an edge.

Proof \Rightarrow by contradiction.

Let v_i, v_j be as above with $\{v_i, v_j\} \notin E$.

Let P the shortest path from v_i to v_j and let u be the leftmost node from P in ρ.

The neighbours of u on P are connected by an edge.

Contradiction to the minimality of the path P.

Proof \Leftarrow is simple.
Recognition

Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

- Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with
- $\{u, w\} \in E$ and $\{v, w\} \notin E$.
- Then there is a node z with:
 - $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \notin E$ and
- for all inner nodes u on the path P of v, w holds:
 - $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.

![Graph Diagram](attachment:image.png)
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Test PES Property

- The algorithm:
 - Start with an arbitrary node \(v_n \).
 - Choose \(v_{i-1} \) such that is connected with as many as possible nodes \(v_i, v_{i+1}, \ldots, v_n \).
 - Show \(v_1, v_2, \ldots, v_n \) is a PES.

- What is necessary to compute the ordering:
 - \(N_i = \{ v_j \in \Gamma(v_i) \mid j > i \} \)
 - \(R_i = |\{ v_j \in \Gamma(v_i) \mid j > i \}| \)

- What is necessary to do the following test:
 - Test \(N_i = \{ v_j \in \Gamma(v_i) \mid j > i \} \) induces a clique.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.
- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Test N_i:

- Getting the idea:
- Check the nodes from left to right.
- For some node v_i do not at once the test of N_i to be a clique.
- Instead delay the test on for each neighbour v_j of v_i.
- But prepare, the set of neighbours which v_j should have.
- Store this in tables $T[v_j]$.

Test $N_i = \{ v_j \in \Gamma(v_i) \mid j > i \}$ induces a clique.
Test N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subset N$ holds, the stop with message “no PES”.
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Teste N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message "No PES".
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Algorithms for Graph Problems

- The standard graph problems could be solved in polynomial time.
- Idea: Greedy algorithm using the PES ordering.
- Note: Chordal Graphs have at most $|V|$ maximum cliques.
- Thus only the simplicial nodes have to be considered for the clique problem.
- For the colouring problem use greedy on the reverse PES ordering.
- Similar ideas work for the other problems.
Lemma

Let $T = \{ T_i \mid 1 \leq i \leq n \}$ be a family of subtrees of some base tree and each pair of trees from T intersect each other.

- Then they have a common node.
- I.e. $\cap_{1 \leq i \leq n} T_i \neq \emptyset$

- The union of all subtrees T_i induces a subtree T'.

- A leave of T' which is not in all T_i could be deleted without changing the intersections of the T_i.

- By repeating we find a node which is common to all T_i.
Theorem

Let $G = (\{v_1, v_2, \ldots, v_n\}, E)$ be a Graph. The following statements are equivalent:

1. G is chordal.

2. G is the intersection graph of a family of subtrees.

3. There is a tree B on the set of maximal cliques of G such that for a pair of cliques C', C'' holds:
 - The clique $C' \cap C''$ is part of each maximal clique, which
 - is on the path from C' to C'' in B.
Proof 1

Show: G is chordal $\implies G$ is intersection graph of a family of subtrees.

- Proof by Induction.
- $n = 1$ clear.
- Induction step: $n - 1 \to n$
 - Nodes v_1, v_2, \ldots, v_n and $s = v_n$ a simplicial node.
 - Let $(B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\})$ intersection graph representation for $v_1, v_2, \ldots, v_{n-1}$
 - $\Gamma(s) \setminus \{s\}$ is a clique.
 - There is a common node a in $\cap_{v \in \Gamma(s)} V(T_v)$.
 - Add to B_{n-1} a new leaf b for a.
 - And generate a new subtree, which consists of b.
 - And enlarge each subtree from $\Gamma(s)$ with b.

![Diagram](attachment:image.png)
Proof II

Show: G is intersection graph of a family of subtrees $\implies G$ is chordal.

- Let $C = (v_0, v_1, \ldots, v_{k-1})$ cycle of length $k \geq 4$.
- Let $T_0, T_1, \ldots, T_{k-1}$ be the corresponding trees.
- These subtrees will form a cycle in the base tree.

The other part of the proof follow in a similar way.
Simple Statements

Lemma

Let G be a chordal graph. A node v of G is simplicial, iff it is contained in only one maximal clique.

Lemma

Let G be a chordal graph and C a clique in G. Then exitst a PES, which enumerates the nodes from C last.
Theorem

Any chordal graph with n nodes has a $(\omega(G), 1/2)$-separator, which is a clique.

- Note: A separator of size $\omega(G)$ must not be a Clique.
- Note: A clique-separator must not be minimal separating.
Proof

- Algorithm to compute a chordal separator:
 - \(C := \emptyset \)
 - As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subset \Gamma(a) \)
 - \(C := C \cup \{ a \} \)

- There is at most one component \(A \) with: \(|A| > n/2 \).
- At each round, one node will be removed from that component.
- There are at most \(\lceil n/2 \rceil \) iterations.
- Show \(\exists a : C \subset \Gamma(a) \).
- Note:
 - At the start \(a \) is freely chosen.
 - \(C \) is always minimal separating for \(A \) and \(V \setminus (C \cup A) \).
 - All nodes from \(C \) have neighbours in \(A \).
Proof

- $C := \emptyset$
- As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subseteq \Gamma(a)$
 - $C := C \cup \{a\}$

- Show $\exists a : C \subseteq \Gamma(a)$.
- Let $\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|})$ be a PES for $G[A \cup C]$.
- Consider now $a = a_{|A|}$:
 - Each node from C is connected by a path with a.
 - Thus each node from C is directly connected with a.
 - Furthermore $\{a\} \cup C$ is a clique.
 - The computation could be done in time $O(n \cdot m)$.
 - Using an other algorithm a linear running-time is possible.
Introduction

Definition (Clique-Separator)

Clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

- The leaves of the clique-separator-tree are called atoms.
Basics, Motivation

- A clique-separator-tree has at most $\binom{n}{2} - m$ atoms (Exercise).
- Each chordal graph has a clique-separator-tree, where all atoms are cliques.
- If the atoms are “simple”, then many problems become easy solvable.
- We will now introduce the MES, which is similar to PES.
Reminder

Definition

A node is called simplicial, iff all its neighbours are connected by an edge.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.

Theorem

A graph is chordal, iff it has a PES.
Definition (Fill-in)

Let $G = (V, E)$ be a graph with $|V| = n$ and $\rho : V \mapsto \{1, \ldots, n\}$ an ordering of the nodes. The fill-in for ρ is:

$$F_\rho := \left\{ \{v, w\} : v \neq w \land \{v, w\} \not\in E \land \text{there is a path } v = x_1x_2 \ldots x_l = w \text{ with: } \rho(x_i) < \min(\rho(v), \rho(w)) \forall i = 2, 3, \ldots, l - 1 \right\}$$

- Notation: $G_\rho = (V, E \cup F_\rho)$
- Any ordering ρ is a PES for G_ρ.
- The fill-in for ρ in G_ρ is the empty set.
- Thus G_ρ is chordal.
- $\Gamma_{\rho,F}(v) := \{w \mid \{v, w\} \in E \cup F \land \rho(w) > \rho(v)\}$
- $m_F(v)$ the node u with: $\rho(u) = \min\{\rho(w) \mid w \in \Gamma_{\rho,F}(v)\}$.
Lemma

Let $G = (V, E)$ be graph and ρ a ordering.
Then is the fill-in F_ρ the smallest set F, such that for all $v \in V$ holds:

$$\Gamma_{\rho,F}(v) \subseteq \Gamma_{\rho,F}(m_F(v)) \cup m_F(v)$$

Proof:

- Show that for $F = F_\rho$ the above equation holds.
 - Let v be a node.
 - Let $w \in \Gamma_{\rho,F_\rho}(v)$ and $w \neq m_F(v) = x$.
 - Then is $m_F(v), v, w$ a path in G_ρ with $\rho(v) < \min(\rho(m_F(v)), \rho(w))$.
 - Thus $\{w, m_F(v)\} \in E \cup F_\rho$ holds.
 - And $w \in \Gamma_{\rho,F_\rho}(m_F(v))$ holds.
Proof (Let F be as defined, show that $F_\rho \subseteq F$ holds)

- Show by induction over i:
 \[\forall \{v, w\} \in F_\rho \text{ with } \rho(v) \leq i : \{v, w\} \in F \]
- Assume the above holds for $i \leq i_0$.
- Let $\{v, w\} \in F_\rho$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.
- Thus there is a path $v = x_1 x_2 \ldots x_k = w$ in $G_\rho = (V, E \cup F_\rho)$ with:
 - $k \geq 3$ and $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots k - 1$.
- Let k be minimal.
- If $k > 3$ holds, let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.
- Then is $v = x_1, x_2, \ldots, x_l$ a path in G_ρ with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.
- Thus $\{v, x_l\} \in F_\rho$ holds.
- This is a contradiction to the minimality of the path.

![Graph Diagram](image)
Proof (Let F be a set satisfying the above equation, show that $F_\rho \subseteq F$ holds)

- Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho,F_\rho}(u)$.
- Choose u such that $\rho(u)$ is maximal.
- By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho,F}(u)$ hold.
- If $v \neq m_F(u)$ then we would get $v, w \in \Gamma_{\rho,F}(m_F(u))$.
- But this is a contradiction to the maximality of $\rho(u)$.
- Thus we have $v = m_F(u)$.
- But then is $w \in \Gamma_{\rho,F}(m_F(u))$.
- And also $\{v, w\} = \{m_F(u), w\} \in F$.
- Thus we get by induction: $F_\rho \subseteq F$.

![Diagram](image-url)
Lemma

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $Fill_In(G, \rho)$

- For all $v \in V$ do:
 - $A(v) := \Gamma_{\rho, \emptyset}(v) = \{w \in \Gamma(V) \mid \rho(w) > \rho(v)\}$
- For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$
- $F_\rho = \emptyset$
- For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
Definition

An ordering \(\rho \) for \(G = (V, E) \) is called minimal elimination schema (MES), iff the Fill-in \(F_\rho \) is minimal, i.e. \(\nexists \rho' : F_{\rho'} \subset F_\rho \).

- Aim: clique-separator for \(G \) should also be clique-separator for \(G_\rho \), if \(\rho \) is a MES.
- Note: to find the smallest MES is in NPC.
- But here we only need a MES.
- This is possible in polynomial time:
 - Lexicographical breath-first-search
 - Comparing sets by their lexicographical order:
 - Thus \(\{2, 5\} < \{2, 4, 5\} \)
 - And \(\emptyset < \{2\} \)
Algorithm

- For all $v \in V$ do:
 - $pr(v) := \emptyset$
 - $\rho(v) := 0$

- For $i := n$ down to 1 do:
 - Choose node v with $pr(v)$ maximal and $\rho(v) = 0$
 - $\rho(v) := i$
 - For all w with $\rho(w) = 0$ do
 - If there is a path $v = v_1, v_2, \ldots, v_k = w$ with:
 - $\rho(v_i) = 0$ and $pr(v_j) < pr(v_w)$
 - for $j = 2, 3, \ldots, k - 1$, do:
 - $pr(w) := pr(w) \cup \{i\}$

Proof of correctness is complicated.

Running-time $O(n(m + n))$
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for $G_ρ$.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from $F_ρ$ all edges, which connect two components.
- Call this new edge set $F, F \subset F_ρ$.
- Show: $G' = (V, E \cup F)$ is chordal.
 - Let K be a cycle in G' of length ≥ 4.
 - If $K \subset G[V_i \cup C]$, then has K a chord in $F_ρ$, because $G_ρ$ is chordal.
 - This chord is in $E \cup F$.
 - If K goes through different V_i, then has K two nodes in C, which are not connected in C.
 - Thus K has a chord in G'.
Statements

Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connects two components.
- Call this new edge set F, $F \subseteq F_\rho$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_\rho = F$.
- This ends the proof.
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]
\[F_{\rho} := \text{Fill}_n(G, \rho) \]

For all \(v \in V \) do:
- \(C(v) := \emptyset \)
- For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_{\rho} \) holds, then do:
 - \(C(v) := C(v) \cup \{w\} \)

\(k := 1 \)

For all \(i := 1 \) bis \(n - 1 \) do:
- \(v := \rho^{-1}(i) \)
- Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
- Let \(B = V \setminus (A \cup C(v)) \)
- If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)
- \(\text{Atoms}(k) := V(G) \)
Correctness

Theorem

If G *has a clique-separator. Then is this separator $C(v)$ for some node* v.

- Let ρ a MES as computed by the above slides.
- Let C be a inclusion minimal clique-separator.
- Let A, B be two components from $G[V \setminus C]$.
- Thus each node from C has a neighbour in A and B.
- Let x, y be nodes with the largest ρ values in A and B.
- Show now: there is no node $z \in C$ with: $\rho(z) \leq \min \{\rho(x), \rho(y)\}$.
 - By contradiction
 - on the next slide.
Correctness (intermediate step)

Assume: There is a node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.

- Let $x = x_1, x_2, \ldots, x_{j-1}, x_j = z$ be the shortest path in G_ρ with $x_1 x_2 \ldots x_{j-1} \in A$.
- If there is an i with $i \leq j - 1$ and $\rho(x_i) \leq \rho(x_{j-1})$,
 then choose such i maximal.
- Thus we have $i \geq 2$ (Note: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$)
- And $\{x_{i-1}, x_{i+1}\} \in F_\rho$ holds, because of $\rho(x_i) \leq \min\{\rho(x_{i-1}), \rho(x_{i+1})\}$ and the definition of Fill-In
- This is a contradiction to the minimality of the path.
Correctness (intermediate step)

Assume: There is a node \(z \in C \) with: \(\rho(z) \leq \min \{ \rho(x), \rho(y) \} \).

- Thus there is a path \(x = x_1x_2 \ldots x_{j-1}x_j = z \) in \(G_\rho \) with \(\rho(x_i) > \rho(x_{i+1}) \) for \(i = 1, 2, \ldots, j - 1 \).
- Thus there a path \(y = y_1y_2 \ldots y_{l-1}y_l = z \) in \(G_\rho \) with \(\rho(y_i) > \rho(y_{i+1}) \) for \(i = 1, 2, \ldots, l - 1 \).
- Thus \(\{x, y\} \in F_\rho \) holds, which is a contradiction.
Correctness (Continuation)

- W.l.o.g. let now be $\rho(x) < \rho(y)$.
- Then holds: $\max\{\rho(v) \mid v \in A\} = \rho(x) < \rho(z)$ for all $z \in C$.
- Show now $C(x) = C$
- I.e. show: $\forall z \in C : \{x, z\} \in E \cup F_{\rho}$.
- Let $x = x_1x_2 \ldots x_{j-1}x_j = z$ be the shortest path in G_{ρ} with $x_1, x_2, \ldots, x_{j-1} \in A$.
- If $j \geq 3$ holds, then we have $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j-1$.
- This is contradiction to $\rho(z) > \rho(x)$.
- Thus $j = 2$ and $\{x, z\} \in E \cup F_{\rho}$.
Theorems

The above algorithm has running-time $O(n(n + m))$ for computing the clique-separator-tree.

By using the clique-separator-tree are the following problems are reduced to the atoms:

- Clique-Problem
- Independent-Set Problem
- Colouring-Problem
Clique-Separable

Definition

A graph $G = (V, E)$ is of type T_1, iff:

- V could be partitioned in V_1, V_2.
- $G[V_1]$ is a bipartite graph.
- $G[V_2]$ is a clique.
- Between V_1 and V_2 exist all possible edges.

Definition

A graph $G = (V, E)$ is of type T_2, iff it is complete k-partite.
Clique-Separable

Definition

A graph $G = (V, E)$ is clique-separable, iff all Atoms are of Type T_1 or T_2.

Theorem

Clique-separable graphs could be recognized in time $O(n^4)$. The Clique-Problem, Independent-Set Problem and Colouring-Problem are solvable in polynomial time on clique-separable graphs.
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- How hard is the recognition of chordal graphs?
- What is a PES?
- Which problems are easy on chordal graphs?
- Give an alternative representation for chordal graphs?
- What are comparability graphs?
- What is known about comparability graphs and interval graphs?
- What is the idea of the proof to show that perfect graphs are closes under complement?
Legend

n : Not of relevance

z : implicitly used basics

i : idea of proof or algorithm

s : structure of proof or algorithm

w : Full knowledge