Contents I

1. Introduction and Networks
 - Basics
 - Motivation
 - Paths, Cycles, Grids
 - Trees
 - Hypercube

2. Paths and Cycles in ...
 - ... in Trees
 - ... in Cubes
 - ... in Grids

3. Trees in ...
 - ... Paths and Cycles
 - ... Cubes

4. Cube-like Networks in ...

5. Embeddings
 - BF and CCC into HQ
 - CCC and BF

6. Optical Networks
 - Basics
 - Specifications
 - Devices
 - Problem
 - Introduction
 - Wavelength-Assignment
 - Lines and Cycles
 - Trees
Embeddings

Definition

Let $G = (V, E)$ and $H = (W, F)$ be graphs. An embedding (embedding-function) from G into H is: $f : V \mapsto W$. We use for embeddings the following cost-functions:

- $|W|/|V|$ (Expansion)
- $\max_{w \in W} |\{v \mid f(v) = w\}|$ (Load)
- $\max\{\text{dist}_H(f(a), f(b)) \mid \{a, b\} \in E\}$ (Dilation)

Definition

A routing for an embedding $f : V \mapsto W$ is a function: $r : E \mapsto \{\text{Paths in } H\}$ with: $r(\{a, b\})$ is a path from $f(a)$ to $f(b)$. Note the cost-functions:

- $\max\{|r(\{a, b\})| \mid \{a, b\} \in E\}$ (Dilation)
- $\max\{|\{e \mid e \in E, e' \in r(e)\}| \mid e' \in F\}$ (Congestion)
Example

- Load: 1
- Dilation: 1
- Congestion: 1
Iterated Embeddings

Let $G_i = (V_i, E_i)$ be graphs for $i \in \{1, 2, 3\}$

- Let G_1 in G_2 with dilation d, load l and congestion c embeddable.
- Let G_2 in G_3 with dilation d', load l' and congestion c' embeddable.
- Then is G_1 in G_3 embeddable with:
 - Dilation $d \cdot d'$,
 - Load $l \cdot l'$ and
 - Congestion $c \cdot c'$.

Proof obvious.
Motivation

Definition (Embedding-Problem)

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Theorem

The embedding-problem is in \mathcal{NPC}.

Proof:

- Let $d = c = l = 1$.
- Choose G to be a cycle (or path) of length $|V(H)|$.
- We will investigate in the following some special networks.
 - pathes, cycles, grids, ...
 - trees and extended trees, ...
 - hyper-cubes and related structures, ...
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
- May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Paths and cycles with n nodes

Path:
\[L(n) = (V_{L(n)}, E_{L(n)}) \]
\[V_{L(n)} = \{0, 1, 2, \ldots, n-1\} \]
\[E_{L(n)} = \{\{i, i+1\} \mid 0 \leq i < n-1\} \]
- Number of nodes: n
- Degrees: $\{1, 2\}$
- Number of edges: $n-1$
- Diameter: $n-1$
- Node-con.: 1
- Edge-con.: 1

L(8):

```
\[ v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7 \]
```

Cycle:
\[C(n) = (V_{C(n)}, E_{C(n)}) \]
\[V_{C(n)} = \{0, 1, 2, \ldots, n-1\} \]
\[E_{C(n)} = \{\{i, (i+1) \mod n\} \mid 0 \leq i < n\} \]
- Number of nodes: n
- Degree: 2
- Number of edges: n
- Diameter: $\lfloor n/2 \rfloor$
- Node-con.: 2
- Edge-con.: 2

C(8):

```
\[ v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7 \rightarrow v_0 \]
```
Definition:

Let $G = (V, E)$ and $G' = (V', E')$ be graphs. With $G \times G'$ we denote the product of G and G':

- $G \times G' = (V \times V', E_1 \cup E_2)$.
- $E_1 = \{((a, a'), (b, b')) | a' = b' \land (a, b) \in E\}$.
- $E_2 = \{((a, a'), (b, b')) | a = b \land (a', b') \in E'\}$.

Example $L(10) \times C(4)$:

Figure Description:

A diagram illustrating the product of two graphs, $L(10)$ and $C(4)$. The vertices and edges are depicted in a grid-like structure, demonstrating the product graph's connectivity.

Further Details:

The product graph $G \times G'$ combines elements from both G and G', creating a new graph with vertices as ordered pairs from the original graphs. Each edge in $G \times G'$ connects vertices in a way that reflects the original graphs' connectivity patterns.
Grid of dimension d

- Grids: $G(n_1, n_2, \ldots, n_d) = L(n_1) \times L(n_2) \times \cdots \times L(N_d)$ with $n_i > 1$

 Number of nodes: $\prod_{i=1}^{d} n_i$

 Degrees: $\{d, \ldots, 2 \cdot d\}$

 Number of edges: $\sum_{i=1}^{d} (n_i - 1) \prod_{j=1, j \neq i}^{d} n_j$

 Diameter: $\sum_{i=1}^{d} (n_i - 1)$

 Node-con.: d

 Edge-con.: d

- Grid: $G(14, 4)$:

<table>
<thead>
<tr>
<th></th>
<th>0,0</th>
<th>1,0</th>
<th>2,0</th>
<th>3,0</th>
<th>4,0</th>
<th>5,0</th>
<th>6,0</th>
<th>7,0</th>
<th>8,0</th>
<th>9,0</th>
<th>10,0</th>
<th>11,0</th>
<th>12,0</th>
<th>13,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>10,0</td>
<td></td>
</tr>
<tr>
<td>11,0</td>
<td></td>
</tr>
<tr>
<td>12,0</td>
<td></td>
</tr>
<tr>
<td>13,0</td>
<td></td>
</tr>
</tbody>
</table>
Torus of dimension d

- Torus: $Tr(n_1, n_2, \ldots, n_d) = C(n_1) \times C(n_2) \times \cdots \times C(N_d)$ with $n_i > 1$

 Number of nodes: $\prod_{i=1}^d n_i$
 Degree: $2 \cdot d$
 Number of edges: $\prod_{i=1}^d n_i$
 Diameter: $\sum_{i=1}^d \lfloor n_i/2 \rfloor$
 Node-con.: $2 \cdot d$
 Edge-con.: $2 \cdot d$

- Torus: $Tr(14, 4)$:

![Torus Diagram](image-url)
Complete binary tree

\[T(d) = (V_{T(d)}, E_{T(d)}) \]

\[V_{T(d)} = \{ w \in \{0, 1\}^* \mid |w| \leq d \} \]

\[E_{T(d)} = \{ \{ w, wa \} \mid w, wa \in V, a \in \{0, 1\} \} \]

Number of nodes: \(2^{d+1} - 1 \)
Degrees: \(\{1, 2, 3\} \)
Number of edges: \(2^{d+1} - 2 \)
Diameter: \(2 \cdot d \)
Node-con.: \(1 \)
Edge-con.: \(1 \)
Complete k-nary tree

$$T_k(d) = (V_{T_k(d)}, E_{T_k(d)})$$

$$V_{T_k(d)} = \{w \in \{0, 1, \ldots, k-1\}^* \mid |w| \leq d\}$$

$$E_{T_k(d)} = \{\{w, wa\} \mid w, wa \in V_{T_k(d)}, a \in \{0, 1, \ldots, k-1\}\}$$

Number of nodes: $\sum_{i=0}^{d} k^i$

Degrees: $\{1, k, k + 1\}$

Number of edges: $\sum_{i=0}^{d} k^i - 1$

Diameter: $2 \cdot d$

Node-con.: 1

Edge-con.: 1
X-Tree

$$XT(d) = (V_{XT(d)}, E^1_{XT(d)} \cup E^2_{XT(d)})$$

$$V_{XT(d)} = \{w \in \{0, 1\}^* \mid |w| \leq d\}$$

$$E^1_{XT(d)} = \{\{w, wa\} \mid w, wa \in V, a \in \{0, 1\}\}$$

$$E^2_{XT(d)} = \{\{w, w'\} \mid w, w' \in V_{XT(d)}, |w| = |w'|, \text{int}(w) + 1 = \text{int}(w')\}$$

Number of nodes: $2^{d+1} - 1$
Degrees: $\{2, 3, 4, 5\}$

Number of edges: $2^{d+2} - 4 - d$
Diameter: $2 \cdot d - 1$

Node-con.: 2
Edge-con.: 2
Hypercube of dimension d

\[HQ(d) = (V_{HQ(d)}, E_{HQ(d)}) \]
\[V_{HQ(d)} = \{0, 1\}^d \]
\[E_{HQ(d)} = \{\{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)}\} \]

Number of nodes: 2^d \hspace{1cm} Degree: d \hspace{1cm} Node-con.: d

Number of edges: $d \cdot 2^{d-1}$ \hspace{1cm} Diameter: d \hspace{1cm} Edge-con.: d

Note the Gray-Code.
Hypercube of dimension d (alternative view)

\[
HQ(d) = (V_{HQ(d)}, E_{HQ(d)})
\]
\[
V_{HQ(d)} = \{0, 1\}^d
\]
\[
E_{HQ(d)} = \{\{w0w', w1w'\} | w0w', w1w' \in V_{HQ(d)}\}
\]
Cube-Connected Cycles of dimension d

\[
CCC(d) = (V_{CCC(d)}, E^c_{CCC(d)} \cup E^h_{CCC(d)})
\]

\[
V_{CCC(d)} = \{0, 1, \cdots, d - 1\} \times \{0, 1\}^d
\]

\[
E^c_{CCC(d)} = \{((i, w), ((i + 1) \mod n, w)) \mid w \in \{0, 1\}^d, 0 \leq i < n\}
\]

\[
E^h_{CCC(d)} = \{((i, w0w'), (i, w1w')) \mid w' \in \{0, 1\}^i, w \in \{0, 1\}^{n-i-1}\}
\]

Number of nodes: $d \cdot 2^d$

Degree: 3

Number of edges: $3 \cdot d \cdot 2^{d-1}$

Diameter: $2 \cdot d - 2 + \lfloor d/2 \rfloor$

Node-con.: 3

Edge-con.: 3
Butterfly of dimension d

$$ BF(d) = (V_{BF(d)}, E^c_{BF(d)} \cup E^h_{BF(d)}) $$

$$ V_{BF(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d $$

$$ E^c_{BF(d)} = \{ ((i, w), ((i + 1) \mod n, w')) | w \in \{0, 1\}^d, 0 \leq i < n \} $$

$$ E^h_{BF(d)} = \{ ((i, w0w'), ((i + 1) \mod n, w1w')) | w \in \{0, 1\}^d, 0 \leq i < n \} $$

Number of nodes: $d \cdot 2^d$

Degree: 4

Number of edges: $d \cdot 2^{d+1}$

Diameter: $d + \lceil d/2 \rceil$

Node-con.: 4

Edge-con.: 4
DeBruijn network of dimension d

- **DeBruijn network:**

 \[
 DB(d) = (V_{DB(d)}, E_{DB(d)}^s \cup E_{DB(d)}^{se})
 \]

 \[
 V_{DB(d)} = \{0, 1\}^d
 \]

 \[
 E_{DB(d)}^s = \{(aw, wa) \mid a \in \{0, 1\}, aw, wa \in V_{DB(d)}\}
 \]

 \[
 E_{DB(d)}^{se} = \{(aw, wb) \mid a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\}
 \]

- **Number of nodes:** 2^d
- **Degree:** $2 + 2$
- **Number of edges:** 2^{d+1}
- **Diameter:** d
DeBruijn network of dimension d

Undirected DeBruijn network:

- **$DB'(d)$**
 \[DB'(d) = (V_{DB(d)} , E_{DB(d)}^{ls} \cup E_{DB(d)}^{ise}) \]

- **$E_{DB(d)}^{ls}$**
 \[E_{DB(d)}^{ls} = \{ \{ aw, wa \} \mid a \in \{0, 1\}, aw, wa \in V_{DB(d)} \} \]

- **$E_{DB(d)}^{ise}$**
 \[E_{DB(d)}^{ise} = \{ \{ aw, wb \} \mid a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)} \} \]

- Number of nodes: 2^d
- Degree: $\{2, 3, 4\}$
- Number of edges: $2^{d+1} - 3$
- Diameter: d
Shuffle-Exchange network of dimension d

- **Shuffle-Exchange network:**

 \[SE(d) = (V_{SE(d)}, E^s_{SE(d)} \cup E^e_{SE(d)}) \]

 \[V_{SE(d)} = \{0, 1\}^d \]

 \[E^s_{SE(d)} = \{(aw, wa) | a \in \{0, 1\}, aw, wa \in V_{SE(d)}\} \]

 \[E^e_{SE(d)} = \{(wa, wb) | a \in \{0, 1\}, b = 1 - a, wa, wb \in V_{SE(d)}\} \]

 Number of nodes: \(2^d\)
 Degree: \(2 + 2\)

 Number of edges: \(2^{d+1}\)
 Diameter: \(2 \cdot d - 1\)
Shuffle-Exchange network of dimension d

- Undirected Shuffle-Exchange network:
 \[
 SE'(d) = (V_{SE(d)}, E_{SE(d)}^s \cup E_{SE(d)}^e)
 \]
 \[
 E_{SE(d)}^s = \{\{aw, wa\} | a \in \{0, 1\}, aw, wa \in V_{SE(d)}\}
 \]
 \[
 E_{SE(d)}^e = \{\{wa, wb\} | a \in \{0, 1\}, b = 1 - a, wa, wb \in V_{SE(d)}\}
 \]

 Number of nodes: 2^d
 Degree: \{1, 2, 3\}
 Number of edges: $2^{d+1}/3$
 Diameter: $2 \cdot d - 1$
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

$C(3 \cdot (2^d + 1) - 1))$ may be embedded into $T(d)$ with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

\[C(2 \cdot (2^d + 1) - 1) \] may be embedded into \(T(d) \) with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the ‘in-order’ nodes.
Lemma:

$L(2^{d+1} - 1)$ may be embedded into $XT(d)$ with load 1 and dilation 1.

Proof: Place the path in levels through the tree.
Lemma:

\[C(2^{d+1} - 1) \] may be embedded into \(XT(d) \) with load 1 and dilation 1.

Proof: Place the path in levels through the left part and through the right part and connect both to a cycle.
Lemma: \[C(2^d) \] may be embedded into \(HQ(d) \) with load 1 and dilation 1.

Proof: Gray-code.
Lemma:

If $2n \leq 2^d$ holds, then $C(2n)$ could be embedded into $HQ(d)$ with load 1 and dilation 1.

Proof: recursive structure of $HQ(d)$

Alternative proof: $G(2, 2^{d-1})$ is a sub-graph of $HQ(d)$.
Lemma:

\(C(d \cdot 2^d) \) may be embedded into \(BF(d) \) with load 1 and dilation 1.

Proof: Join cycles of length \(d, 2d, 4d, \ldots \).
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof: Join cycles of length $d, 2d, 4d, \ldots$ (view using the gray-code).
Lemma:

$C(d \cdot 2^d)$ may be embedded into $CCC(d)$ with load 1 and dilation 2.

Proof: Embed cycles in $BF(d)$ and embed $BF(d)$ in $CCC(d)$ with dilation 2.
Lemma:

$L(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Proof: Place the path snake-wise through the grid.
Lemma:
$L(n_1 \cdot n_2 \cdot \ldots \cdot n_d)$ may be embedded into $G(n_1, n_2, \ldots, n_d)$ with load 1 and dilation 1.

Lemma:
$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.
- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:
$C(n_1 \cdot n_2 \cdot \ldots \cdot n_d)$ may be embedded into $G(n_1, n_2, \ldots, n_d)$ with load 1 and dilation 2.
- Embedd cycle in the path with dilation 2.
- Embedd the path in the grid with dilation 1.
Lemma:

$C(n_1 \cdot n_2 \cdots n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1, if at least one n_i is even.

Proof: Place the path snake-wise through the grid.
C(n) into **G(n₁, n₂, · · · , nₙ)**

Lemma:

C(n₁ · n₂ · · · · nₙ) may be embedded into *G(n₁, n₂, · · · , nₙ)* with load 1 and dilation 1, if at least one *nᵢ* is even.

Lemma:

C(n₁ · n₂ · · · · nₙ) may not be embedded into *G(n₁, n₂, · · · , nₙ)* with load 1 and dilation 1, if all *nᵢ* are odd.

Proof: Consider the 2-colouring of the grid.

![Grid 2-colouring](image_url)
Lemma:

$T(d)$ may be embedded into $L(2^{d+1} - 1)$ with load 1 and dilation $\lceil 2^{d+1} / 2d \rceil$.

Idea of Proof:

- Stretch the longest path of $T(d)$ on the path.
- Or use the bandwidth-embedding of the $T(d)$.

\begin{itemize}
 \item Stretch the longest path of $T(d)$ on the path.
 \item Or use the bandwidth-embedding of the $T(d)$.
\end{itemize}

$T(d)$ into $L(n)$
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2.

Proof:

- $f : \{w \in \{0, 1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0, 1\}^* \mid |w| = d + 1\}$.
- Add to w a bit-sequence of length $x(w) = d + 1 - |w| \geq 1$.
- $f(w) = w10^{x(w)-1}$.
- Edges: $f((w, wa)) = f((w10^{x(w)-1}, wa10^{x(wa)-1}))$.
- Dilation is 2.
XT(d) into HQ(d + 1)

\[E_{T(d)} = \{ \{w, wa\} \mid w, wa \in V, a \in \{0, 1\} \} \text{ and } E_{HQ(d)} = \{ \{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)} \} \]

Lemma:

\(XT(d)\) may be embedded into \(HQ(d + 1)\) with load 1 and dilation 2.

- \(f : \{w \in \{0, 1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0, 1\}^* \mid |w| = d + 1\}\).
- Add to \(w\) a bit-sequence of length \(x(w) = d + 1 - |w| \geq 1\).
- \(f(w) = \text{GrayCode}(w)10^{x(w)-1}\).
- Edges: \(f((w, wa)) = f((\text{GrayCode}(w)10^{x(w)-1}, \text{GrayCode}(wa)10^{x(wa)-1}))\)
- Dilation is 2, because \(\text{GrayCode}(wa) = \text{GrayCode}(w)a_{w,b}\).
Lemma:

\(T(d) \) may not be embedded into \(HQ(d + 1) \) for \(d > 1 \) with load 1 and dilation 1.

Proof: Consider the 2-colouring of \(T(d) \) in \(HQ(d + 1) \).
Lemma:

\(T(d) \) may be embedded into \(HQ(d + 1) \) with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the \(HQ \).
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the HQ.
Lemma:

$T(d)$ may be embedded into $DB(d + 1)$ with load 1 and dilation 1.

Proof: $f(w) \rightarrow 0^{d-|w|-1}1w$

- Show: Edge of the tree is placed to an edge of the DeBruijn.
- Edge of the tree: w nach wa
- Placed to: $0^{n-|w|-1}1w$ and $0^{n-|w|-2}1wa$
- That is a shuffle or shuffle-exchange edge in the DeBruijn.
- Note: there is a second edge-disjoined tree in the DeBruijn.
Lemma:

$CCC(2d)$ may be embedded into $HQ(2d + \lceil \log 2d \rceil)$ with load 1 and dilation 1.

Proof: Embedd the cycles into sub-cubes.
CCC(4) into HQ (Example)
Steps of the Proof:

- Embed the cycles of length $2d$ into the $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2^{\lceil \log 2d \rceil}$.

Note:

- IF G is embedded in H with dilation k and
- if G' is embedded H' with dilation k', the we may
- embed $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
- Holds due to the definition of the product of graphs.

Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.

Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
CCC(3) into HQ (Example)
Lemma:

$CCC(2d - 1)$ may be embedded into $HQ(2d - 1 + \lceil \log 2d - 1 \rceil)$ with load 1 and dilation 2.

Proof:

- Note: $\lceil \log 2d \rceil = \lceil \log 2d - 1 \rceil$.
- We have: $CCC(2d - 1)$ is sub-graph of $C_{2d-1} \times HQ(2d - 1)$.
- Embedd $C(2d - 1)$ with dilation 2 in $C(2d)$.
- The we get: $C_{2d-1} \times HQ(2d - 1)$ could be embedded with dilation 2 in $C_{2d} \times HQ(2d - 1)$.
- Already known: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
- Thus we get: $C_{2d} \times HQ(2d - 1)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Lemma:

BF(d) may be embedded into HQ(d + ⌊log d⌋) with load 1 and dilation 2.

Proof:

- Embed BF(d) in CCC(d) with dilation 2 (trivial).
- Embedd CCC(d) in HQ(d + ⌊log d⌋) with dilation 1.
Lemma:

$BF(2d)$ may be embedded into $HQ(2d + \lceil \log 2d \rceil)$ with load 1 and dilation 1.
BF(4) in HQ (Beispiel)
BF into HQ

Steps of the Proof:

- Embedd cycle C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- Embedd BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:
 \[(i, w) \mapsto f_{2d}(i)w\]

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form \{$(i, w'0w''), (i', w'1w'')$\} have now a dilation of 1.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

- Let $P(w) := \#_1(w) \mod 2$.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.

Consider the edges on the cycles: $\{(i, w), ((i + 1) \mod d, w)\}$:
 - w_i has the i^{th} bit of w flipped.
 - $f(i, w) = (i, w)$ if $P(w) = 0$.
 - $f((i + 1) \mod d, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
 - $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
 - $f((i + 1) \mod d, w) = ((i + 2) \mod d, w)$ if $P(w) = 1$.
CCC into BF

- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).

Consider the cube-edges: \(\{(i, w), (i, w_i)\} \):

- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w_i) = ((i + 1) \mod d, w_i) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
- \(f(i, w_i) = (i, w_i) \) if \(P(w) = 1 \).
Lemma:

$SE(d)$ may be embedded into $DB(d)$ with load 1 and dilation 1.

Proof: Exercise
Lemma:

$DB(d)$ may be embedded into $HQ(d)$ with load 1 and dilation $\lceil d/4 \rceil$.

Proof:

- Consider edge in DB: $aw \leftrightarrow wb$.
- Split the node-strings into blocks: $awa'w' \leftrightarrow wbw'b'$ with $b = a'$.
- This makes small virtual DeBruijn within the original DeBruijn.
- Each virtual part is embedded in a hyper-cubes.
- The dilation sums up during this process.
- The proof is done by embedding the $DB(8)$ into the $HQ(8)$ with dilation 2.
Torus and Hypercube

Lemma:

\[G(n_1, n_2, \cdots, n_t) \] may be embedded into \(HQ(d) \) with load 1 and dilation 1, iff
\[d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil. \]

Proof:

- Check the dimension-changes of the edges of the grid:
- In each square are precisely 2 dimensions.
- Thus each path of the form \(L(n_i) \) has to be embedded into a sub-cube.

Lemma:

\[TR(n_1, n_2, \cdots, n_t) \] may be embedded into \(HQ(d) \) with load 1 and dilation 1, iff
\[d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil \] and all \(n_i \) are even.
Arbitrary Trees

Theorem:

A binary tree may be embedded with dilation 3 and expansion 8 into the Hypercube.

Theorem:

A binary tree may be embedded with dilation 7 and expansion 1 into the Hypercube.
Caterpillars

Definition:
A binary tree is called caterpillar, iff all nodes with degree 3 are on a simple path. The hair-length denotes the distance of the nodes to the path.

Definition:
A graph G is called balanced, iff there exists a 2-colouring of G, which has as many red nodes as black nodes.
Caterpillars

Theorem:
Balanced caterpillars with hair-length 1 are sub-graphs of the hypercube.

Idea of proof: Cut the caterpillar in two balanced pieces.

Theorem:
Caterpillars with $4 \cdot n$ nodes may be embedded with congestion 1 and load 1 into $G(2, 2, n)$.

Proof: Embedd step by step 4 nodes of the caterpillar into the grid.
Definition:

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Embedding-Problem
Embedding-Problem

Theorem:
The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanciert tree, H a hyper-cube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1}\frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
Advantages and Disadvantages

- High transfer-rate:
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.
- Low signal-loss: 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- More channels per fiber.
- Less disturbance by other signals.
- Fast signal distribution.
- Low cost.

- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Types of WDM and Problems

- Types of WDM
 - Wavelength-routed Networks: the receiver determines the wavelength statically.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength.
 - Static and dynamic optical paths.
 - Single-HOP (“all-optical Network”) and Multi-HOP.

- Important Problems on WDM
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
An optical coupler has value α. If input I_i receives a signal of strength P_i, then outputs $O_0 = \alpha \cdot P_0$ and $O_1 = (1 - \alpha) \cdot P_1$. This exists independent of the wavelength and dependent of the wavelength. Two possible configurations: crossing and not crossing.
“Crossbar” and Beneš

Theorem
A crossbar is “wide-sense nonblocking”, i.e. any permutation and any extension to a sub-permutation is possible.

Theorem
The Beneš Network is “nonblocking”, i.e. any permutation is possible.
The Beneš Network is nonblocking

- Each path \(i \) has to traverse one of the sub-networks.
- Common inputs \(2 \cdot i \) and \(2 \cdot i - 1 \) may not use the same sub-network.
- Common inputs \(\pi(2 \cdot i) \) and \(\pi(2 \cdot i - 1) \) may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the pathes may be placed on the two sub-networks.

The statement holds by a simple induction.
Introduction

Input
- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routes: $\rho_1^i, \rho_2^i, \rho_3^i, \ldots$ paths from s_i to d_i.

Routing
For the above input is a routing \mathcal{R}:
- $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$ and
- ρ_i connects s_i with d_i.
Wavelength-Assignment

Input

- Network: \(G = (V, E) \)
- Requests: \(I = \{ (s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q \} \)
- Routing: \(\mathcal{R} = \{ \rho_1, \rho_2, \rho_3, \ldots, \rho_q \} \)

Wavelength-Assignment

is the colouring of the conflict-graph \(G^I_{\mathcal{R}} \):

- \(G^I_{\mathcal{R}} = (\mathcal{R}, F) \hat{=} (I, F) \) mit: \(F = \{\{\rho_i, \rho_j\} \mid \rho_i \cap \rho_j \cap E \neq \emptyset\} \)
- Each request is assigned a wavelength.
- If two request share an edge (in the same direction), then differ the wavelengths.
- \(w(G^I_{\mathcal{R}}) \) is the number of necessary wavelengths.
Definition

Given:

- Network: \(G = (V, E) \)
- Requests: \(I = \{(s_i, d_i) | s_i, d_i \in V \land 1 \leq i \leq q\} \)
- Routing: \(R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\} \)

Then we define:

- The congestion of an edge \(e \) the number of routing-paths which use \(e \).
- \(c_e(G^l_R) = |\{r \in R | e \in r\}|. \)
- \(c(G^l_R) = \max_{e \in E} c_e(G^l_R) \).

Lemma

We have: \(c(G^l_R) \leq w(G^l_R) \).
Theorem

Let \(L \) be the maximal length of a routing-path in \(G^l_R \).

- Then we have: \(w(G^l_R) \leq (c(G^l_R) - 1) \cdot L + 1 \)
- Is also the bound for the simple greedy algorithm.

Proof: The node degree in the conflict-graph is at most: \((c(G^l_R) - 1) \cdot L \).
Greedy improved

Let G^I_R be given.

Let R_1 be the paths of length $\geq \sqrt{|E|}$.

Let R_2 be the paths of length $< \sqrt{|E|}$.

Colour each path in R_1 with its own colour.

Colour R_2 with greed.

Theorem

We have: $w(G^I_R) \leq 2 \cdot \sqrt{|E|} \cdot c(G^I_R)$.

Proof:

$|R_1| \leq \sqrt{|E|} \cdot c(G^I_R)$, because

otherwise we would have an edge e with $c_e(G^I_R) > c(G^I_R)$.

And $w(G^I_{R_2}) \leq \sqrt{|E|} \cdot c(G^I_R)$ is easy.
Theorem

If \(G \) is a line, then we can compute \(w(G^I_R) \) in polynomial time.

Proof:

- Let \(I_l \) be the requests going to the left.
- Let \(I_r \) be the requests going to the right.
- \(I_l \) and \(I_r \) are independent.
- \(w(G^I_R) \) corresponds to the colouring of an interval-graph.
- \(w(G^I_R) \) corresponds to the colouring of an interval-graph.
If G is a cycle, then we can approximate $w(G^l_R)$ in polynomial time with a factor of 2.

Proof:

- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G^l_{IR_1})$ corresponds to the colouring of an interval-graph.
- $w(G^l_{IR_2})$ corresponds to the colouring of an interval-graph.

If G is a cycle, then the computation of $w(G^l_R)$ is NP-complete.

Proof:

- $w(G^l_R)$ corresponds to the colouring of an arc-graph.
Theorem

If G is a star, then we can compute $w(G^l_\mathcal{R})$ in polynomial time.

Proof:

- Let $G = (\{0, 1, \ldots, n\}, E)$ be the star with central node 0.
- Let $H = (\{s_1, s_2, \ldots s_n\}, \{d_1, d_2, \ldots d_n\}, F)$ be a bipartite graph,
- with: $F = \{(s_i, d_j) \mid (i, j) \in I\}$
- Computing of $w(G^l_\mathcal{R})$ corresponds to the edge-colouring of H.
- Request of the form $0, i$ and $i, 0$ may be coloured later by greed.
Theorem

If G is a spider-graph, then we can compute $w(G^l_R)$ in polynomial time.

Proof:

- Colour first the center star.
- Extend the colouring on each leg of the spider-graph by using the algorithm for paths.
Theorem

If G is a tree, then the computation of $w(G^I_R)$ is NP-complete.

Proof:

- $w(G^I_R)$ corresponds to the colouring of an EPT-Graph.
If the requests are of type broadcast, then the wavelength-assignment becomes easy.

- We have: \(I = \{(v, w) \mid w \in V\} \) for a start node \(v \).
- There are \(|V| - 1 \) nodes to be informed from \(v \).
- There have to be \(|V| - 1 \) paths starting in \(v \).
- Let \(d(w) \) be the out-degree of node \(w \in V \).
- Let \(d_{\text{min}}(G) = \min_{w \in V} d(w) \).
- At least \((|V| - 1)/d(v)\) requests use the same edge of \(v \).
- Thus we have: \(w(R^I_G) \geq \lceil (|V| - 1)/d_{\text{min}}(G) \rceil \).
Broadcast

Theorem

For an k edge connected graph we have: $w(G^I_R) \leq \lceil (|V| - 1)/k \rceil$.

Proof:

- Let v be the start-node.
- Split $V \setminus \{v\}$ into $s = \lceil (|V| - 1)/k \rceil$ subsets, with:
 - V_1, V_2, \ldots, V_s have a size of at most k.
- For each i exist k edge-disjoined paths from v to V_i.
- Each V_i will be informed by using colour i.
- In total are $s = \lceil (|V| - 1)/k \rceil$ colours used.
Theorem

For an k edge connected graph we have: $w(G^l_R) = \lceil (|V| - 1)/k \rceil$.

Proof:

- Known: $w(G^l_R) \geq \lceil (|V| - 1)/d_{min}(G) \rceil$.
- Known: $w(G^l_R) \leq \lceil (|V| - 1)/k \rceil$.
- Known: $k \leq d_{min} G$.
- Thus we have: $w(G^l_R) = \lceil (|V| - 1)/k \rceil$.

Broadcast
More Results

Theorem

For the following graphs it is NP-complete to compute $w(G^I_{\text{R}_{\text{min}}})$:

- cycles,
- trees,
- binary trees and
- grids.
More Results

Theorem

Let $G_{R_{\text{min}}}^I$ given with $L = \max_{(x,y) \in I} \text{dist}(x,y)$. Then we have:

\[
w(G_{R}^I) = O(L \cdot c(G_{R}^I)).
\]

Theorem

For each L and c there exists $G_{R_{\text{min}}}^I$ with: $L = \max_{(x,y) \in I} \text{dist}(x,y)$,

\[
c = c(G_{R_{\text{min}}}^I) \quad w(G_{R}^I) = \Omega(L \cdot c).
\]

Theorem

Let $G_{R_{\text{min}}}^I$ given with I is “one-to-many” communication. Then we have:

\[
w(G_{R}^I) = c(G_{R}^I).
\]
Literature

Dissemination of Information in Optical Networks
From Technology to Algorithms
Questions

- Which problems are interesting for optical networks?
- For which is the Beneš Network used, what are it’s properties?
- What is the relation between wavelength-assignment and colouring a graph?
- How is the wavelength-assignment solved on the following graphs?
 - paths and cycles.
 - stars and spider-graphs.
- On which graphs is the wavelength-assignment hard?
- May the wavelength-assignment be solved if the connection structure is of type broadcast?