Contents I

1 Introduction
 - Line-Graph and Coloring
 - Edge-Colouring
 - Theorems

2 Hardness of the Edge-Colouring
 - Proof of Hoyer

3 Algorithms
 - Matching on Bipartite Graphs
 - Proof of König
 - Proof of Vizing

4 Colour with Greed
 - Simple Bounds
 - Algorithm

5 Theorem of Brooks
 - Examples
 - Theorems

6 Girth
 - Statements
 - Proof

7 Colouring with known $\chi(G)$
 - Basics
 - Theorems

8 Complexity
 - Negative Theorems
 - Positive Theorems
Definition of Coloring

- A graph \(G = (V, E) \) is \(k \)-colorable iff:
Definition of Coloring

- A graph $G = (V, E)$ is k-colorable iff:
 - $\exists f : V \mapsto \{1, \ldots, k\} : \forall (a, b) \in E, f(a) \neq f(b)$.

Definition of Coloring

- A graph $G = (V, E)$ is k-colorable iff:
- $\exists f : V \mapsto \{1, \ldots, k\} : \forall (a, b) \in E, f(a) \neq f(b)$.
- The mapping f is called coloring of G.
A graph $G = (V, E)$ is k-colorable iff:

- $\exists f : V \mapsto \{1, \ldots, k\} : \forall (a, b) \in E, f(a) \neq f(b)$.

The mapping f is called coloring of G.

$\chi(G)$ is the chromatic number $\chi(G)$ of G, iff
Definition of Coloring

A graph $G = (V, E)$ is k-colorable iff:

- $\exists f : V \mapsto \{1, ..., k\} : \forall (a, b) \in E, f(a) \neq f(b).

The mapping f is called coloring of G.

$\chi(G)$ is the chromatic number $\chi(G)$ of G, iff

- G is $\chi(G)$-colorable, but G is not ($\chi(G) - 1$)-colorable.
Definition of Coloring

- A graph $G = (V, E)$ is k-colorable iff:
 - $\exists f : V \mapsto \{1, \ldots, k\} : \forall (a, b) \in E, f(a) \neq f(b)$.
 - The mapping f is called \textbf{coloring} of G.
 - $\chi(G)$ is the \textbf{chromatic number} $\chi(G)$ of G, iff
 - G is $\chi(G)$-colorable, but G is not $(\chi(G) - 1)$-colorable.
Definition of Coloring

- A graph $G = (V, E)$ is k-colorable iff:

 \[\exists f : V \mapsto \{1, \ldots, k\} : \forall (a, b) \in E, f(a) \neq f(b). \]

- The mapping f is called coloring of G.

- $\chi(G)$ is the chromatic number $\chi(G)$ of G, iff

- G is $\chi(G)$-colorable, but G is not $(\chi(G) - 1)$-colorable.

Definition

Sei $G = (V, E)$ Graph.

\[\alpha(G) = \max\{ |V'| ; V' \subset V \land \forall a, b \in V' : (a, b) \notin E \} \]
Definition of Coloring

- A graph $G = (V, E)$ is k-colorable iff:
 - $\exists f : V \mapsto \{1, \ldots, k\} : \forall (a, b) \in E, f(a) \neq f(b)$.

- The mapping f is called coloring of G.

- $\chi(G)$ is the chromatic number $\chi(G)$ of G, iff

- G is $\chi(G)$-colorable, but G is not $(\chi(G) - 1)$-colorable.

Definition

Sei $G = (V, E)$ Graph.

$$\alpha(G) = \max \{|V'| ; V' \subseteq V \land \forall a, b \in V' : (a, b) \notin E\}$$

$$\omega(G) = \max \{|V'| ; V' \subseteq V \land \forall a, b \in V' : (a, b) \in E\}$$
Definition of Coloring

- A graph $G = (V, E)$ is k-colorable iff:
 - $\exists f : V \mapsto \{1, ..., k\} : \forall (a, b) \in E, f(a) \neq f(b)$.
- The mapping f is called coloring of G.
- $\chi(G)$ is the chromatic number $\chi(G)$ of G, iff
- G is $\chi(G)$-colorable, but G is not $(\chi(G) - 1)$-colorable.

Definition

Sei $G = (V, E)$ Graph.

$$\alpha(G) = \max\{ |V'| ; V' \subseteq V \land \forall a, b \in V' : (a, b) \notin E \}$$
$$\omega(G) = \max\{ |V'| ; V' \subseteq V \land \forall a, b \in V' : (a, b) \in E \}$$
$$\chi(G) = \min\{ k ; \exists V_1, V_2, ..., V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}$$
Definition of Coloring

- A graph $G = (V, E)$ is k-colorable iff:
 - $\exists f : V \mapsto \{1, \ldots, k\} : \forall (a, b) \in E, f(a) \neq f(b)$.
- The mapping f is called the coloring of G.
- $\chi(G)$ is the chromatic number $\chi(G)$ of G, iff
- G is $\chi(G)$-colorable, but G is not $(\chi(G) - 1)$-colorable.

Definition

Sei $G = (V, E)$ Graph.

$$\alpha(G) = \max\{ |V'| ; \ V' \subseteq V \land \forall a, b \in V' : (a, b) \not\in E \}$$

$$\omega(G) = \max\{ |V'| ; \ V' \subseteq V \land \forall a, b \in V' : (a, b) \in E \}$$

$$\chi(G) = \min\{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \not\in E \}$$
Line-Graphs

Definition (Line-Graphs)

Let $G = (V, E)$ be an undirected graph. $L(G) = (E, E')$ is called line-graph of G, iff

$$E' = \{(e, e') \mid e, e' \in E \land e \cap e' \neq \emptyset\}.$$

A graph H is called line-graph, iff a graph G exists, with $L(G) = H$.
Line-Graphs

Definition (Line-Graphs)

Let \(G = (V, E) \) be an undirected graph. \(L(G) = (E, E') \) is called line-graph of \(G \), iff

\[
E' = \{(e, e') \mid e, e' \in E \land e \cap e' \neq \emptyset\}.
\]

A graph \(H \) is called line-graph, iff a graph \(G \) exists, with \(L(G) = H \).
Line-Graphs

Definition (Line-Graphs)

Let $G = (V, E)$ be an undirected graph. $L(G) = (E, E')$ is called line-graph of G, iff

$$E' = \{ (e, e') \mid e, e' \in E \land e \cap e' \neq \emptyset \}.$$

A graph H is called line-graph, iff a graph G exists, with $L(G) = H$.

```
\begin{tikzpicture}
  \node (a) at (0,0) {$a$};
  \node (b) at (1,0) {$b$};
  \node (c) at (2,0) {$c$};
  \node (x) at (1,-1) {$x$};
  \node (y) at (1,1) {$y$};

  \draw (a) -- (b);
  \draw (b) -- (c);
  \draw[red] (x) -- (y);
\end{tikzpicture}
```
Example 1

\begin{align*}
\sum &= 0
\end{align*}
Example 1 Beispiel 1
Example 1

\[
\begin{array}{cccc}
 a & b & c & d \\
 az & dz & cz & bz \\
 a & b & c & d \\
\end{array}
\]
Example 1

$\Sigma = 0$
Example 2

\[\sum = 0 \]
Example 2

\[\chi(G) \]
Example 2

\[\chi(G) = 0 \]
Example 2

\[\Sigma = 0 \]
Example 3

\[
\chi(G) = \sum = 0
\]
Example 3

\[\chi(G) \]
Example 3

Beispiel 3
Example 3

\[\chi(G) = 0 \]
Definition

The Edge-Colouring-Problem for a graph \(G \) corresponds to the node-colouring of \(L(G) \):
\[
\chi'(G) = \chi(L(G)).
\]
Edge-Colouring I

Definition

The Edge-Colouring-Problem for a graph G corresponds to the node-colouring of $L(G)$:

$$\chi'(G) = \chi(L(G)).$$

Theorem (Vizing 1965)

$$\chi'(K_{2n}) = 2n - 1 \text{ and } \chi'(K_{2n+1}) = 2n + 1.$$
Edge-Colouring

Definition
The Edge-Colouring-Problem for a graph G corresponds to the node-colouring of $L(G)$:
$$\chi'(G) = \chi(L(G)).$$

Theorem (Vizing 1965)
$$\chi'(K_{2n}) = 2n - 1 \text{ and } \chi'(K_{2n+1}) = 2n + 1.$$
Theorem (Holyer)

The d-Edge-Colouring-Problem is NP-complete for $d \geq 3$.
Edge-Colouring II

Theorem (Holyer)

The d-Edge-Colouring-Problem is NP-complete for $d \geq 3$.

Theorem (König 1916)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).
Edge-Colouring II

Theorem (Holyer)

The d-Edge-Colouring-Problem is NP-complete for $d \geq 3$.

Theorem (König 1916)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

Theorem (Vizing 1964)

Any graph with degree Δ is $\Delta + 1$ edge-colourable (Running-Time $O(nm)$).
Proof I (Holyer)

- This component assembles a negation.
This component assembles a negation.

- W.l.o.g. \((a, b)\) and \((h, i)\) are coloured the same and...
This component assembles a negation.

- W.l.o.g. \((a, b)\) and \((h, i)\) are coloured the same and
- \((c, d), (j, k), (g, l)\) use three different colours.
Proof I (Holyer)

- This component assembles a negation.
 - W.l.o.g. \((a, b)\) and \((h, i)\) are coloured the same and
 - \((c, d), (j, k), (g, l)\) use three different colours.

- We will use this to represent variables and
Proof I (Holyer)

- This component assembles a negation.
 - W.l.o.g. \((a, b)\) and \((h, i)\) are coloured the same and
 - \((c, d), (j, k), (g, l)\) use three different colours.
- We will use this to represent variables and
- will use an odd cycle to represent the clauses.
1. Case: (h, i) and (l, g) are coloured equal.
Proof II (Holyer)

1. Case: \((h, i)\) and \((l, g)\) are coloured equal.

The colour \((i, e)\) and \((i, j)\) and show in the following:
Proof II (Holyer)

1. Case: \((h, i)\) and \((l, g)\) are coloured equal.
2. Case: \((j, k)\) and \((l, g)\) are coloured the same.

The colour \((i, e)\) and \((i, j)\) and show in the following:

\((a, b)\) and \((h, i)\) are coloured the same and

\((c, d)\), \((j, k)\), \((g, l)\) use three different colours.
Proof II (Holyer)

1. Case:

- \((h, i)\) and
- \((l, g)\) are coloured equal.

- The colour \((i, e)\) and
- \((i, j)\) and show in the following:

- \((a, b)\) and
- \((h, i)\) are coloured the same and

- \((c, d)\),
- \((j, k)\),
- \((g, l)\) use three different colours.
Proof II (Holyer)

1. Case: (h, i) and (l, g) are coloured equal.

The colour (i, e) and (i, j) and show in the following:

(a, b) and (h, i) are coloured the same and

$(c, d), (j, k), (g, l)$ use three different colours.
1. Case: (h, i) and (l, g) are coloured equal.

The colour (i, e) and (i, j) and show in the following:

(a, b) and (h, i) are coloured the same and

$(c, d), (j, k), (g, l)$ use three different colours.
Proof II (Holyer)

1. Case: \((h, i)\) and \((l, g)\) are coloured equal.

The colour \((i, e)\) and \((i, j)\) and show in the following:

\((a, b)\) and \((h, i)\) are coloured the same and

\((c, d), (j, k), (g, l)\) use three different colours.
Proof II (Holyer)

1. Case: \((h, i)\) and \((l, g)\) are coloured equal.

The colour \((i, e)\) and \((i, j)\) and show in the following:

\((a, b)\) and \((h, i)\) are coloured the same and

\((c, d), (j, k), (g, l)\) use three different colours.
1. Case: \((h, i)\) and \((l, g)\) are coloured equal.

The colour \((i, e)\) and \((i, j)\) and show in the following:

\((a, b)\) and \((h, i)\) are coloured the same and

\((c, d)\), \((j, k)\), \((g, l)\) use three different colours.
1. Case: \((h, i)\) and \((l, g)\) are coloured equal.

The colour \((i, e)\) and \((i, j)\) and show in the following:

\((a, b)\) and \((h, i)\) are coloured the same and

\((c, d), (j, k), (g, l)\) use three different colours.
1. Case: (h, i) and (l, g) are coloured equal.

2. Case: (j, k) and (l, g) are coloured the same.
1. Case: \((h, i)\) and \((l, g)\) are coloured equal.

The colour \((i, e)\) and \((i, j)\) and show in the following:

\((a, b)\) and \((h, i)\) are coloured the same and

\((c, d)\), \((j, k)\), \((g, l)\) use three different colours.

2. Case: \((j, k)\) and \((l, g)\) are coloured the same.

In a same way we may proof:
Proof II (Holyer)

1. Case: \((h, i)\) and \((l, g)\) are coloured equal.

The colour \((i, e)\) and \((i, j)\) and show in the following:

\((a, b)\) and \((h, i)\) are coloured the same and

\((c, d), (j, k), (g, l)\) use three different colours.

2. Case: \((j, k)\) and \((l, g)\) are coloured the same.

In a same way we may proof:

\((c, d)\) and \((j, k)\) are coloured the same and

\((a, b), (h, i), (g, l)\) use three different colours.
3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.
3. **Case:** \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.

Case 3a: \((i, j)\) has the same colour as \((l, g)\)
3. Case: (h, i) and (j, k) are coloured the same and (l, g) use an other colour.

Case 3a: (i, j) has the same colour as (l, g)

Show in the following:
3. **Case:** \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.

Case 3a: \((i, j)\) has the same colour as \((l, g)\)

Show in the following:
3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.

Case 3a: \((i, j)\) has the same colour as \((l, g)\)

Show in the following:
3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use another colour.

Case 3a: \((i, j)\) has the same colour as \((l, g)\)

Show in the following:

This case does not happen.
3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.
Proof IV (Holyer)

3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.

Case 3b: \((i, j)\) use the third colour.
3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.

Case 3b: \((i, j)\) use the third colour.

Show in the following:
3. **Case:** \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use another colour.

Case 3b: \((i, j)\) use the third colour.

Show in the following:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
Proof IV (Holyer)

3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.

Case 3b: \((i, j)\) use the third colour.

Show in the following:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
3. **Case:** \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use another colour.

Case 3b: \((i, j)\) use the third colour.

Show in the following:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
Proof IV (Holyer)

3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use an other colour.

Case 3b: \((i, j)\) use the third colour.

Show in the following:

\((c, d)\) and \((j, k)\) are coloured the same and

\((a, b), (h, i), (g, l)\) use three different colours.
3. Case: \((h, i)\) and \((j, k)\) are coloured the same and \((l, g)\) use another colour.

Case 3b: \((i, j)\) use the third colour.

Show in the following:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
Proof V (Hoyer)

4. Case: \((h, i), (j, k)\) and \((l, g)\) are coloured with three different colours.
4. Case: \((h, i), (j, k)\) and \((l, g)\) are coloured with three different colours.

Show in the following:
4. Case: \((h, i), (j, k)\) and \((l, g)\) are coloured with three different colours.

Show in the following:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
Proof V (Holyer)

- 4. Case: \((h, i), (j, k)\) and \((l, g)\) are coloured with three different colours.
- Show in the following:
 - \((c, d)\) and \((j, k)\) are coloured the same and
 - \((a, b), (h, i), (g, l)\) use three different colours.
4. Case: \((h, i), (j, k)\) and \((l, g)\) are coloured with three different colours.

Show in the following:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
4. Case: \((h, i), (j, k)\) and \((l, g)\) are coloured with three different colours.

Show in the following:

- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
Proof V (Holyer)

4. Case: \((h, i), (j, k)\) and \((l, g)\) are coloured with three different colours.

- Show in the following:
- \((c, d)\) and \((j, k)\) are coloured the same and
- \((a, b), (h, i), (g, l)\) use three different colours.
Proof VI (Holyer)

- We will now merge two of these construction to create a more powerful one.
Proof VI (Holyer)

- We will now merge two of these construction to create a more powerful one.
- This new construction has three “Exits” (pairs of dedicated edges).
Proof VI (Holyer)

- We will now merge two of these construction to create a more powerful one.
- This new construction has three “Exits” (pairs of dedicated edges).
- An exit has the value “false” iff both edges are colours the same (otherwise “true”).
We will now merge two of these construction to create a more powerful one.

This new construction has three “Exits” (pairs of dedicated edges).

An exit has the value “false” iff both edges are colours the same (otherwise “true”).

For this new component we have:
Proof VI (Holyer)

- We will now merge two of these construction to create a more powerful one.
- This new construction has three “Exits” (pairs of dedicated edges).
- An exit has the value “false” iff both edges are colours the same (otherwise “true”).
- For this new component we have:
 - If the left [or right] exit is “false”, then all exits are “false”.

![Diagram of graph with nodes and edges labeled from a to t, showing the connectivity and exits with labels s, t, m, n, o, p, q, r, k, i, j, l, g, h, i, j, k, n, m, o, p, q, r, s, t.]

\[
\chi(G) \leq 3
\]
Proof VI (Holyer)

- We will now merge two of these construction to create a more powerful one.
- This new construction has three “Exits” (pairs of dedicated edges).
- An exit has the value “false” iff both edges are colors the same (otherwise “true”).
- For this new component we have:
 - If the left [or right] exit is “false”, then all exits are “false”.
 - If the left [right] exit is “true”, then the right [left] exit is “true”.

\[
\chi(G)
\]
Proof VI (Holyer)

- We will now merge two of these construction to create a more powerful one.
- This new construction has three “Exits” (pairs of dedicated edges).
- An exit has the value “false” iff both edges are colours the same (otherwise “true”).
- For this new component we have:
 - If the left [or right] exit is “false”, then all exits are “false”.
 - If the left [right] exit is “true”, then the right [left] exit is “true”.
Proof VI (Holyer)

- We will now merge two of these constructions to create a more powerful one.
- This new construction has three “Exits” (pairs of dedicated edges).
- An exit has the value “false” iff both edges are colours the same (otherwise “true”).
- For this new component we have:
 - If the left [or right] exit is “false”, then all exits are “false”.
 - If the left [right] exit is “true”, then the right [left] exit is “true”.
Proof VI.a (Holyer)
Proof VI.b (Holyer)
Proof VI.c (Holyer)
Proof VI.c (Holyer)
Proof VI.c (Holyer)
Proof VI.c (Holyer)
Proof VI (Holyer)

- We combine now at least three components in a cyclic way, to represent a variable.
Proof VI (Holyer)

- We combine now at least three components in a cyclic way, to represent a variable.

- This component has at least three “Exits” (pairs of dedicated edges).
Proof VI (Holyer)

- We combine now at least three components in a cyclic way, to represent a variable.
- This component has at least three “Exits” (pairs of dedicated edges).
- For this component holds:
Proof VI (Holyer)

- We combine now at least three components in a cyclic way, to represent a variable.
- This component has at least three “Exits” (pairs of dedicated edges).
- For this component holds:
- All exits have the same logical value.
Proof VII (Holyer)

- To verify a clause the exits [may be after an additional negation] of the corresponding literals are joined with an odd cycle.
Proof VII (Holyer)

- To verify a clause the exits [may be after an additional negation] of the corresponding literals are joined with an odd cycle.
- For this component we have:
Proof VII (Holyer)

- To verify a clause the exits [may be after an additional negation] of the corresponding literals are joined with an odd cycle.
- For this component we have:
- If all exits have the value “false”, then we need four colours.
Theorem of Hall

Definition

Let $G = (V_1, V_2, E)$ be a bipartite graph, and $A \subseteq V_1$. We denote:

$$\Gamma(A) = \{v \in V_2 \mid (v, w) \in E, w \in A\}.$$
Theorem of Hall

Definition

Let $G = (V_1, V_2, E)$ be a bipartite graph, and $A \subseteq V_1$. We denote:

$$\Gamma(A) = \{ v \in V_2 \mid (v, w) \in E, w \in A \}.$$

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exits a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$
Theorem of Hall

Definition

Let $G = (V_1, V_2, E)$ be a bipartite graph, and $A \subseteq V_1$. We denote:

$$\Gamma(A) = \{v \in V_2 \mid (v, w) \in E, w \in A\}.$$

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exits a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

Corollary

Every regular bipartite Graph $G = (V_1, V_2, E)$ with $|V_1| = |V_2|$ contains a complete matching.
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exists a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exits a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\[\Rightarrow \quad \text{simple:} \]

- Let M be a matching with $|M| = |V_1|$ and let $A \subseteq V_1$ arbitrary.
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exists a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\[\implies \text{simple:} \]

- Let M be a matching with $|M| = |V_1|$ and let $A \subset V_1$ arbitrary.
- $|\Gamma(A)| = |\{v \in V_2 \mid (v, w) \in E, w \in A\}|.$
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exists a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

--- simple:

- Let M be a matching with $|M| = |V_1|$ and let $A \subseteq V_1$ arbitrary.
- $|\Gamma(A)| = |\{v \in V_2 \mid (v, w) \in E, w \in A\}|.$
- $|\Gamma(A)| \geq |\{v \in V_2 \mid (v, w) \in M, w \in A\}|.$
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exits a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\[\implies \text{simple:} \]

- Let M be a matching with $|M| = |V_1|$ and let $A \subset V_1$ arbitrary.
- $|\Gamma(A)| = |\{v \in V_2 \mid (v, w) \in E, w \in A\}|.$
- $|\Gamma(A)| \geq |\{v \in V_2 \mid (v, w) \in M, w \in A\}|.$
- $|\Gamma(A)| \geq |A|.$
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exists a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\iff by contradiction:
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exists a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\iff by contradiction:

- Let M be the largest matching with $|M| < |V_1|$.

Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exists a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\Leftarrow by contradiction:

- Let M be the largest matching with $|M| < |V_1|$.
- Let $A_1 = \{v \in V_1 \mid \exists b \in V_2 : \{v, b\} \in M\}$.
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exits a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\iff by contradiction:

- Let M be the largest matching with $|M| < |V_1|$.
- Let $A_1 = \{v \in V_1 \mid \exists b \in V_2 : \{v, b\} \in M\}$.
- Let $A_2 = \{v \in V_2 \mid \exists b \in V_1 : \{v, b\} \in M\}$.
Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exists a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

Proof (Hall)

by contradiction:

- Let M be the largest matching with $|M| < |V_1|$.
- Let $A_1 = \{v \in V_1 \mid \exists b \in V_2 : \{v, b\} \in M\}$.
- Let $A_2 = \{v \in V_2 \mid \exists b \in V_1 : \{v, b\} \in M\}$.
- Let $a \in V_1 \setminus A_1$.

Proof (Hall)
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exits a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\[\text{by contradiction:} \]

- Let M be the largest matching with $|M| < |V_1|$.
- Let $A_1 = \{v \in V_1 \mid \exists b \in V_2 : \{v, b\} \in M\}$.
- Let $A_2 = \{v \in V_2 \mid \exists b \in V_1 : \{v, b\} \in M\}$.
- Let $a \in V_1 \setminus A_1$.
- $\Gamma(a) \subseteq A_2$, because M is the largest matching.
Proof (Hall)

Theorem (Hall)

Let \(G = (V_1, V_2, E) \) be a bipartite graph. There exists a complete matching from \(V_1 \) to \(V_2 \), iff for each \(A \subseteq V_1 \) we have

\[|\Gamma(A)| \geq |A|. \]

\[\iff \]

by contradiction:

- Let \(M \) be the largest matching with \(|M| < |V_1| \).
- Let \(A_1 = \{ v \in V_1 \mid \exists b \in V_2 : \{ v, b \} \in M \} \).
- Let \(A_2 = \{ v \in V_2 \mid \exists b \in V_1 : \{ v, b \} \in M \} \).
- Let \(a \in V_1 \setminus A_1 \).
- \(\Gamma(a) \subseteq A_2 \), because \(M \) is the largest matching.
- Any alternating path starting from \(a \) reaches only nodes in \(A_1' \cup A_2' \) with \(A_i' \subseteq A_i \) and \(|A_1'| = |A_2'| \).
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exists a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\[\leftarrow\text{ by contradiction:}\]

- Let M be the largest matching with $|M| < |V_1|$.
- Let $A_1 = \{v \in V_1 \mid \exists b \in V_2 : \{v, b\} \in M\}$.
- Let $A_2 = \{v \in V_2 \mid \exists b \in V_1 : \{v, b\} \in M\}$.
- Let $a \in V_1 \setminus A_1$.
- $\Gamma(a) \subset A_2$, because M is the largest matching.
- Any alternating path starting from a reaches only nodes in $A_1' \cup A_2'$ with $A_i' \subset A_i$ and $|A_1'| = |A_2'|$.
- Thus we have $\Gamma(A_1' \cup \{a\}) \subset A_2'$.
Proof (Hall)

Theorem (Hall)

Let $G = (V_1, V_2, E)$ be a bipartite graph. There exits a complete matching from V_1 to V_2, iff for each $A \subseteq V_1$ we have

$$|\Gamma(A)| \geq |A|.$$

\Longleftarrow by contradiction:

- Let M be the largest matching with $|M| < |V_1|$.
- Let $A_1 = \{v \in V_1 \mid \exists b \in V_2 : \{v, b\} \in M\}$.
- Let $A_2 = \{v \in V_2 \mid \exists b \in V_1 : \{v, b\} \in M\}$.
- Let $a \in V_1 \setminus A_1$.
- $\Gamma(a) \subset A_2$, because M is the largest matching.
- Any alternating path starting from a reaches only nodes in $A_1' \cup A_2'$ with $A_i' \subset A_i$ and $|A_1'| = |A_2'|$.
- Thus we have $\Gamma(A_1' \cup \{a\}) \subset A_2'$.
- $|A_1' \cup \{a\}| > |A_2'|$.
Proof (König)

Theorem (König)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

- Show how to colour an edge (a, b) in $O(n)$ time.
Proof (König)

Theorem (König)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

- Show how to colour an edge (a, b) in $O(n)$ time.
- Let c_a, c_b be the unused colours at the nodes a, b.
Theorem (König)

Any bipartite graph with degree \(\Delta \) is \(\Delta \) edge-colourable (Running-Time \(O(nm) \)).

- Show how to colour an edge \((a, b)\) in \(O(n) \) time.
- Let \(c_a, c_b \) be the unused colours at the nodes \(a, b \).
- If \(c_a = c_b \), we may colour \((a, b)\) with \(c_a \).
Proof (König)

Theorem (König)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

- Show how to colour an edge (a, b) in $O(n)$ time.
- Let c_a, c_b be the unused colours at the nodes a, b.
- If $c_a = c_b$, we may colour (a, b) with c_a.
- Observe now the graph $H_{a,b}$, who consists only of edges coloured with c_a, c_b.

![Graph Diagram]
Theorem (König)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

- Show how to colour an edge (a, b) in $O(n)$ time.
- Let c_a, c_b be the unused colours at the nodes a, b.
- If $c_a = c_b$, we may colour (a, b) with c_a.
- Observe now the graph $H_{a,b}$, who consists only of edges coloured with c_a, c_b.
- $H_{a,b}$ consists of a disjoined set of paths and cycles.
Theorem (König)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

- Show how to colour an edge (a, b) in $O(n)$ time.
- Let c_a, c_b be the unused colours at the nodes a, b.
- If $c_a = c_b$, we may colour (a, b) with c_a.
- Observe now the graph $H_{a,b}$, who consists only of edges coloured with c_a, c_b.
- $H_{a,b}$ consists of a disjoined set of paths and cycles.
- a and b are the endpoints of two different paths.
Proof (König)

Theorem (König)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

- Show how to colour an edge (a, b) in $O(n)$ time.
- Let c_a, c_b be the unused colours at the nodes a, b.
- If $c_a = c_b$, we may colour (a, b) with c_a.
- Observe now the graph $H_{a,b}$, who consists only of edges coloured with c_a, c_b.
- $H_{a,b}$ consists of a disjoined set of paths and cycles.
- a and b are the endpoints of two different paths.
- Thus we may exchange the colours of one path.
Proof (König)

Theorem (König)

Any bipartite graph with degree Δ is Δ edge-colourable (Running-Time $O(nm)$).

- Show how to colour an edge (a, b) in $O(n)$ time.
- Let c_a, c_b be the unused colours at the nodes a, b.
- If $c_a = c_b$, we may colour (a, b) with c_a.
- Observe now the graph $H_{a,b}$, who consists only of edges coloured with c_a, c_b.
- $H_{a,b}$ consists of a disjoined set of paths and cycles.
- a and b are the endpoints of two different paths.
- Thus we may exchange the colours of one path.
- Running-Time: store for each node and colour the corresponding edge.
Introduction

Hardness

Algorithms

Colour with Greed

Brooks

Girth

Colouring \(\chi(G) \)

Complexity

2:23 Proof of Vizing 1/7

Proof (Vizing)

Theorem (Vizing)

Any graph with degree \(\Delta \) is \(\Delta + 1 \) edge-colourable (Running-Time \(O(nm) \)).

Proof by induction on the number of edges.
Proof (Vizing)

Theorem (Vizing)

Any graph with degree \(\Delta \) is \(\Delta + 1 \) edge-colourable (Running-Time \(O(nm) \)).

- Proof by induction on the number of edges.
- Let \(\Delta = \Delta(G) \) and \(e = (x, y) \in E \).

\[
\Delta(G) = \max_{v \in V(G)} \{\deg(v)\}
\]
Proof (Vizing)

Theorem (Vizing)

Any graph with degree Δ is $\Delta + 1$ edge-colourable (Running-Time $O(nm)$).

- Proof by induction on the number of edges.
- Let $\Delta = \Delta(G)$ and $e = (x, y) \in E$.
- For $G - e$ exists an edge colouring $c : E \setminus \{e\} \mapsto \{1, 2, \cdots, \Delta + 1\}$.
Proof (Vizing)

Theorem (Vizing)

Any graph with degree Δ is $\Delta + 1$ edge-colourable (Running-Time $O(nm)$).

- Proof by induction on the number of edges.
- Let $\Delta = \Delta(G)$ and $e = (x, y) \in E$.
- For $G - e$ exists an edge colouring $c : E \setminus \{e\} \mapsto \{1, 2, \cdots, \Delta + 1\}$.
- Note: At each node are $\Delta + 1 - \deg(v) \geq 1$ colours free.

\[\Delta(G) = \max_{v \in V(G)} \{\deg(v)\} \]
Theorem (Vizing)

Any graph with degree Δ is $\Delta + 1$ edge-colourable (Running-Time $O(nm)$).

- Proof by induction on the number of edges.
- Let $\Delta = \Delta(G)$ and $e = (x, y) \in E$.
- For $G - e$ exists an edge colouring $c : E \setminus \{e\} \mapsto \{1, 2, \cdots, \Delta + 1\}$.
- Note: At each node are $\Delta + 1 - \deg(v) \geq 1$ colours free.
- For $v \in V$ let F_v be the set of free colours.
Proof (Vizing)

Theorem (Vizing)

Any graph with degree Δ is $\Delta + 1$ edge-colourable (Running-Time $O(nm)$).

- Proof by induction on the number of edges.
- Let $\Delta = \Delta(G)$ and $e = (x, y) \in E$.
- For $G - e$ exists an edge colouring $c : E \setminus \{e\} \mapsto \{1, 2, \cdots, \Delta + 1\}$.
- Note: At each node are $\Delta + 1 - \deg(v) \geq 1$ colours free.
- For $v \in V$ let F_v be the set of free colours.
- If $F_x \cap F_y \neq \emptyset$ holds we may colour (x, y).
Proof (Vizing)

Theorem (Vizing)
Any graph with degree Δ is $\Delta + 1$ edge-colourable (Running-Time $O(nm)$).

- Proof by induction on the number of edges.
- Let $\Delta = \Delta(G)$ and $e = (x, y) \in E$.
- For $G - e$ exists an edge colouring $c : E \setminus \{e\} \mapsto \{1, 2, \cdots, \Delta + 1\}$.
- Note: At each node are $\Delta + 1 - \deg(v) \geq 1$ colours free.
- For $v \in V$ let F_v be the set of free colours.
- If $F_x \cap F_y \neq \emptyset$ holds we may colour (x, y).
- So assume for the following: $F_x \cap F_y = \emptyset$
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

\[
\Delta(G) = \max_{v \in V(G)} \{\deg(v)\}
\]
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:

- \(y_1 = y \) and
Proof I (Vizing)

- Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:
 - \(y_1 = y \) and
 - \(b_j \in F_{y_j} \) and

\[\Delta(G) = \max_{v \in V(G)} \{\deg(v)\} \]
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and

\[\Delta(G) = \max_{v \in V(G)} \{\deg(v)\} \]
Proof I (Vizing)

Construct a sequence $\{y_1, y_2, \ldots, y_k\}$ of neighbours of x and $\{b_1, b_2, \ldots, b_k\}$ of colours with:

- $y_1 = y$ and
- $b_j \in F_{y_j}$ and
- $c((x, y_{j+1})) = b_j$ and
- $\{y_1, y_2, \ldots, y_k\}$ are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\}\) of neighbours of \(x\) and \(\{b_1, b_2, \ldots, b_k\}\) of colours with:

- \(y_1 = y\) and
- \(b_j \in F_{y_j}\) and
- \(c((x, y_{j+1})) = b_j\) and
- \(\{y_1, y_2, \ldots, y_k\}\) are different.
Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \cdots, y_k\} \) are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.
Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_j+1)) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.
Proof I (Vizing)

- Construct a sequence \(\{y_1, y_2, \cdots, y_k\}\) of neighbours of \(x\) and \(\{b_1, b_2, \cdots, b_k\}\) of colours with:
 - \(y_1 = y\) and
 - \(b_j \in F_{y_j}\) and
 - \(c((x, y_{j+1})) = b_j\) and
 - \(\{y_1, y_2, \cdots, y_k\}\) are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \cdots, y_k\} \) are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \cdots, y_k\} \) are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \cdots, y_k\} \) are different.
Proof I (Vizing)

- Construct a sequence \{y_1, y_2, \ldots, y_k\} of neighbours of \(x\) and \{b_1, b_2, \ldots, b_k\} of colours with:
 - \(y_1 = y\) and
 - \(b_j \in F_{y_j}\) and
 - \(c((x, y_{j+1})) = b_j\) and
 - \(\{y_1, y_2, \ldots, y_k\}\) are different.
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\}\) of neighbours of \(x\) and \(\{b_1, b_2, \ldots, b_k\}\) of colours with:

- \(y_1 = y\) and
- \(b_j \in F_{y_j}\) and
- \(c((x, y_{j+1})) = b_j\) and
- \(\{y_1, y_2, \ldots, y_k\}\) are different.
Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \cdots, y_k\} \) are different.
Proof I (Vizing)

- Construct a sequence \(\{y_1, y_2, \cdots, y_k\}\) of neighbours of \(x\) and \(\{b_1, b_2, \cdots, b_k\}\) of colours with:
 - \(y_1 = y\) and
 - \(b_j \in F_{y_j}\) and
 - \(c((x, y_{j+1})) = b_j\) and
 - \(\{y_1, y_2, \cdots, y_k\}\) are different.

- If in round \(k\) the following hold:
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \cdots, y_k\} \) are different.

If in round \(k \) the following hold:

- The edge \((x, y_k)\) could be recoloured to colour \(f \in F_x \cap F_{y_k} \) with \(f \not\in \{b_1, b_2, \cdots, b_{k-1}\} \).
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.

If in round \(k \) the following hold:

- The edge \((x, y_k) \) could be recoloured to colour \(f \in F_x \cap F_{y_k} \) with \(f \not\in \{b_1, b_2, \ldots, b_{k-1}\} \).

Then do the following:
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.

If in round \(k \) the following hold:

- The edge \((x, y_k) \) could be recoloured to colour \(f \in F_x \cap F_{y_k} \) with \(f \not\in \{b_1, b_2, \ldots, b_{k-1}\} \).

Then do the following:

- \(c((x, y_k)) = f \)
Proof I (Vizing)

Construct a sequence \(\{y_1, y_2, \ldots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \ldots, b_k\} \) of colours with:

- \(y_1 = y \) and
- \(b_j \in F_{y_j} \) and
- \(c((x, y_{j+1})) = b_j \) and
- \(\{y_1, y_2, \ldots, y_k\} \) are different.

If in round \(k \) the following hold:

The edge \((x, y_k)\) could be recoloured to colour \(f \in F_x \cap F_{y_k} \) with \(f \notin \{b_1, b_2, \ldots, b_{k-1}\} \).

Then do the following:

- \(c((x, y_k)) = f \)
- \(c((x, y_i)) = b_i \) for \(1 \leq i < k \).
Proof I (Vizing)

- Construct a sequence \(\{y_1, y_2, \cdots, y_k\} \) of neighbours of \(x \) and \(\{b_1, b_2, \cdots, b_k\} \) of colours with:
 - \(y_1 = y \) and
 - \(b_j \in F_{y_j} \) and
 - \(c((x, y_{j+1})) = b_j \) and
 - \(\{y_1, y_2, \cdots, y_k\} \) are different.

- If in round \(k \) the following hold:
 - The edge \((x, y_k)\) could be recoloured to colour \(f \in F_x \cap F_{y_k} \) with \(f \notin \{b_1, b_2, \cdots, b_{k-1}\} \).

- Then do the following:
 - \(c((x, y_k)) = f \)
 - \(c((x, y_i)) = b_i \) for \(1 \leq i < k \).

- We call this operation \(\text{Shift}(k, f) \).
Proof II (Vizing)

We will now construct such a sequence.

edge-sequence \((y_1, \ldots, y_k)\) \(y_1 = y,\ b_j \in F_{y_j},\ c((x, y_{j+1})) = b_j\)
Proof II (Vizing)

- We will now construct such a sequence.
- What happens if the recolouring is not possible.

\[\text{edge-sequence } (y_1, \ldots, y_k) \ y_1 = y, \ b_j \in F_{y_j}, \ c((x, y_{j+1})) = b_j \]
Proof II (Vizing)

- We will now construct such a sequence.
- What happens if the recolouring is not possible.
- Then we have: $y_{k+1} \in \{y_1, y_2, \ldots, y_k\},$
Proof II (Vizing)

We will now construct such a sequence.

What happens if the recolouring is not possible.

Then we have: \(y_{k+1} \in \{y_1, y_2, \ldots, y_k\} \),

I.e. \(y_{k+1} = y_i \) and \(b_k = b_{i-1} \).
Proof II (Vizing)

We will now construct such a sequence.

What happens if the recolouring is not possible.

Then we have: $y_{k+1} \in \{y_1, y_2, \ldots, y_k\}$,

I.e. $y_{k+1} = y_i$ and $b_k = b_{i-1}$.

Then we have $i \neq 1$ and $i \neq k$.
We will now construct such a sequence.

What happens if the recolouring is not possible.

Then we have: \(y_{k+1} \in \{y_1, y_2, \ldots, y_k\} \),

i.e. \(y_{k+1} = y_i \) and \(b_k = b_{i-1} \).

Then we have \(i \neq 1 \) and \(i \neq k \).

Let \(a \in F_x \).
We will now construct such a sequence.

What happens if the recolouring is not possible.

Then we have: \(y_{k+1} \in \{y_1, y_2, \ldots, y_k\} \),

i.e. \(y_{k+1} = y_i \) and \(b_k = b_{i-1} \).

Then we have \(i \neq 1 \) and \(i \neq k \).

Let \(a \in F_x \).

Consider \(H(a, b_k) \); the subgraph using the colours \(a \) and \(b_k \).
Proof II (Vizing)

edge-sequence \((y_1, \ldots, y_k)\) \(y_1 = y, \ b_j \in F_{y_j}, \ c((x, y_{j+1})) = b_j\)

- We will now construct such a sequence.
- What happens if the recolouring is not possible.
- Then we have: \(y_{k+1} \in \{y_1, y_2, \ldots, y_k\}\),
- I.e. \(y_{k+1} = y_i\) and \(b_k = b_{i-1}\).
- Then we have \(i \neq 1\) and \(i \neq k\).
- Let \(a \in F_x\).
- Consider \(H(a, b_k)\); the subgraph using the colours \(a\) and \(b_k\).
- In each component of \(H(a, b_k)\) the colours may be exchanged.
We will now construct such a sequence.

What happens if the recolouring is not possible.

Then we have: \(y_{k+1} \in \{y_1, y_2, \ldots, y_k\} \),

i.e. \(y_{k+1} = y_i \) and \(b_k = b_{i-1} \).

Then we have \(i \neq 1 \) and \(i \neq k \).

Let \(a \in F_x \).

Consider \(H(a, b_k) \); the subgraph using the colours \(a \) and \(b_k \).

In each component of \(H(a, b_k) \) the colours may be exchanged.

At the node \(y_k \) starts a path \(P \) of \(H(a, b_k) \).
Proof II (Vizing)

- We will now construct such a sequence.
- What happens if the recolouring is not possible.
- Then we have: \(y_{k+1} \in \{y_1, y_2, \ldots, y_k\} \),
- i.e. \(y_{k+1} = y_i \) and \(b_k = b_{i-1} \).
- Then we have \(i \neq 1 \) and \(i \neq k \).
- Let \(a \in F_x \).
- Consider \(H(a, b_k) \); the subgraph using the colours \(a \) and \(b_k \).
- In each component of \(H(a, b_k) \) the colours may be exchanged.
- At the node \(y_k \) starts a path \(P \) of \(H(a, b_k) \).
- Let \(z \) be the other endpoint of path \(P \).
Proof III (Vizing)

Recall $a \in F_x$.

edge-sequence (y_1, \ldots, y_k) $y_1 = y$, $b_j \in F_{y_j}$, $c((x, y_j+1)) = b_j$
Proof III (Vizing)

- Recall $a \in F_x$.
- Recall $b_k \in F_{y_{i-1}}$.

Proof of Vizing

edge-sequence (y_1, \ldots, y_k) $y_1 = y$, $b_j \in F_{y_j}$, $c((x, y_{j+1})) = b_j$
Recall $a \in F_x$.
Recall $b_k \in F_{y_{i-1}}$.
Note P contains no edges of the form (x, y_j) $(1 \leq j \leq k)$.
Proof III (Vizing)

- Recall $a \in F_x$.
- Recall $b_k \in F_{y_{i-1}}$.
- Note P contains no edges of the form (x, y_j) $(1 \leq j \leq k)$
- with the exception of (x, y_i).

edge-sequence (y_1, \ldots, y_k) $y_1 = y$, $b_j \in F_{y_j}$, $c((x, y_{j+1})) = b_j$
Proof III (Vizing)

- Recall $a \in F_x$.
- Recall $b_k \in F_{y_{i-1}}$.
- Note P contains no edges of the form (x, y_j) $(1 \leq j \leq k)$ with the exception of (x, y_i).
- If $z = x$ holds, we also have (x, y_i) in P.

(edge-sequence (y_1, \ldots, y_k) $y_1 = y$, $b_j \in F_{y_j}$, $c((x, y_{j+1})) = b_j$)
Proof III (Vizing)

- Recall $a \in F_x$.
- Recall $b_k \in F_{y_{i-1}}$.
- Note P contains no edges of the form (x, y_j) ($1 \leq j \leq k$) with the exception of (x, y_i).
- If $z = x$ holds, we also have (x, y_i) in P.
- We will now consider the following cases:
Proof III (Vizing)

- Recall $a \in F_x$.
- Recall $b_k \in F_{y_{i-1}}$.
- Note P contains no edges of the form (x, y_j) $(1 \leq j \leq k)$
 with the exception of (x, y_i).
- If $z = x$ holds, we also have (x, y_i) in P.
- We will now consider the following cases:
 - $z = y_{i-1}$

\[
\text{edge-sequence } (y_1, \ldots, y_k) \ y_1 = y, \ b_j \in F_{y_j}, \ c((x, y_{j+1})) = b_j
\]
Proof III (Vizing)

- Recall $a \in F_x$.
- Recall $b_k \in F_{y_{i-1}}$.
- Note P contains no edges of the form (x, y_j) ($1 \leq j \leq k$) with the exception of (x, y_i).
- If $z = x$ holds, we also have (x, y_i) in P.
- We will now consider the following cases:
 - $z = y_{i-1}$
 - $z = x$
Proof III (Vizing)

- Recall $a \in F_x$.
- Recall $b_k \in F_{y_{i-1}}$.
- Note P contains no edges of the form (x, y_j) ($1 \leq j \leq k$) with the exception of (x, y_i).
- If $z = x$ holds, we also have (x, y_i) in P.
- We will now consider the following cases:
 - $z = y_{i-1}$
 - $z = x$
 - $z \not\in (x, y_{i-1})$. I.e. $z \not\in \{y_1, y_2, \ldots, y_k\}$

Diagram:

- Edge-sequence (y_1, \ldots, y_k)
 - $y_1 = y$, $b_j \in F_{y_j}$, $c((x, y_{j+1})) = b_j$

```
\begin{proof}
  \text{Recall } a \in F_x.
  \text{Recall } b_k \in F_{y_{i-1}}.
  \text{Note } P \text{ contains no edges of the form } (x, y_j) \quad (1 \leq j \leq k)
  \text{with the exception of } (x, y_i).
  \text{If } z = x \text{ holds, we also have } (x, y_i) \text{ in } P.
  \text{We will now consider the following cases:}
  \begin{itemize}
    \item $z = y_{i-1}$
    \item $z = x$
    \item $z \not\in (x, y_{i-1})$. I.e. $z \not\in \{y_1, y_2, \ldots, y_k\}$
  \end{itemize}
\end{proof}
```
Proof IIIa (Vizing)

- Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and
- P contains no edges of the form (x, y_j) ($j \in \{1, \ldots, k \setminus \{i\}\}$
- If $z = x$ holds, we also have (x, y_i) in P.

Case: $z = y_{i-1}$
Proof IIIa (Vizing)

- Note: \(a \in F_x, b_k \in F_{y_{i-1}} \) and
- \(P \) contains no edges of the form \((x, y_j)\)
 \((j \in \{1, \ldots, k \setminus \{i\}\})\)
- If \(z = x \) holds, we also have \((x, y_i)\) in \(P \).
- Case: \(z = y_{i-1} \)
 - Both edges at the ends of \(P \) are coloured with \(a \).
Proof IIIa (Vizing)

- Note: $a \in F_x$, $b_k \in F_{y_i-1}$ and
- P contains no edges of the form (x, y_j) ($j \in \{1, \ldots, k\} \setminus \{i\}$)
- If $z = x$ holds, we also have (x, y_i) in P.

Case: $z = y_{i-1}$

- Both edges at the ends of P are coloured with a.
- Exchange the colours on P.

Diagram:

```
edge-sequence $(y_1, \ldots, y_k)$ $y_1 = y$, $b_j \in F_{y_j}$, $c((x, y_{j+1})) = b_j$
```
Proof IIIa (Vizing)

- Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and
- P contains no edges of the form (x, y_j) $(j \in \{1, \ldots, k\}\setminus \{i\})$
- If $z = x$ holds, we also have (x, y_i) in P.

Case: $z = y_{i-1}$

- Both edges at the ends of P are coloured with a.
- Exchange the colours on P.
- After this, the colour a is not used at y_{i-1}.

edge-sequence y_1, \ldots, y_k $y_1 = y$, $b_j \in F_{y_j}$, $c((x, y_{j+1})) = b_j$
Proof IIIa (Vizing)

- Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and P contains no edges of the form (x, y_j) ($j \in \{1, \ldots, k\}$).
- If $z = x$ holds, we also have (x, y_i) in P.

- Case: $z = y_{i-1}$
 - Both edges at the ends of P are coloured with a.
 - Exchange the colours on P.
 - After this, the colour a is not used at y_{i-1}.
 - Do $\text{Shift}(i - 1, a)$ as the final step.
Proof IIIb (Vizing)

Note: \(a \in F_x, b_k \in F_{y_{i-1}} \) and

- \(P \) contains no edges of the form \((x, y_j)\) \((j \in \{1, \ldots, k\}\)\)
- If \(z = x \) holds, we also have \((x, y_i)\) in \(P \).

Case: \(z = x \)
Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and

- P contains no edges of the form (x, y_j) ($j \in \{1, \ldots, k\}$)

- If $z = x$ holds, we also have (x, y_i) in P.

Case: $z = x$

- Exchange the colour on P.

edge-sequence (y_1, \ldots, y_k) $y_1 = y$, $b_j \in F_y$, $c((x, y_{j+1})) = b_j$
Proof IIIb (Vizing)

- Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and
- P contains no edges of the form (x, y_j) ($j \in \{1, \ldots, k\} \backslash \{i\}$)
- If $z = x$ holds, we also have (x, y_i) in P.

- Case: $z = x$
 - Exchange the colour on P.
 - Then the colour $b_k = b_{i-1}$ is not used at x.

\[\text{edge-sequence } (y_1, \ldots, y_k) \ y_1 = y, \ b_j \in F_{y_j}, \ c((x, y_{j+1})) = b_j \]
Proof IIIb (Vizing)

- Note: \(a \in F_x, b_k \in F_{y_{i-1}} \) and

- \(P \) contains no edges of the form \((x, y_j)\) \((j \in \{1, \ldots, k\}\backslash\{i\})\)

- If \(z = x \) holds, we also have \((x, y_i)\) in \(P \).

- Case: \(z = x \)
 - Exchange the colour on \(P \).
 - Then the colour \(b_k = b_{i-1} \) is not used at \(x \).
 - Do \textit{Shift}(i - 1, b_{i-1})\) as the final step.
Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and

- P contains no edges of the form (x, y_j) ($j \in \{1, \ldots, k\}$) \(\setminus\{i\}\)
- If $z = x$ holds, we also have (x, y_i) in P.

Case: $z \notin (x, y_{i-1})$
Proof IIIc (Vizing)

- Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and
- P contains no edges of the form (x, y_j) ($j \in \{1, \ldots, k\} \setminus \{i\}$)
- If $z = x$ holds, we also have (x, y_i) in P.
- Case: $z \notin (x, y_{i-1})$
 - Exchange the colours on the path P (if there are edges).
Proof IIIc (Vizing)

- Note: \(a \in F_x, b_k \in F_{y_{i-1}} \) and
- \(P \) contains no edges of the form \((x, y_j)\) \((j \in \{1, \ldots, k\} \setminus \{i\})\)
- If \(z = x \) holds, we also have \((x, y_i)\) in \(P \).

- Case: \(z \notin (x, y_{i-1}) \)
 - Exchange the colours on the path \(P \) (if there are edges).
 - Then the colour \(a \) is not used at \(y_k \).
Proof IIIc (Vizing)

- Note: $a \in F_x$, $b_k \in F_{y_{i-1}}$ and
- P contains no edges of the form (x, y_j) ($j \in \{1, \ldots, k\\setminus\{i\}$)
- If $z = x$ holds, we also have (x, y_i) in P.
- Case: $z \notin (x, y_{i-1})$
 - Exchange the colours on the path P (if there are edges).
 - Then the colour a is not used at y_k.
 - Do $\text{Shift}(k, a)$ as the last step.
Some Bounds

Note

Let $G = (V, E)$ be a graph. Then the following hold: $\chi(G) \geq \omega(G)$.
Some Bounds

Note

Let \(G = (V, E) \) be a graph. Then the following hold: \(\chi(G) \geq \omega(G) \).

Note

Let \(G = (V, E) \) be a graph with \(|V| = n \). Then we have: \(\chi(G) \geq n/\alpha(G) \).
Some Bounds

Note

Let $G = (V, E)$ be a graph. Then the following hold: $\chi(G) \geq \omega(G)$.

Note

Let $G = (V, E)$ be a graph with $|V| = n$. Then we have: $\chi(G) \geq n/\alpha(G)$.

Theorem

Let $G = (V, E)$ be a graph with $|E| = m$. Then: $\chi(G)(\chi(G) - 1) \leq 2m$.

Let $k = \chi(G)$.
Some Bounds

Note

Let $G = (V, E)$ be a graph. Then the following hold: $\chi(G) \geq \omega(G)$.

Note

Let $G = (V, E)$ be a graph with $|V| = n$. Then we have: $\chi(G) \geq n/\alpha(G)$.

Theorem

Let $G = (V, E)$ be a graph with $|E| = m$. Then: $\chi(G)(\chi(G) - 1) \leq 2m$.

- Let $k = \chi(G)$.
- There exist k independent sets I_i with $i \in \{1, \ldots, k\}$.

edge-sequence (y_1, \ldots, y_k) $y_1 = y$, $b_j \in F_{y_j}$, $c((x, y_{j+1})) = b_j$
Some Bounds

Note
Let \(G = (V, E) \) be a graph. Then the following hold: \(\chi(G) \geq \omega(G) \).

Note
Let \(G = (V, E) \) be a graph with \(|V| = n \). Then we have: \(\chi(G) \geq n/\alpha(G) \).

Theorem
Let \(G = (V, E) \) be a graph with \(|E| = m \). Then: \(\chi(G)(\chi(G) - 1) \leq 2m \).

- Let \(k = \chi(G) \).
- There exist \(k \) independent sets \(I_i \) with \(i \in \{1, \ldots, k\} \).
- Between \(I_i \) and \(I_j (i \neq j) \) exists at least one edge.
Some Bounds

Note
Let $G = (V, E)$ be a graph. Then the following hold: $\chi(G) \geq \omega(G)$.

Note
Let $G = (V, E)$ be a graph with $|V| = n$. Then we have: $\chi(G) \geq n/\alpha(G)$.

Theorem
Let $G = (V, E)$ be a graph with $|E| = m$. Then: $\chi(G)(\chi(G) - 1) \leq 2m$.

- Let $k = \chi(G)$.
- There exist k independent sets I_i with $i \in \{1, \ldots, k\}$.
- Between I_i and I_j ($i \neq j$) exists at least one edge.
- From which we get $k \cdot (k - 1)/2$ edges in total.
Colour with Greed

- Let $G = (V, E)$ be a Graph.
Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

\[
G[W] = (W, \{(a, b) \in E(G) \mid a, b \in W\})
\]
Colour with Greed

- Let $G = (V, E)$ be a Graph.
- Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.
- Algorithm: $GreedyColour(G, \sigma)$.
Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: $GreedyColour(G, \sigma)$.

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

$G[W] = (W, \{(a, b) \in E(G) \mid a, b \in W\})$
Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: \textit{GreedyColour}(G, \sigma).

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

Colour: $c(v_1) := 1$.

$$G[W] = (W, \{(a, b) \in E(G) \mid a, b \in W\})$$
Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: $GreedyColour(G, \sigma)$.

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

Colour: $c(v_1) := 1$.

Colour: $c(v_i) := \min\{k \in \mathbb{N} \mid k \neq c(u) \quad \forall u \in \Gamma(v_i) \cap V_{i-1}\}$
Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: $GreedyColour(G, \sigma)$.

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

Colour: $c(v_1) := 1$.

Colour: $c(v_i) := \min\{k \in \mathbb{N} \mid k \neq c(u) \quad \forall u \in \Gamma(v_i) \cap V_{i-1}\}$

Number of colours: $GreedyColour(G, \sigma) := |\{c(v) \mid v \in V\}|$.

$G[W] = (W, \{(a, b) \in E(G) \mid a, b \in W\})$
Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: $\text{GreedyColour}(G, \sigma)$.

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

Colour: $c(v_1) := 1$.

Colour: $c(v_i) := \min\{k \in \mathbb{N} \mid k \neq c(u) \ \forall u \in \Gamma(v_i) \cap V_{i-1}\}$

Number of colours: $\text{GreedyColour}(G, \sigma) := |\{c(v) \mid v \in V\}|$.

We have: $\chi(G) \leq \text{GreedyColour}(G, \sigma) \leq \Delta(G) + 1$.
Colour with Greed

Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: $GreedyColour(G, \sigma)$.

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

Colour: $c(v_1) := 1$.

Colour: $c(v_i) := \min\{k \in \mathbb{N} \mid k \neq c(u) \forall u \in \Gamma(v_i) \cap V_{i-1}\}$

Number of colours: $GreedyColour(G, \sigma) := |\{c(v) \mid v \in V\}|$.

We have: $\chi(G) \leq GreedyColour(G, \sigma) \leq \Delta(G) + 1$.

For odd cycles and cliques holds:
Colour with Greed

Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: GreedyColour(G, σ).

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

Colour: $c(v_1) := 1$.

Colour: $c(v_i) := \min\{k \in \mathbb{N} \mid k \neq c(u) \ \forall u \in \Gamma(v_i) \cap V_{i-1}\}$

Number of colours: GreedyColour(G, σ) := $|\{c(v) \mid v \in V\}|$.

We have: $\chi(G) \leq GreedyColour(G, \sigma) \leq \Delta(G) + 1$.

For odd cycles and cliques holds:

$\chi(G) = GreedyColour(G, \sigma) = \Delta(G) + 1$.

$G[W] = (W, \{(a, b) \in E(G) \mid a, b \in W\}$
Colour with Greed

Let $G = (V, E)$ be a Graph.

Choose an ordering of the nodes: $\sigma = (v_1, v_2, \ldots, v_n)$.

Algorithm: $GreedyColour(G, \sigma)$.

Let $V_i = \{v_1, v_2, \ldots, v_i\}$ and $G_i = G[V_i]$.

Colour: $c(v_1) := 1$.

Colour: $c(v_i) := \min\{k \in \mathbb{N} \mid k \neq c(u) \ \forall u \in \Gamma(v_i) \cap V_{i-1}\}$

Number of colours: $GreedyColour(G, \sigma) := |\{c(v) \mid v \in V\}|$.

We have: $\chi(G) \leq GreedyColour(G, \sigma) \leq \Delta(G) + 1$.

For odd cycles and cliques holds:

$\chi(G) = GreedyColour(G, \sigma) = \Delta(G) + 1$.

Running time: $O(|V| + |E|)$
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.
2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.
2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$

![Graph Image]
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
 - $E_n = \{\{v_i, w_j\} \mid v_i \in V_n, w_j \in W_n, i \neq j\}$
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
 - $E_n = \{\{v_i, w_j\} | v_i \in V_n, w_j \in W_n, i \neq j\}$

Note:

$\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n))$.
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
 - $E_n = \{\{v_i, w_j\} \mid v_i \in V_n, w_j \in W_n, i \neq j\}$

Note:

$\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n))$.

$\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n)) = n.$
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
 - $E_n = \{(v_i, w_j) \mid v_i \in V_n, w_j \in W_n, i \neq j\}$

 Note:
 - $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n))$.
 - $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n)) = n$.
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
 - $E_n = \{\{v_i, w_j\} \mid v_i \in V_n, w_j \in W_n, i \neq j\}$

Note:
- $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n))$.
- $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n)) = n$.
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
 - $E_n = \{\{v_i, w_j\} \mid v_i \in V_n, w_j \in W_n, i \neq j\}$

Note:
- $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n))$.
- $\text{GreedyColour}(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n)) = n$.
Analysis of the Error

1. Extreme case: $K_{1,\Delta}$.

2. Extreme case: B_n:
 - $B_n = (V_n, W_n, E_n)$
 - $V_n = \{v_1, v_2, v_3, \ldots, v_n\}$
 - $W_n = \{w_1, w_2, w_3, \ldots, w_n\}$
 - $E_n = \{\{v_i, w_j\} \mid v_i \in V_n, w_j \in W_n, i \neq j\}$

 Note:
 - $\text{GreedyColour}\left(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n)\right)$.
 - $\text{GreedyColour}\left(B_n, (v_1, w_1, v_2, w_2, v_3, w_3, \ldots, v_n, w_n)\right) = n$.
 - But $\chi(B_n) = 2$.

\[\]
Error-Analysis

Theorem

Let $\varepsilon, \delta > 0$ and $c < 1$.
Error-Analysis

Theorem

- Let $\varepsilon, \delta > 0$ and $c < 1$.
- *For large enough* n *exists graphs* G_n *with:*
Error-Analysis

Theorem

- Let $\varepsilon, \delta > 0$ and $c < 1$.
- For large enough n exists graphs G_n with:
- $\chi(G_n) \leq n^\varepsilon$ and
Theorem

- Let $\varepsilon, \delta > 0$ and $c < 1$.
- For large enough n exists graphs G_n with:
 - $\chi(G_n) \leq n^\varepsilon$ and
 - on $o(n^{-\delta})$ orderings Greedy will use $c \cdot n/\log n$ colours.
Error-Analysis

Theorem

1. Let $\varepsilon, \delta > 0$ and $c < 1$.
2. For large enough n exists graphs G_n with:
3. $\chi(G_n) \leq n^\varepsilon$ and
4. on $o(n^{-\delta})$ orderings Greedy will use $c \cdot n/\log n$ colours.
Error-Analysis

Theorem

- Let $\varepsilon, \delta > 0$ and $c < 1$.
- For large enough n exists graphs G_n with:
 - $\chi(G_n) \leq n^\varepsilon$ and
 - on $o(n^{-\delta})$ orderings Greedy will use $c \cdot n / \log n$ colours.

Lemma

There is an ordering σ^* with: $\text{GreedyColour}(G, \sigma^*) = \chi(G)$.

Error-Analysis

Theorem

- Let $\varepsilon, \delta > 0$ and $c < 1$.
- For large enough n exists graphs G_n with:
 - $\chi(G_n) \leq n^{\varepsilon}$ and
 - on $o(n^{-\delta})$ orderings Greedy will use $c \cdot n / \log n$ colours.

Lemma

There is an ordering σ^* with: $\text{GreedyColour}(G, \sigma^*) = \chi(G)$.

Lemma

$\min_{\sigma \in S_n} \text{GreedyColour}(G, \sigma) = \chi(G)$ hold.
Improvements

Note: for v_i are at most $d_{G_i}(v_i)$ colours unusable.
Improvements

- Note: for v_i are at most $d_{G_i}(v_i)$ colours unusable.
- Let $b(\sigma) = \max_{1 \leq i \leq n} d_{G_i}(v_i)$ with $\sigma = (v_1, v_2, \ldots, v_n)$.
Improvements

- Note: for v_i are at most $d_{G_i}(v_i)$ colours unusable.
- Let $b(\sigma) = \max_{1 \leq i \leq n} d_{G_i}(v_i)$ with $\sigma = (v_1, v_2, \ldots, v_n)$.
- $\chi(G) \leq \min_{\sigma \in S_n} b(\sigma)$
Improvements

- Note: for v_i are at most $d_{G_i}(v_i)$ colours unusable.
- Let $b(\sigma) = \max_{1 \leq i \leq n} d_{G_i}(v_i)$ with $\sigma = (v_1, v_2, \ldots, v_n)$.
- $\chi(G) \leq \min_{\sigma \in S_n} b(\sigma)$
- The ordering σ which gives the minimum is constructable.
Improvements

- Note: for v_i are at most $d_{G_i}(v_i)$ colours unusable.
- Let $b(\sigma) = \max_{1 \leq i \leq n} d_{G_i}(v_i)$ with $\sigma = (v_1, v_2, \ldots, v_n)$.
- $\chi(G) \leq \min_{\sigma \in S_n} b(\sigma)$
- The ordering σ which gives the minimum is constructable.
 - Choose v_n with the minimal degree.
Improvements

- Note: for v_i are at most $d_{G_i}(v_i)$ colours unusable.
- Let $b(\sigma) = \max_{1 \leq i \leq n} d_{G_i}(v_i)$ with $\sigma = (v_1, v_2, \ldots, v_n)$.
- $\chi(G) \leq \min_{\sigma \in S_n} b(\sigma)$
- The ordering σ which gives the minimum is constructable.
 - Choose v_n with the minimal degree.
 - Recursively compute the ordering on $G - v_n$.
Improvements

- Note: for v_i are at most $d_{G_i}(v_i)$ colours unusable.
- Let $b(\sigma) = \max_{1 \leq i \leq n} d_{G_i}(v_i)$ with $\sigma = (v_1, v_2, \ldots, v_n)$.
- $\chi(G) \leq \min_{\sigma \in S_n} b(\sigma)$
- The ordering σ which gives the minimum is constructable.
 - Choose v_n with the minimal degree.
 - Recursively compute the ordering on $G - v_n$.
- Such an ordering is called: “smallest-last”
Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subset G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$
Application

Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subseteq G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

- $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subseteq G} \delta(H)$
Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subset G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

1. $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subset G} \delta(H)$
2. Let H^* be a subgraph of G with: $\delta(H^*) = \max_{H \subset G} \delta(H)$.

Application
Application

Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subseteq G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

1. $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subseteq G} \delta(H)$

2. Let H^* be a subgraph of G with: $\delta(H^*) = \max_{H \subseteq G} \delta(H)$.

3. Let j be the smallest index with: H^* is a subgraph of G_j for some permutation σ. Then we get:
Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subseteq G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

- $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subseteq G} \delta(H)$
- Let H^* be a subgraph of G with: $\delta(H^*) = \max_{H \subseteq G} \delta(H)$.
- Let j be the smallest index with: H^* is a subgraph of G_j for some permutation σ. Then we get:
 - $\max_{H \subseteq G} \delta(H) = \delta(H^*) \leq d_{H^*}(v_j)$
Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subset G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

- $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subset G} \delta(H)$
- Let H^* be a subgraph of G with: $\delta(H^*) = \max_{H \subset G} \delta(H)$.
- Let j be the smallest index with: H^* is a subgraph of G_j for some permutation σ. Then we get:
 - $\max_{H \subset G} \delta(H) = \delta(H^*) \leq d_{H^*}(v_j) \leq d_{G_j}(v_j)$
Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subseteq G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

- $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subseteq G} \delta(H)$
- Let H^* be a subgraph of G with: $\delta(H^*) = \max_{H \subseteq G} \delta(H)$.
- Let j be the smallest index with: H^* is a subgraph of G_j for some permutation σ. Then we get:
 - $\max_{H \subseteq G} \delta(H) = \delta(H^*) \leq d_{H^*}(v_j) \leq d_{G_j}(v_j) \leq b(\sigma)$
Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subseteq G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

- $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subseteq G} \delta(H)$
- Let H^* be a subgraph of G with: $\delta(H^*) = \max_{H \subseteq G} \delta(H)$.
- Let j be the smallest index with: H^* is a subgraph of G_j for some permutation σ. Then we get:
 - $\max_{H \subseteq G} \delta(H) = \delta(H^*) \leq d_{H^*}(v_j) \leq d_{G_j}(v_j) \leq b(\sigma)$
 - Furthermore: $\max_{H \subseteq G} \delta(H) \leq \min_{\sigma \in S_n} b(\sigma)$.
Lemma

Let σ_{sl} be a smallest-last ordering. Then we have:

$$b(\sigma_{sl}) = \max_{H \subseteq G} \delta(H) = \min_{\sigma \in S_n} b(\sigma)$$

Proof

- $b(\sigma_{sl}) \leq \max_i \delta(G_i) \leq \max_{H \subseteq G} \delta(H)$
- Let H^* be a subgraph of G with: $\delta(H^*) = \max_{H \subseteq G} \delta(H)$.
- Let j be the smallest index with: H^* is a subgraph of G_j for some permutation σ. Then we get:
 - $\max_{H \subseteq G} \delta(H) = \delta(H^*) \leq d_{H^*}(v_j) \leq d_{G_j}(v_j) \leq b(\sigma)$
 - Furthermore: $\max_{H \subseteq G} \delta(H) \leq \min_{\sigma \in S_n} b(\sigma)$.
 - The claim follows by: $\min_{\sigma \in S_n} b(\sigma) \leq b(\sigma_{sl})$.
Lemma

Let $G = (V, E)$ and σ_{sl} smallest-last ordering. Then the following hold:

$$\chi(G) \leq \text{GreedyColour}(G, \sigma_{sl}) \leq 1 + \max_{H \subseteq G} \delta(H)$$
Implications I

Lemma

Let $G = (V, E)$ and σ_{sl} smallest-last ordering. Then the following hold:

$$\chi(G) \leq \text{GreedyColour}(G, \sigma_{sl}) \leq 1 + \max_{H \subseteq G} \delta(H)$$

Running Time: $O(|V| + |E|)$.
Lemma

Let $G = (V, E)$ connected and not $\Delta(G)$-regular. Then $\chi(G) \leq \Delta(G)$ holds.
Lemma

Let $G = (V, E)$ connected and not $\Delta(G)$-regular. Then $\chi(G) \leq \Delta(G)$ holds.

- Let v_1 a node with $d(v_1) < \Delta(G)$.
Lemma

Let $G = (V, E)$ connected and not $\Delta(G)$-regular. Then $\chi(G) \leq \Delta(G)$ holds.

- Let v_1 a node with $d(v_1) < \Delta(G)$.
- Choose ordering $\sigma = (v_1, v_2, v_3, \ldots, v_n)$ by breadth-first-search from v_1.
Lemma

Let $G = (V, E)$ connected and not $\Delta(G)$-regular. Then $\chi(G) \leq \Delta(G)$ holds.

- Let v_1 a node with $d(v_1) < \Delta(G)$.
- Choose ordering $\sigma = (v_1, v_2, v_3, \ldots, v_n)$ by breadth-first-search from v_1.
- Call $\text{GreedyColour}(G, \sigma^{-1})$. Then the following hold:
Implications II

Lemma

Let $G = (V, E)$ connected and not $\Delta(G)$-regular. Then $\chi(G) \leq \Delta(G)$ holds.

- Let v_1 a node with $d(v_1) < \Delta(G)$.
- Choose ordering $\sigma = (v_1, v_2, v_3, \ldots, v_n)$ by breadth-first-search from v_1.
- Call $\text{GreedyColour}(G, \sigma^{-1})$. Then the following hold:
 - $d(v_1) < \Delta(G)$, d.h. $c(v_1) \leq \Delta(G)$
Lemma

Let $G = (V, E)$ connected and not $\Delta(G)$-regular. Then $\chi(G) \leq \Delta(G)$ holds.

- Let v_1 a node with $d(v_1) < \Delta(G)$.
- Choose ordering $\sigma = (v_1, v_2, v_3, \ldots, v_n)$ by breadth-first-search from v_1.
- Call $\text{GreedyColour}(G, \sigma^{-1})$. Then the following hold:
 - $d(v_1) < \Delta(G)$, d.h. $c(v_1) \leq \Delta(G)$
 - v_i has a non-coloured neighbour, thus $c(v_i) \leq \Delta(G)$ holds.
Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$
Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected, consider block B:

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected, consider block B:
 - If B is regular, then B is not $\Delta(G)$-regular.
Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected, consider block B:
 - If B is regular, then B is not $\Delta(G)$-regular.
 - If B is not regular, colour the graph using the above algorithm.
Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected, consider block B:
 - If B is regular, then B is not $\Delta(G)$-regular.
 - If B is not regular, colour the graph using the above algorithm.
 - In both cases we use at most $\Delta(G)$ colours.
Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected, consider block B:
 - If B is regular, then B is not $\Delta(G)$-regular.
 - If B is not regular, colour the graph using the above algorithm.
 - In both cases we use at most $\Delta(G)$ colours.

- If G two-connected and not regular, then colour again using the above algorithm
Theorem (Brooks 1941)

Let \(G = (V, E) \) be a connected Graph with at least three nodes. Let \(G \) be no clique nor an odd cycle. Then the following holds:

\[
\chi(G) \leq \Delta(G)
\]

- If \(G \) is not two-connected, consider block \(B \):
 - If \(B \) is regular, then \(B \) is not \(\Delta(G) \)-regular.
 - If \(B \) is not regular, colour the graph using the above algorithm.
 - In both cases we use at most \(\Delta(G) \) colours.

- If \(G \) two-connected and not regular, then colour again using the above algorithm

- If \(G \) two-connected and regular, continue as follows:
Proof

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$
Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
Proof

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
- If G is two-connected and not regular: (done)
Proof

Theorem (Brooks 1941)

Let \(G = (V, E) \) be a connected Graph with at least three nodes. Let \(G \) be no clique nor an odd cycle. Then the following holds:

\[
\chi(G) \leq \Delta(G)
\]

- If \(G \) is not two-connected (done)
- If \(G \) is two-connected and not regular: (done)
- If \(G \) is two-connected and regular, then continue:
Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
- If G is two-connected and not regular: (done)
- If G is two-connected and regular, then continue:
 - Choose v_1 with neighbours v_{n-1} and v_n, who are neighbours,
Proof

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
- If G is two-connected and not regular: (done)
- If G is two-connected and regular, then continue:
 - Choose v_1 with neighbours v_{n-1} and v_n, who are neighbours,
 - such that $G - \{v_{n-1}, v_n\}$ is still connected.
Proof

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
- If G is two-connected and not regular: (done)
- If G is two-connected and regular, then continue:
 - Choose v_1 with neighbours v_{n-1} and v_n, who are neighbours,
 - such that $G - \{v_{n-1}, v_n\}$ is still connected.
 - Compute $v_2, v_3, \ldots, v_{n-2}$ using breadth-first-search from v_1 on $G - \{v_{n-1}, v_n\}$.

Proof

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
- If G is two-connected and not regular: (done)
- If G is two-connected and regular, then continue:
 - Choose v_1 with neighbours v_{n-1} and v_n, who are neighbours, such that $G - \{v_{n-1}, v_n\}$ is still connected.
 - Compute $v_2, v_3, \ldots, v_{n-2}$ using breadth-first-search from v_1 on $G - \{v_{n-1}, v_n\}$.
 - Colour with $\text{GreedyColour}(G, \sigma^{-1})$.

Proof

Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
- If G is two-connected and not regular: (done)
- If G is two-connected and regular, then continue:
 - Choose v_1 with neighbours v_{n-1} and v_n, who are neighbours, such that $G - \{v_{n-1}, v_n\}$ is still connected.
 - Compute $v_2, v_3, \ldots, v_{n-2}$ using breadth-first-search from v_1 on $G - \{v_{n-1}, v_n\}$.
 - Colour with $\text{GreedyColour}(G, \sigma^{-1})$.
 - v_{n-1} and v_n get the same colour.
Theorem (Brooks 1941)

Let $G = (V, E)$ be a connected Graph with at least three nodes. Let G be no clique nor an odd cycle. Then the following holds:

$$\chi(G) \leq \Delta(G)$$

- If G is not two-connected (done)
- If G is two-connected and not regular: (done)
- If G is two-connected and regular, then continue:
 - Choose v_1 with neighbours v_{n-1} and v_n, who are neighbours,
 - such that $G - \{v_{n-1}, v_n\}$ is still connected.
 - Compute $v_2, v_3, \ldots, v_{n-2}$ using breadth-first-search from v_1 on $G - \{v_{n-1}, v_n\}$.
 - Colour with $\text{GreedyColour}(G, \sigma^{-1})$.
 - v_{n-1} and v_n get the same colour.
 - Thus at most $\Delta(G) - 1$ colours are not usable for v_1.
Implications

Lemma

Let $G = (V, E)$ two-connected, regular with at least three nodes. Let G be no clique nor a cycle. Then there exists $x, y \in V$ with $\text{dist}(x, y) = 2$ and $G - x - y$ is connected.
Lemma

Let $G = (V, E)$ two-connected, regular with at least three nodes. Let G be no clique nor a cycle. Then there exists $x, y \in V$ with $\text{dist}(x, y) = 2$ and $G - x - y$ is connected.

Let $v \in V$ with $d(v) = \Delta(G)$.
Implications

Lemma

Let $G = (V, E)$ two-connected, regular with at least three nodes. Let G be no clique nor a cycle. Then there exists $x, y \in V$ with $\text{dist}(x, y) = 2$ and $G - x - y$ is connected.

- Let $v \in V$ with $d(v) = \Delta(G)$.
- Then is $H := G[\{v\} \cup \Gamma(v)]$ not complete.
Lemma

Let \(G = (V, E) \) two-connected, regular with at least three nodes. Let \(G \) be no clique nor a cycle. Then there exists \(x, y \in V \) with \(\text{dist}(x, y) = 2 \) and \(G - x - y \) is connected.

- Let \(v \in V \) with \(d(v) = \Delta(G) \).
- Then is \(H := G[\{v\} \cup \Gamma(v)] \) not complete.
- Thus there exists \(x', y' \) in \(\Gamma(v) \) with \(\text{dist}(x', y') = 2 \).
Implications

Lemma

Let $G = (V, E)$ two-connected, regular with at least three nodes. Let G be no clique nor a cycle. Then there exists $x, y \in V$ with $\text{dist}(x, y) = 2$ and $G - x - y$ is connected.

- Let $v \in V$ with $d(v) = \Delta(G)$.
- Then is $H := G[\{v\} \cup \Gamma(v)]$ not complete.
- Thus there exists x', y' in $\Gamma(v)$ with $\text{dist}(x', y') = 2$.
- If $G - \{x', y'\}$ is connected, we are done!
Implications

Lemma

Let $G = (V, E)$ two-connected, regular with at least three nodes. Let G be no clique nor a cycle. Then there exists $x, y \in V$ with $\text{dist}(x, y) = 2$ and $G - x - y$ is connected.

- Let $v \in V$ with $d(v) = \Delta(G)$.
- Then is $H := G[\{v\} \cup \Gamma(v)]$ not complete.
- Thus there exists x', y' in $\Gamma(v)$ with $\text{dist}(x', y') = 2$.
- If $G - \{x', y'\}$ is connected, we are done!
- If not, is x', y' a minimal separator.
Implications

Lemma

Let $G = (V, E)$ two-connected, regular with at least three nodes. Let G be no clique nor a cycle. Then there exists $x, y \in V$ with $\text{dist}(x, y) = 2$ and $G - x - y$ is connected.

- Let $v \in V$ with $d(v) = \Delta(G)$.
- Then is $H := G[\{v\} \cup \Gamma(v)]$ not complete.
- Thus there exists x', y' in $\Gamma(v)$ with $\text{dist}(x', y') = 2$.
- If $G - \{x', y'\}$ is connected, we are done!
- If not, is x', y' a minimal separator.
- We have $\Delta(G) \geq 3$ and $d(v) \geq 3$.
Implications

Lemma

Let $G = (V, E)$ two-connected, regular with at least three nodes. Let G be no clique nor a cycle. Then there exists $x, y \in V$ with $\text{dist}(x, y) = 2$ and $G - x - y$ is connected.

- Let $v \in V$ with $d(v) = \Delta(G)$.
- Then is $H := G[\{v\} \cup \Gamma(v)]$ not complete.
- Thus there exists x', y' in $\Gamma(v)$ with $\text{dist}(x', y') = 2$.
- If $G - \{x', y'\}$ is connected, we are done!
- If not, is x', y' a minimal separator.
- We have $\Delta(G) \geq 3$ and $d(v) \geq 3$.
- Let C be the component in $G - \{x', y'\}$, which contains v.
Implications

- There exists x in C with x is neighboured to x' or y'.
Implications

- There exists x in C with x is neighboured to x' or y'.
- This hold for each component in $G - \{x', y'\}$.
Implications

- There exists x in C with x is neighoured to x' or y'.
- This hold for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $\text{dist}(x, y) = 2$.
Implications

- There exists a node x in C with x is neighboured to x' or y'.
- This holds for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $\text{dist}(x, y) = 2$.
- We will now show that $G - \{x, y\}$ is connected.
Implications

- There exists x in C with x is neighboured to x' or y'.
- This hold for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $dist(x, y) = 2$.
- We will now show that $G - \{x, y\}$ is connected.
 - x' and y' are in $G - \{x, y\}$ connected.
Implications

- There exists x in C with x is neighboured to x' or y'.
- This holds for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $\text{dist}(x, y) = 2$.
- We will now show that $G - \{x, y\}$ is connected.
 - x' and y' are in $G - \{x, y\}$ connected.
 - Show: Each node in $G - \{x, y\}$ is connected with x' or y'.
Implications

- There exists x in C with x is neighboured to x' or y'.
- This hold for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $\text{dist}(x, y) = 2$.
- We will now show that $G - \{x, y\}$ is connected.
 - x' and y' are in $G - \{x, y\}$ connected.
 - Show: Each node in $G - \{x, y\}$ is connected with x' or y'.
 - $G - x$ is connected.
Implications

- There exists \(x \) in \(C \) with \(x \) is neighboured to \(x' \) or \(y' \).
- This hold for each component in \(G - \{x', y'\} \).
- Thus there exists \(y \) from some other component with \(dist(x, y) = 2 \).
- We will now show that \(G - \{x, y\} \) is connected.
 - \(x' \) and \(y' \) are in \(G - \{x, y\} \) connected.
 - Show: Each node in \(G - \{x, y\} \) is connected with \(x' \) or \(y' \).
 - \(G - x \) is connected.
 - Each node from \(C - x \) is connected by a path \(P \) with \(x' \) or \(y' \), without using \(y \).
Implications

- There exists x in C with x is neighboured to x' or y'.
- This hold for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $\text{dist}(x, y) = 2$.
- We will now show that $G - \{x, y\}$ is connected.
 - x' and y' are in $G - \{x, y\}$ connected.
 - Show: Each node in $G - \{x, y\}$ is connected with x' or y'.
 - $G - x$ is connected.
 - Each node from $C - x$ is connected by a path P with x' or y', without using y.
 - $G - y$ is connected.
Implications

- There exists x in C with x is neighboured to x' or y'.
- This hold for each component in $G - \{x', y'\}$.
- Thus there exists y from some other component with $\text{dist}(x, y) = 2$.
- We will now show that $G - \{x, y\}$ is connected.
 - x' and y' are in $G - \{x, y\}$ connected.
 - Show: Each node in $G - \{x, y\}$ is connected with x' or y'.
 - $G - x$ is connected.
 - Each node from $C - x$ is connected by a path P with x' or y', without using y.
 - $G - y$ is connected.
 - Each node from $(V \setminus C) - y$ is connected by a path P with x' or y', without using x.
Implications

- There exists \(x \) in \(C \) with \(x \) is neighboured to \(x' \) or \(y' \).
- This hold for each component in \(G - \{x', y'\} \).
- Thus there exists \(y \) from some other component with \(\text{dist}(x, y) = 2 \).
- We will now show that \(G - \{x, y\} \) is connected.
 - \(x' \) and \(y' \) are in \(G - \{x, y\} \) connected.
 - Show: Each node in \(G - \{x, y\} \) is connected with \(x' \) or \(y' \).
 - \(G - x \) is connected.
 - Each node from \(C - x \) is connected by a path \(P \) with \(x' \) or \(y' \), without using \(y \).
 - \(G - y \) is connected.
 - Each node from \((V \setminus C) - y \) is connected by a path \(P \) with \(x' \) or \(y' \), without using \(x \).
- **Running time:** \(O(|V| + |E|) \).
Theorems

Theorem (Mycielski’s)

For each number \(k \) there is a graph \(G \) with:

1. \(\chi(G) = k \) and
2. \(\omega(G) = 2 \).
Theorems

Theorem (Mycielski’s)

For each number \(k \) there is a graph \(G \) with:

1. \(\chi(G) = k \) and
2. \(\omega(G) = 2 \).

Theorem (Erdös)

For each numbers \(k, l \) there is a graph \(G \) with:

1. \(\chi(G) = k \) and
2. The shortest cycle has length \(l \).
Theorems

Theorem (Mycielski’s)

For each number k there is a graph G with:

1. $\chi(G) = k$ and
2. $\omega(G) = 2$.

Theorem (Erdös)

For each numbers k, l there is a graph G with:

1. $\chi(G) = k$ and
2. The shortest cycle has length l.

We will show only the first theorem:

- M_i has no triangles.
- $\chi(M_i) = i$.
Proof (Construction)

- $M_3 = C_5$
Proof (Construction)

- $M_3 = C_5$
- Let v_1, v_2, \ldots, v_n be the nodes of M_k.
Proof (Construction)

- $M_3 = C_5$
- Let v_1, v_2, \ldots, v_n be the nodes of M_k.
- M_{k+1} has the following additional nodes u_1, u_2, \ldots, u_n and w.
Proof (Construction)

- \(M_3 = C_5 \)
- Let \(v_1, v_2, \ldots, v_n \) be the nodes of \(M_k \).
- \(M_{k+1} \) has the following additional nodes \(u_1, u_2, \ldots, u_n \) and \(w \).
- Add the following edges:
Proof (Construction)

- $M_3 = C_5$
- Let v_1, v_2, \ldots, v_n be the nodes of M_k.
- M_{k+1} has the following additional nodes u_1, u_2, \ldots, u_n and w.
- Add the following edges:
 - $\{w, u_i\}$ for $1 \leq i \leq n$ and
Proof (Construction)

- $M_3 = C_5$
- Let v_1, v_2, \ldots, v_n be the nodes of M_k.
- M_{k+1} has the following additional nodes u_1, u_2, \ldots, u_n and w.
- Add the following edges:
 - $\{w, u_i\}$ for $1 \leq i \leq n$ and
 - $\{u_i, x\}$ iff $\{v_i, x\} \in E(M_k)$.
Proof (Construction)

Note:
Proof (Construction)

- Note:
 - \(\{ u_1, u_2, \ldots, u_n \} \) is a stable set.
Proof (Construction)

- Note:
 - \(\{u_1, u_2, \ldots, u_n\}\) is a stable set.
 - \(\Gamma(v_i)\) is a stable set.
Note:

- \{u_1, u_2, \ldots, u_n\} is a stable set.
- Γ(v_i) is a stable set.
- Thus there are no triangles in \(M_{k+1}\).
Proof (Construction)

- Note:
 - \(\{u_1, u_2, \ldots, u_n\} \) is a stable set.
 - \(\Gamma(v_i) \) is a stable set.
 - Thus there are no triangles in \(M_{k+1} \).

- \(\chi(M_{k+1}) \leq k + 1 \):
Proof (Construction)

- Note:
 - \(\{ u_1, u_2, \ldots, u_n \} \) is a stable set.
 - \(\Gamma(v_i) \) is a stable set.
 - Thus there are no triangles in \(M_{k+1} \).
 - \(\chi(M_{k+1}) \leq k + 1 \):
 - \(c(w) = k + 1 \) and
Proof (Construction)

- **Note:**
 - \{u_1, u_2, \ldots, u_n\} is a stable set.
 - \(\Gamma(v_i)\) is a stable set.
 - Thus there are no triangles in \(M_{k+1}\).
 - \(\chi(M_{k+1}) \leq k + 1:\)
 - \(c(w) = k + 1\) and
 - \(c(u_i) = c(v_i)\).
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
 - w.l.o.g.: $c(w) = k$ and therefore:
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
 - w.l.o.g.: $c(w) = k$ and therefore:
 - $\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\}$,
Proof (Construction)

If $\chi(M_{k+1}) = k$, we have:

- w.l.o.g.: $c(w) = k$ and therefore:
- $\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\}$,
- $\{c(u_i) \mid 1 \leq i \leq n\} = \{1, \ldots, k-1\}$,
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
 - w.l.o.g.: $c(w) = k$ and therefore:
 - $\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\}$,
 - $\{c(u_i) \mid 1 \leq i \leq n\} = \{1, \ldots, k-1\}$,
- Choose a colouring c with $\{|i \mid c(v_i) = k\}$ minimal.
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
 - w.l.o.g.: $c(w) = k$ and therefore:
 - $\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\}$,
 - $\{c(u_i) \mid 1 \leq i \leq n\} = \{1, \ldots, k-1\}$,
 - Choose a colouring c with $|\{i \mid c(v_i) = k\}|$ minimal.
 - If $k \neq c(v_i) \neq c(u_i)$ for some i,

![Diagram of a graph showing nodes and edges.](image-url)
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
 - w.l.o.g.: $c(w) = k$ and therefore:
 - $\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\}$,
 - $\{c(u_i) \mid 1 \leq i \leq n\} = \{1, \ldots, k-1\}$,
 - Choose a colouring c with $\{|i \mid c(v_i) = k\}$ minimal.
 - If $k \neq c(v_i) \neq c(u_i)$ for some i,
 - change the colours: $c(u_i) := c(v_i)$.
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
 - w.l.o.g.: $c(w) = k$ and therefore:
 - $\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\}$,
 - $\{c(u_i) \mid 1 \leq i \leq n\} = \{1, \ldots, k-1\}$,

- Choose a colouring c with $|\{i \mid c(v_i) = k\}|$ minimal.

- If $k \neq c(v_i) \neq c(u_i)$ for some i,
 - change the colours: $c(u_i) := c(v_i)$.

- Let v_j be a node with $c(v_j) = k$.
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
 - w.l.o.g.: $c(w) = k$ and therefore:
 - $\{c(v_i) | 1 \leq i \leq n\} = \{1, 2, \ldots, k\}$,
 - $\{c(u_i) | 1 \leq i \leq n\} = \{1, \ldots, k-1\}$,

- Choose a colouring c with $|\{i | c(v_i) = k\}|$ minimal.

- If $k \neq c(v_i) \neq c(u_i)$ for some i,
 - change the colours: $c(u_i) := c(v_i)$.

- Let v_j be a node with $c(v_j) = k$.

- Then we have:
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
 - w.l.o.g.: $c(w) = k$ and therefore:
 - $\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\}$,
 - $\{c(u_i) \mid 1 \leq i \leq n\} = \{1, \ldots, k-1\}$,

- Choose a colouring c with $|\{i \mid c(v_i) = k\}|$ minimal.

- If $k \neq c(v_i) \neq c(u_i)$ for some i,
 - change the colours: $c(u_i) := c(v_i)$.

- Let v_j be a node with $c(v_j) = k$.

- Then we have:
 - $\{c(a) \mid a \in \Gamma(v_j)\} = \{1, \ldots, k - 1\}$
Proof (Construction)

- If $\chi(M_{k+1}) = k$, we have:
 - w.l.o.g.: $c(w) = k$ and therefore:
 - $\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\}$,
 - $\{c(u_i) \mid 1 \leq i \leq n\} = \{1, \ldots, k-1\}$,
 - Choose a colouring c with $|\{i \mid c(v_i) = k\}|$ minimal.
 - If $k \neq c(v_i) \neq c(u_i)$ for some i,
 - change the colours: $c(u_i) := c(v_i)$.
- Let v_j be a node with $c(v_j) = k$.
- Then we have:
 - $\{c(a) \mid a \in \Gamma(v_j)\} = \{1, \ldots, k-1\}$
 - $\{c(a) \mid a \in \Gamma(u_j)\} = \{1, \ldots, k\}$
Proof (Construction)

- If \(\chi(M_{k+1}) = k \), we have:
 - w.l.o.g.: \(c(w) = k \) and therefore:
 - \(\{c(v_i) \mid 1 \leq i \leq n\} = \{1, 2, \ldots, k\} \),
 - \(\{c(u_i) \mid 1 \leq i \leq n\} = \{1, \ldots, k-1\} \).
 - Choose a colouring \(c \) with \(|\{i \mid c(v_i) = k\}| \) minimal.
 - If \(k \neq c(v_i) \neq c(u_i) \) for some \(i \),
 - change the colours: \(c(u_i) := c(v_i) \).
 - Let \(v_j \) be a node with \(c(v_j) = k \).
 - Then we have:
 - \(\{c(a) \mid a \in \Gamma(v_j)\} = \{1, \ldots, k-1\} \)
 - \(\{c(a) \mid a \in \Gamma(u_j)\} = \{1, \ldots, k\} \)
 - Contradiction!
Computing the Colouring

Theorem (Widgerson 1983)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(\sqrt{n})$ colouring.

Proof:

- If $\chi(G) = 3$ holds, $\chi(G[\Gamma(v)]) \leq 2$ is true.
Computing the Colouring

Theorem (Widgerson 1983)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(\sqrt{n})$ colouring.

Proof:

- If $\chi(G) = 3$ holds, $\chi(G[\Gamma(v)]) \leq 2$ is true.
- We colour the nodes by checking their degree:
Computing the Colouring

Theorem (Widgerson 1983)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(\sqrt{n})$ colouring.

Proof:

- If $\chi(G) = 3$ holds, $\chi(G[\Gamma(v)]) \leq 2$ is true.
- We colour the nodes by checking their degree:
- As long as there is a node v with $\deg_G(v) \geq \sqrt{n}$ colour $\Gamma(v)$ using two colours
Computing the Colouring

Theorem (Widgerson 1983)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(\sqrt{n})$ colouring.

Proof:

- If $\chi(G) = 3$ holds, $\chi(G[\Gamma(v)]) \leq 2$ is true.
- We colour the nodes by checking their degree:
- As long as there is a node v with $\deg_G(v) \geq \sqrt{n}$ colour $\Gamma(v)$ using two colours
- After at most \sqrt{n} steps we get a subgraph with at most \sqrt{n} nodes.
Computing the Colouring

Theorem (Widgerson 1983)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(\sqrt{n})$ colouring.

Proof:

- If $\chi(G) = 3$ holds, $\chi(G[\Gamma(v)]) \leq 2$ is true.
- We colour the nodes by checking their degree:
 - As long as there is a node v with $\deg_G(v) \geq \sqrt{n}$ colour $\Gamma(v)$ using two colours
 - After at most \sqrt{n} steps we get a subgraph with at most \sqrt{n} nodes.
- Colour this subgraph with new colours.
Computing the Colouring

Theorem (Widgerson 1983)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(\sqrt{n})$ colouring.

Proof:

- If $\chi(G) = 3$ holds, $\chi(G[\Gamma(v)]) \leq 2$ is true.
- We colour the nodes by checking their degree:
- As long as there is a node v with $\deg_G(v) \geq \sqrt{n}$ colour $\Gamma(v)$ using two colours
- After at most \sqrt{n} steps we get a subgraph with at most \sqrt{n} nodes.
- Colour this subgraph with new colours.
- **The number of colours is at most:** $2 \cdot \sqrt{n} + \sqrt{n} = 3 \cdot \sqrt{n}$.
Computing the Colouring

Theorem (Widgerson 1983)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(\sqrt{n})$ colouring.

Proof:

- If $\chi(G) = 3$ holds, $\chi(G[\Gamma(v)]) \leq 2$ is true.
- We colour the nodes by checking their degree:
- As long as there is a node v with $\deg_G(v) \geq \sqrt{n}$ colour $\Gamma(v)$ using two colours
- After at most \sqrt{n} steps we get a subgraph with at most \sqrt{n} nodes.
- Colour this subgraph with new colours.
- The number of colours is at most: $2 \cdot \sqrt{n} + \sqrt{n} = 3 \cdot \sqrt{n}$.
- Detailed analysis show: $\sqrt{8 \cdot n}$.
Theorem (Blum 1994)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(n^{3/8})$ colouring.
Computing the Colouring

Theorem (Blum 1994)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(n^{3/8})$ colouring.

Theorem (Karger, Motwani, Sudan 1994)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(n^{1/4})$ colouring.
Computing the Colouring

Theorem (Blum 1994)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(n^{3/8})$ colouring.

Theorem (Karger, Motwani, Sudan 1994)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(n^{1/4})$ colouring.

Theorem (Blum, Karger 1996)

Let $G = (V, E)$ be a graph with $\chi(G) = 3$. Then we may efficiently compute a $O(n^{3/14})$ colouring.
Theorem

The 3-colouring-problem is for graphs of degree ≤ 4 NP-complete.
The 3-colouring-problem is for graphs of degree ≤ 4 NP-complete. The k-colouring-problem is NP-complete.
Theorem

The 3-colouring-problem is for graphs of degree \(\leq 4 \) NP-complete. The \(k \)-colouring-problem is NP-complete.

Theorem

Let \(k \geq 3 \) and \(c = 1/(2 + 3 \cdot \log(k + 1)) \). Then the \(k \)-colouring-problem on graphs with girth \(\lceil c \log c \rceil \) is NP-complete.
Theorems

Theorem

The 3-colouring-problem is for graphs of degree \(\leq 4 \) NP-complete. The k-colouring-problem is NP-complete.

Theorem

Let \(k \geq 3 \) and \(c = 1/(2 + 3 \cdot \log(k + 1)) \). Then the k-colouring-problem on graphs with girth \(\lceil c \log c \rceil \) is NP-complete.

Theorem

The colouring-problem could not be approximated by a constant factor (Assuming \(P \neq NP \)).
Theorems

Theorem

The 3-colouring-problem is for graphs of degree \(\leq 4 \) NP-complete. The \(k \)-colouring-problem is NP-complete.

Theorem

Let \(k \geq 3 \) and \(c = 1/(2 + 3 \cdot \log(k + 1)) \). Then the \(k \)-colouring-problem on graphs with girth \(\lceil c \log c \rceil \) is NP-complete.

Theorem

The colouring-problem could not be approximated by a constant factor (Assuming \(\mathcal{P} \neq \mathcal{NP} \)).

Theorem

To compute a 4-colouring for a 3-colourable graph is NP-hard.
Theorems

Theorem

The 3-colouring-problem is for graphs of degree ≤ 4 NP-complete. The k-colouring-problem is NP-complete.

Theorem

Let $k \geq 3$ and $c = 1/(2 + 3 \cdot \log(k + 1))$. Then the k-colouring-problem on graphs with girth $\lceil c \log c \rceil$ is NP-complete.

Theorem

The colouring-problem could not be approximated by a constant factor (Assuming $\mathcal{P} \neq \mathcal{NP}$).

Theorem

To compute a 4-colouring for a 3-colourable graph is NP-hard.
Theorems

Lemma

If $\mathcal{P} \neq \mathcal{NP}$, then there is no polynomial time algorithm with an approximation-factor of $4/3$ for the colouring-problem.
Theorems

Lemma

If $\mathcal{P} \neq \mathcal{NP}$, *then there is no polynomial time algorithm with an approximation-factor of* $4/3$ *for the colouring-problem.*

Theorem (Garry, Johnson 1976)

If $\mathcal{P} \neq \mathcal{NP}$, *then there is no polynomial time algorithm with an approximation-factor of* 2 *for the colouring-problem.*
Lemma

If $\mathcal{P} \neq \mathcal{NP}$, *then there is no polynomial time algorithm with an approximation-factor of* $4/3$ *for the colouring-problem.*

Theorem (Garry, Johnson 1976)

If $\mathcal{P} \neq \mathcal{NP}$, *then there is no polynomial time algorithm with an approximation-factor of* 2 *for the colouring-problem.*

Theorem (Land, Jannakakis 1993)

If $\mathcal{P} \neq \mathcal{NP}$, *then there is for any* $\varepsilon > 0$ *no polynomial time algorithm with an approximation-factor of* n^ε *for the colouring-problem.*
Theorems

Lemma

If $\mathcal{P} \neq \mathcal{NP}$, then there is no polynomial time algorithm with an approximation-factor of $4/3$ for the colouring-problem.

Theorem (Garry, Johnson 1976)

If $\mathcal{P} \neq \mathcal{NP}$, then there is no polynomial time algorithm with an approximation-factor of 2 for the colouring-problem.

Theorem (Land, Jannakakis 1993)

If $\mathcal{P} \neq \mathcal{NP}$, then there is for any $\varepsilon > 0$ no polynomial time algorithm with an approximation-factor of n^ε for the colouring-problem.

Theorem (Feige, Kilian 1996)

If $\mathcal{P} \neq \mathcal{ZPP}$, then there is for any $\varepsilon > 0$ no polynomial time algorithm with an approximation-factor of $n^{1-\varepsilon}$ for the colouring-problem.
Lemma

Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.

- If $|V| \leq 2/c$ then just colour G:

Theorems

Lemma

Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.

- If $|V| \leq 2/c$ then just colour G:
 - Colour the graph by greedy algorithm using all permutations of the nodes.
Theorems

Lemma

Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.

- If $|V| \leq \frac{2}{c}$ then just colour G:
 - Colour the graph by greedy algorithm using all permutations of the nodes.
 - Running time: $O((2/c)! \cdot \binom{(2/c)!}{2})$.
Theorems

Lemma

Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.

- If $|V| \leq 2/c$ then just colour G:
 - Colour the graph by greedy algorithm using all permutations of the nodes.
 - Running time: $O((2/c)! \cdot \binom{(2/c)!}{2})$.
 - Running time: $O(1)$ and error factor 1.
Theorems

Lemma

Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.

- If $|V| \leq \frac{2}{c}$ then just colour G:
 - Colour the graph by greedy algorithm using all permutations of the nodes.
 - Running time: $O((2/c)! \cdot \binom{2}{c})$.
 - Running time: $O(1)$ and error factor 1.

- If $|V| > \frac{2}{c}$ then colour G:

Theorems

Lemma

Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.

- If $|V| \leq \frac{2}{c}$ then just colour G:
 - Colour the graph by greedy algorithm using all permutations of the nodes.
 - Running time: $O\left((\frac{2}{c})! \cdot \left(\frac{2}{c}\right)!\right)$.
 - Running time: $O(1)$ and error factor 1.

- If $|V| > \frac{2}{c}$ then colour G:
 - Split $V(G)$ in $\lfloor c \cdot n \rfloor$ Parts of size $\lfloor n/\lfloor c \cdot n \rfloor \rfloor$ or $\lceil n/\lfloor c \cdot n \rfloor \rceil$.

Lemma

Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.

- If $|V| \leq 2/c$ then just colour G:
 - Colour the graph by greedy algorithm using all permutations of the nodes.
 - Running time: $O((2/c)! \cdot \binom{2/c}{2})$.
 - Running time: $O(1)$ and error factor 1.

- If $|V| > 2/c$ then colour G:
 - Split $V(G)$ in $\lfloor c \cdot n \rfloor$ Parts of size $\lfloor n/(c \cdot n) \rfloor$ or $\lceil n/(c \cdot n) \rceil$.
 - Each part has size $\leq \frac{n}{cn-1} + 1 \leq \frac{2}{c} = O(1)$.
Introduction

Theorems

Lemma

Let $0 < c \leq 1$ be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of $\max(1, c \cdot n)$.

- If $|V| \leq 2/c$ then just colour G:
 - Colour the graph by greedy algorithm using all permutations of the nodes.
 - Running time: $O((2/c)! \cdot \binom{(2/c)!}{2})$.
 - Running time: $O(1)$ and error factor 1.

- If $|V| > 2/c$ then colour G:
 - Split $V(G)$ in $\lfloor c \cdot n \rfloor$ Parts of size $\lfloor n/(c \cdot n) \rfloor$ or $\lceil n/(c \cdot n) \rceil$.
 - Each part has size $\leq \frac{n}{cn-1} + 1 \leq \frac{2}{c} = O(1)$.
 - Each part may be coloured optimal in constant time.
Theorems

Lemma

Let \(0 < c \leq 1\) be a constant. There is a linear Algorithm, which approximates the colouring-problem with a factor of \(\max(1, c \cdot n)\).

- If \(|V| \leq 2/c\) then just colour \(G\):
 - Colour the graph by greedy algorithm using all permutations of the nodes.
 - Running time: \(O\left((2/c)! \cdot \left(\frac{2}{c}\right)!\right)\).
 - Running time: \(O(1)\) and error factor 1.

- If \(|V| > 2/c\) then colour \(G\):
 - Split \(V(G)\) in \(\lfloor c \cdot n \rfloor\) parts of size \(\lfloor n/(c \cdot n) \rfloor\) or \(\lceil n/(c \cdot n) \rceil\).
 - Each part has size \(\leq \frac{n}{cn - 1} + 1 \leq \frac{2}{c} = O(1)\).
 - Each part may be coloured optimal in constant time.
 - Total number of colours: \(\lfloor cn \rfloor \cdot \chi(G) \leq cn\).
Theorem (Johnson 1974)

The colouring-problem could be approximated within a factor of $O(n/\log n)$ in time $O(nm)$.
Theorem (Johnson 1974)

The colouring-problem could be approximated within a factor of $O(n/ \log n)$ in time $O(nm)$.

Theorem

The colouring-problem could be efficiently approximated within a factor of $O(n(\log n) - 3(\log \log n)/2)$.
Theorems

Theorem (Johnson 1974)

The colouring-problem could be approximated within a factor of $O(n/ \log n)$ in time $O(nm)$.

Theorem

The colouring-problem could be efficiently approximated within a factor of $O(n(\log n) - 3(\log \log n)/2)$.