<table>
<thead>
<tr>
<th>Contents I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>- Reminder</td>
</tr>
<tr>
<td>- Definition</td>
</tr>
<tr>
<td>- Bipartite Graphs</td>
</tr>
<tr>
<td>- Comparability Graphs</td>
</tr>
<tr>
<td>- Statements</td>
</tr>
<tr>
<td>- Interval Graphs</td>
</tr>
<tr>
<td>2 Theorems</td>
</tr>
<tr>
<td>- Statements</td>
</tr>
<tr>
<td>3 Chordal Graphs</td>
</tr>
<tr>
<td>- Definition</td>
</tr>
<tr>
<td>4 Clique-Separators</td>
</tr>
<tr>
<td>- Chordal Graphs</td>
</tr>
<tr>
<td>- Clique-Separator</td>
</tr>
<tr>
<td>- Fill-In</td>
</tr>
<tr>
<td>- MES</td>
</tr>
<tr>
<td>- Clique-Separable</td>
</tr>
</tbody>
</table>
Reminder I

- Colouring is hard!
- Colouring is NP-complete.
- Colouring is not approximable.
- There are no good bounds known.
- Question: is there a graph class with good bounds?
Reminder 1

- Colouring is hard!
- Colouring is NP-complete.
- Colouring is not approximable.
- There are no good bounds known.
- Question: is there a graph class with good bounds?
Reminder I

- Colouring is hard!
- Colouring is NP-complete.
- Colouring is not approximable.
- There are no good bounds known.
- Question: is there a graph class with good bounds?
Reminder 1

- Colouring is hard!
- Colouring is NP-complete.
- Colouring is not approximable.
- There are no good bounds known.
- Question: is there a graph class with good bounds?
Reminder I

- Colouring is hard!
- Colouring is NP-complete.
- Colouring is not approximable.
- There are no good bounds known.
- Question: is there a graph class with good bounds?
Reminder II

Definition

Let $G = (V, E)$ be a graph.

\[
\begin{align*}
\alpha(G) &= \max \{|V'| \mid V' \subset V \land \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) &= \max \{|V'| \mid V' \subset V \land \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) &= \min \{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \\
&\quad \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\bar{\chi}(G) &= \min \{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \\
&\quad \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\end{align*}
\]

Further notations:
\[
\begin{align*}
\omega(G) &= \bar{\chi}(G), \\
\alpha(G) &= \bar{\omega}(G) = \beta_0(G), \\
\kappa(G) &= \chi(G)
\end{align*}
\]
Definition

Let $G = (V, E)$ be a graph.

\[
\alpha(G) = \max \{ |V'| ; \ V' \subset V \land \ \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) = \max \{ |V'| ; \ V' \subset V \land \ \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \ \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\bar{\chi}(G) = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \ \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\]

Further notations:
\[
\omega(G) = \bar{\alpha}(G), \\
\alpha(G) = \bar{\omega}(G) = \beta_0(G), \\
\kappa(G) = \bar{\chi}(G)
\]
Definition

Let $G = (V, E)$ be a graph.

\[
\alpha(G) = \max\{ |V'| ; \ V' \subset V \land \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) = \max\{ |V'| ; \ V' \subset V \land \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) = \min\{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\bar{\chi}(G) = \min\{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\]

Further notations:
\[
\omega(G) = \bar{\alpha}(G), \\
\alpha(G) = \bar{\omega}(G) = \beta_0(G), \\
\kappa(G) = \bar{\chi}(G)
\]
Definition

Let $G = (V, E)$ be a graph.

$\alpha(G) = \max \{ |V'| ; \ V' \subset V \land \forall a, b \in V' : (a, b) \notin E \}$

$\omega(G) = \max \{ |V'| ; \ V' \subset V \land \forall a, b \in V' : (a, b) \in E \}$

$\chi(G) = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}$

$\overline{\chi}(G) = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}$

Further notations:

$\omega(G) = \overline{\alpha}(G)$,

$\alpha(G) = \overline{w}(G) = \beta_0(G)$,

$\kappa(G) = \overline{\chi}(G)$
Definition

Let $G = (V, E)$ be a graph.

$$\alpha(G) = \max \{ |V'| ; \ V' \subset V \land \forall a, b \in V' : (a, b) \notin E \}$$
$$\omega(G) = \max \{ |V'| ; \ V' \subset V \land \forall a, b \in V' : (a, b) \notin E \}$$
$$\chi(G) = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land$$
$$\forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}$$
$$\overline{\chi}(G) = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land$$
$$\forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}$$

Further notations:
$$\omega(G) = \overline{\chi}(G),$$
$$\alpha(G) = \overline{\omega}(G) = \beta_0(G),$$
$$\kappa(G) = \overline{\chi}(G)$$
Definition

Let $G = (V, E)$ be a graph.

\[
\alpha(G) = \max \{ |V'| ; \ V' \subseteq V \land \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) = \max \{ |V'| ; \ V' \subseteq V \land \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\chi^*(G) = \min \{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\]

Further notations:
\[
\omega(G) = \overline{\alpha}(G), \\
\alpha(G) = \overline{\omega}(G) = \beta_0(G), \\
\kappa(G) = \overline{\chi}(G)
\]
Theorem

Let $G = (V, E)$ be a graph. Then we have:

\[
\alpha(G) = \overline{\alpha(G)} \quad \text{and} \quad \chi(G) = \overline{\chi(G)}
\]

Proof:

\[
\begin{align*}
\alpha(G) &= \max \{ |V'| \mid V' \subset V \land \forall a, b \in V' : (a, b) \not\in E \} \\
\omega(G) &= \max \{ |V'| \mid V' \subset V \land \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) &= \min \{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \\
&\quad \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \not\in E \} \\
\overline{\chi}(G) &= \min \{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \\
&\quad \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\end{align*}
\]
Statements II

Theorem

Let $G = (V, E)$ be a graph with $n = |V|$. Then we have:

$$\frac{n}{\alpha(G)} \leq \chi(G) \leq n - \alpha(G) + 1.$$

Proof:

$$\alpha(G) = \max\{ |V'| ; V' \subset V \land \forall a, b \in V' : (a, b) \notin E \}$$

$$\chi(G) = \min\{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}$$
Theorem

Let $G = (V, E)$ be a graph with $n = |V|$. Then we have:

\[
2\sqrt{n} \leq \chi(G) + \overline{\chi}(G) \leq n + 1
\]
\[
n \leq \chi(G) \cdot \overline{\chi}(G) \leq \left(\frac{n+1}{2}\right)^2.
\]

Idea of proof:

\[
\chi(G) = \min\{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \\
\forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}
\]
\[
\overline{\chi}(G) = \min\{ k ; \ \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \\
\forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\]

Consider the two Coverings as a grid.
Theorem

Let $G = (V, E)$ be a graph with $n = |V|$. Then we have:

\[2\sqrt{n} \leq \chi(G) + \overline{\chi}(G) \leq n + 1 \]
\[n \leq \chi(G) \cdot \overline{\chi}(G) \leq \left(\frac{n+1}{2}\right)^2. \]

Idea of proof:

\[\chi(G) = \min\{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \not\in E \} \]
\[\overline{\chi}(G) = \min\{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \} \]

Consider the two Coverings as a grid.
Statements III

Theorem

Let \(G = (V, E) \) be a graph with \(n = |V| \). Then we have:

\[
2\sqrt{n} \leq \chi(G) + \overline{\chi}(G) \leq n + 1
\]

\[
n \leq \chi(G) \cdot \overline{\chi}(G) \leq \left(\frac{n+1}{2}\right)^2.
\]

Idea of proof:

\[
\chi(G) = \min \{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}
\]

\[
\overline{\chi}(G) = \min \{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\]

Consider the two Coverings as a grid.
$\omega(G) = \overline{\alpha}(G), \ \alpha(G) = \overline{\omega}(G) = \beta_0(G), \ \kappa(G) = \overline{\chi}(G)$

\[
\begin{align*}
2\sqrt{n} & \leq \chi(G) + \overline{\chi}(G) & \leq & \ n + 1 \\
n & \leq \chi(G) \cdot \overline{\chi}(G) & \leq & \left(\frac{n+1}{2}\right)^2.
\end{align*}
\]
Definition

A graph $G = (V, E)$ is called:

1. χ-perfect, iff for all node-induced subgraphs H of G holds: $\chi(H) = \omega(H)$.
2. α-perfect, iff for all node-induced subgraphs H of G holds: $\kappa(H) = \alpha(H)$.
3. perfect, if it is χ-perfect [and α-perfect].

\[
\begin{align*}
\alpha(G) &= \max\{ |V'| \mid V' \subset V \land \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) &= \max\{ |V'| \mid V' \subset V \land \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) &= \min\{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \\
&\quad \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\overline{\chi}(G) &= \min\{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \\
&\quad \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\end{align*}
\]
A graph $G = (V, E)$ is called:

1. χ-perfect, iff for all node-induced subgraphs H of G holds: $\chi(H) = \omega(H)$.
2. α-perfect, iff for all node-induced subgraphs H of G holds: $\kappa(H) = \alpha(H)$.
3. perfect, if it is χ-perfect [and α-perfect].

$$\begin{align*}
\alpha(G) &= \max \{|V'| \mid V' \subseteq V \land \forall a, b \in V' : (a, b) \notin E\} \\
\omega(G) &= \max \{|V'| \mid V' \subseteq V \land \forall a, b \in V' : (a, b) \in E\} \\
\chi(G) &= \min \{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\overline{\chi}(G) &= \min \{ k \mid \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\end{align*}$$
Definitions

A graph \(G = (V, E) \) is called:

1. \(\chi \)-perfect, iff for all node-induced subgraphs \(H \) of \(G \) holds: \(\chi(H) = \omega(H) \).
2. \(\alpha \)-perfect, iff for all node-induced subgraphs \(H \) of \(G \) holds: \(\kappa(H) = \alpha(H) \).
3. perfect, if it is \(\chi \)-perfect [and \(\alpha \)-perfect].

\[
\begin{align*}
\alpha(G) & = \max \{ |V'| ; V' \subseteq V \land \forall a, b \in V' : (a, b) \notin E \} \\
\omega(G) & = \max \{ |V'| ; V' \subseteq V \land \forall a, b \in V' : (a, b) \in E \} \\
\chi(G) & = \min \{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \\
& \quad \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \} \\
\overline{\chi}(G) & = \min \{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^k V_i = V \land \\
& \quad \forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}
\end{align*}
\]
Definition

A graph $G = (V, E)$ is called:

1. χ-perfect, iff for all node-induced subgraphs H of G holds: $\chi(H) = \omega(H)$.
2. α-perfect, iff for all node-induced subgraphs H of G holds: $\kappa(H) = \alpha(H)$.
3. perfect, if it is χ-perfect [and α-perfect].

$$\alpha(G) = \max\{ |V'| ; V' \subset V \land \forall a, b \in V' : (a, b) \notin E \}$$
$$\omega(G) = \max\{ |V'| ; V' \subset V \land \forall a, b \in V' : (a, b) \in E \}$$
$$\chi(G) = \min\{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land$$
$$\forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \notin E \}$$
$$\overline{\chi}(G) = \min\{ k ; \exists V_1, V_2, \ldots, V_k : \bigcup_{i=1}^{k} V_i = V \land$$
$$\forall i : 1 \leq i \leq k : \forall a, b \in V_i : (a, b) \in E \}$$
Definitions

A graph \(G = (V, E) \) is called:

1. \(\chi \)-perfect, iff for all node-induced subgraphs \(H \) of \(G \) holds: \(\chi(H) = \omega(H) \).
2. \(\alpha \)-perfect, iff for all node-induced subgraphs \(H \) of \(G \) holds: \(\kappa(H) = \alpha(H) \).
3. perfect, if it is \(\chi \)-perfect [and \(\alpha \)-perfect].

A property \(\mathcal{E} \) of a graph \(G = (V, E) \) is called hereditary, iff the property holds for each node-induced subgraph of \(G \).
Definitions

A graph $G = (V, E)$ is called:

1. χ-perfect, iff for all node-induced subgraphs H of G holds: $\chi(H) = \omega(H)$.
2. α-perfect, iff for all node-induced subgraphs H of G holds: $\kappa(H) = \alpha(H)$.
3. perfect, if it is χ-perfect [and α-perfect].

A property \mathcal{E} of a graph $G = (V, E)$ is called hereditary, iff the property holds for each node-induced subgraph of G.

\[
\omega(G) = \overline{\omega}(G), \ \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \ \kappa(G) = \overline{\chi}(G)
\]
Definitions

Definition

A graph $G = (V, E)$ is called:

1. χ-perfect, iff for all node-induced subgraphs H of G holds: $\chi(H) = \omega(H)$.
2. α-perfect, iff for all node-induced subgraphs H of G holds: $\kappa(H) = \alpha(H)$.
3. perfect, if it is χ-perfect [and α-perfect].

Definition

A property \mathcal{E} of a graph $G = (V, E)$ is called **hereditary**, iff the property holds for each node-induced subgraph of G.

\[\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Definitions

Definition

A graph $G = (V, E)$ is called:

1. χ-perfect, iff for all node-induced subgraphs H of G holds: $\chi(H) = \omega(H)$.
2. α-perfect, iff for all node-induced subgraphs H of G holds: $\kappa(H) = \alpha(H)$.
3. perfect, if it is χ-perfect [and α-perfect].

Definition

A property \mathcal{E} of a graph $G = (V, E)$ is called hereditary, iff the property holds for each node-induced subgraph of G.

$\omega(G) = \overline{\alpha(G)}$, $\alpha(G) = \overline{\omega(G)} = \beta_0(G)$, $\kappa(G) = \overline{\chi(G)}$
Definition

A graph $G = (V, E)$ is called:

1. **χ**-perfect, iff for all node-induced subgraphs H of G holds: $\chi(H) = \omega(H)$.
2. **α**-perfect, iff for all node-induced subgraphs H of G holds: $\kappa(H) = \alpha(H)$.
3. perfect, if it is **χ**-perfect [and **α**-perfect].

Definition

A property \mathcal{E} of a graph $G = (V, E)$ is called **hereditary**, iff the property holds for each node-induced subgraph of G.
Examples (χ-perfect)

- **Planar graphs:**
 - Intervall-graphs:
 - Arc-graphs:
 - Permutation-graphs:
 - Outerplanar graphs:
 - Maximal outerplanar graphs:
 - Maximal planar graphs:
 - Bipartite graphs:
 - K-Trees:
 - Complement of a bipartite graph:
 - Cycles of odd length ≥ 5:
 - Linegraphs of bipartite graphs:
Examples (χ-perfect)

- **Planar graphs**: no
- **Intervall-graphs**:
 - Arc-graphs:
 - Permutation-graphs:
 - Outerplanar graphs:
 - Maximal outerplanar graphs:
 - Maximal planar graphs:
 - Bipartite graphs:
 - K-Trees:
 - Complement of a bipartite graph:
 - Cycles of odd length ≥ 5:
 - Linegraphs of bipartite graphs:
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- **Arc-graphs:**
 - Permutation-graphs:
 - Outerplanar graphs:
 - Maximal outerplanar graphs:
 - Maximal planar graphs:
 - Bipartite graphs:
 - K-Trees:
 - Complement of a bipartite graph:
 - Cycles of odd length ≥ 5:
 - Linegraphs of bipartite graphs:
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- **Permutation-graphs:**
 - Outerplanar graphs:
 - Maximal outerplanar graphs:
 - Maximal planar graphs:
 - Bipartite graphs:
 - K-Trees:
 - Complement of a bipartite graph:
- Cycles of odd length ≥ 5:
- Linegraphs of bipartite graphs:

$$\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G)$$
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- **Outerplanar graphs**:
 - Maximal outerplanar graphs:
 - Maximal planar graphs:
 - Bipartite graphs:
 - K-Trees:
 - Complement of a bipartite graph:
 - Cycles of odd length ≥ 5:
 - Linegraphs of bipartite graphs:
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- Outerplanar graphs: no

Maximal outerplanar graphs:
- Maximal planar graphs:
- Bipartite graphs:
- K-Trees:
- Complement of a bipartite graph:
- Cycles of odd length ≥ 5:
- Linegraphs of bipartite graphs:
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- Outerplanar graphs: no
- Maximal outerplanar graphs: yes
- Maximal planar graphs:
 - Bipartite graphs:
 - K-Trees:
 - Complement of a bipartite graph:
 - Cycles of odd length ≥ 5:
 - Linegraphs of bipartite graphs:

\[\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- Outerplanar graphs: no
- Maximal outerplanar graphs: yes
- Maximal planar graphs: no (following slide)
- **Bipartite graphs:**
 - K-Trees:
 - Complement of a bipartite graph:
 - Cycles of odd length ≥ 5:
 - Linegraphs of bipartite graphs:
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- Outerplanar graphs: no
- Maximal outerplanar graphs: yes
- Maximal planar graphs: no (following slide)
- Bipartite graphs: yes
- K-Trees:
 - Complement of a bipartite graph:
 - Cycles of odd length ≥ 5:
 - Linegraphs of bipartite graphs:
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- Outerplanar graphs: no
- Maximal outerplanar graphs: yes
- Maximal planar graphs: no (following slide)
- Bipartite graphs: yes
- K-Trees: yes
- **Complement of a bipartite graph:**
 - Cycles of odd length ≥ 5:
 - Linegraphs of bipartite graphs:
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- Outerplanar graphs: no
- Maximal outerplanar graphs: yes
- Maximal planar graphs: no (following slide)
- Bipartite graphs: yes
- K-Trees: yes
- Complement of a bipartite graph: yes (following slides)
- Cycles of odd length ≥ 5:
 - Linegraphs of bipartite graphs:
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- Outerplanar graphs: no
- Maximal outerplanar graphs: yes
- Maximal planar graphs: no (following slide)
- Bipartite graphs: yes
- K-Trees: yes
- Complement of a bipartite graph: yes (following slides)
- Cycles of odd length ≥ 5: no
- Linegraphs of bipartite graphs:
Examples (χ-perfect)

- Planar graphs: no
- Intervall-graphs: yes
- Arc-graphs: no
- Permutation-graphs: yes
- Outerplanar graphs: no
- Maximal outerplanar graphs: yes
- Maximal planar graphs: no (following slide)
- Bipartite graphs: yes
- K-Trees: yes
- Complement of a bipartite graph: yes (following slides)
- Cycles of odd length ≥ 5: no
- Linegraphs of bipartite graphs: yes (following slides)
Example Planar

\[\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Example Planar

\[\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Example Planar

\[\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Complement of a bipartite Graph

Lemma

The complement of a bipartite graph is χ-perfect.

Proof:

- Note, that the class is hereditary.
- Show $\chi(G) = \omega(G)$.
- So we have to prove: $\kappa(G) = \alpha(G)$.
- By the theorem of König we get:
 - Take a maximum matching M with $|M| = a$.
 - Assume that b nodes are not covered by M.
 - Then we have: $\alpha(G) = a + b$ and $\kappa(G) = a + b$.
Lemma

The complement of a bipartite graph is χ-perfect.

Proof:

- Note, that the class is hereditary.
- Show $\chi(G) = \omega(G)$.
- So we have to prove: $\kappa(G) = \alpha(G)$.
- By the theorem of König we get:
 - Take a maximum matching M with $|M| = a$.
 - Assume that b nodes are not covered by M.
 - Then we have: $\alpha(G) = a + b$ and $\kappa(G) = a + b$.
Complement of a bipartite Graph

Lemma

The complement of a bipartite graph is \(\chi \)-perfect.

Proof:

- Note, that the class is hereditary.
- Show \(\chi(G) = \omega(G) \).
- So we have to prove: \(\kappa(G) = \alpha(G) \).
- By the theorem of König we get:
 - Take a maximum matching \(M \) with \(|M| = a \).
 - Assume that \(b \) nodes are not covered by \(M \).
 - Then we have: \(\alpha(G) = a + b \) and
 - \(\kappa(G) = a + b \).
Lemma

The complement of a bipartite graph is χ-perfect.

Proof:

- Note, that the class is hereditary.
- Show $\chi(G) = \omega(G)$.
- So we have to prove: $\kappa(G) = \alpha(G)$.
- By the theorem of König we get:
 - Take a maximum matching M with $|M| = a$.
 - Assume that b nodes are not covered by M.
 - Then we have: $\alpha(G) = a + b$ and
 - $\kappa(G) = a + b$.

$$\omega(G) = \overline{\alpha(G)}, \alpha(G) = \overline{\omega(G)} = \beta_0(G), \kappa(G) = \overline{\chi(G)}$$
Complement of a bipartite Graph

Lemma

The complement of a bipartite graph is χ-perfect.

Proof:

- Note, that the class is hereditary.
- Show $\chi(\overline{G}) = \omega(\overline{G})$.
- So we have to prove: $\kappa(G) = \alpha(G)$.
- By the theorem of König we get:
 - Take a maximum matching M with $|M| = a$.
 - Assume that b nodes are not covered by M.
 - Then we have: $\alpha(G) = a + b$ and $\kappa(G) = a + b$.

\[\omega(G) = \overline{\alpha(G)}, \alpha(G) = \overline{\omega(G)} = \beta_\emptyset(G), \kappa(G) = \overline{\chi(G)} \]
The complement of a bipartite graph is χ-perfect.

Proof:

- Note, that the class is hereditary.
- Show $\chi(\overline{G}) = \omega(\overline{G})$.
- So we have to prove: $\kappa(G) = \alpha(G)$.
- By the theorem of König we get:
 - Take a maximum matching M with $|M| = a$.
 - Assume that b nodes are not covered by M.
 - Then we have: $\alpha(G) = a + b$ and $\kappa(G) = a + b$.
Complement of a bipartite Graph

Lemma

The complement of a bipartite graph is χ-perfect.

Proof:

- Note, that the class is hereditary.
- Show $\chi(\overline{G}) = \omega(\overline{G})$.
- So we have to prove: $\kappa(G) = \alpha(G)$.
- By the theorem of König we get:
 - Take a maximum matching M with $|M| = a$.
 - Assume that b nodes are not covered by M.
 - Then we have: $\alpha(G) = a + b$ and $\kappa(G) = a + b.$
The complement of a bipartite graph is χ-perfect.

Proof:

- Note, that the class is hereditary.
- Show $\chi(G) = \omega(G)$.
- So we have to prove: $\kappa(G) = \alpha(G)$.
- By the theorem of König we get:
 - Take a maximum matching M with $|M| = a$.
 - Assume that b nodes are not covered by M.
 - Then we have: $\alpha(G) = a + b$ and $\kappa(G) = a + b$.
Lemma

The complement of a bipartite graph is χ-perfect.

Proof:

- Note, that the class is hereditary.
- Show $\chi(\overline{G}) = \omega(\overline{G})$.
- So we have to prove: $\kappa(G) = \alpha(G)$.
- By the theorem of König we get:
 - Take a maximum matching M with $|M| = a$.
 - Assume that b nodes are not covered by M.
 - Then we have: $\alpha(G) = a + b$ and
 $\kappa(G) = a + b$.

\[\omega(G) = \overline{\alpha(G)}, \alpha(G) = \overline{\omega(G)} = \beta_0(G), \kappa(G) = \overline{\chi(G)} \]
Lemma

The complement of a bipartite graph is χ-perfect.

Proof:

- Note, that the class is hereditary.
- Show $\chi(G) = \omega(G)$.
- So we have to prove: $\kappa(G) = \alpha(G)$.
- By the theorem of König we get:
 - Take a maximum matching M with $|M| = a$.
 - Assume that b nodes are not covered by M.
 - Then we have: $\alpha(G) = a + b$ and
 - $\kappa(G) = a + b$.

\[\omega(G) = \overline{\alpha(G)}, \alpha(G) = \overline{\omega(G)} = \beta_0(G), \kappa(G) = \overline{\chi(G)} \]
Lemma

Linegraphs of bipartite graphs are χ-perfect.

Proof:

- Note, that the class is hereditary.
- Let G bipartite graph and $H = L(G)$.
- Then we have by the construction of the linegraph:
 - $\omega(H) = \Delta(G)$ and
 - $\chi(H) = \chi'(G)$.
- Furthermore is already known: $\chi'(G) = \Delta(G)$.
- Thus we have: $\omega(H) = \Delta(G) = \chi'(G) = \chi(H)$.
Linegraphs of Bipartite Graphs

Lemma

Linegraphs of bipartite graphs are χ-perfect.

Proof:

- Note, that the class is hereditary.
- Let G bipartite graph and $H = L(G)$.
- Then we have by the construction of the linegraph:
 - $\omega(H) = \Delta(G)$ and
 - $\chi(H) = \chi'(G)$.
- Furthermore is already known: $\chi'(G) = \Delta(G)$.
- Thus we have: $\omega(H) = \Delta(G) = \chi'(G) = \chi(H)$.

\[\omega(G) = \overline{\alpha}(G), \quad \alpha(G) = \overline{\omega}(G) = \beta_0(G), \quad \kappa(G) = \overline{\chi}(G)\]
Lemma

Linegraphs of bipartite graphs are χ-perfect.

Proof:

- Note, that the class is hereditary.
- Let G bipartite graph and $H = L(G)$.
- Then we have by the construction of the linegraph:
 - $\omega(H) = \Delta(G)$ and
 - $\chi(H) = \chi'(G)$.
- Furthermore is already known: $\chi'(G) = \Delta(G)$.
- Thus we have: $\omega(H) = \Delta(G) = \chi'(G) = \chi(H)$.

\[\omega(G) = \bar{\omega}(G), \alpha(G) = \bar{\omega}(G) = \beta_0(G), \kappa(G) = \chi'(G) \]
Linegraphs of Bipartite Graphs

Lemma

Linegraphs of bipartite graphs are χ-perfect.

Proof:

- Note, that the class is hereditary.
- Let G bipartite graph and $H = L(G)$.
- Then we have by the construction of the linegraph:
 - $\omega(H) = \Delta(G)$ and
 - $\chi(H) = \chi'(G)$.

- Furthermore is already known: $\chi'(G) = \Delta(G)$.
- Thus we have: $\omega(H) = \Delta(G) = \chi'(G) = \chi(H)$.
Linegraphs of Bipartite Graphs

Lemma

Linegraphs of bipartite graphs are \(\chi \)-perfect.

Proof:

- Note, that the class is hereditary.
- Let \(G \) bipartite graph and \(H = L(G) \).
- Then we have by the construction of the linegraph:
 - \(\omega(H) = \Delta(G) \) and
 - \(\chi(H) = \chi'(G) \).
- Furthermore is already known: \(\chi'(G) = \Delta(G) \).
- Thus we have: \(\omega(H) = \Delta(G) = \chi'(G) = \chi(H) \).
Lemma

Linegraphs of bipartite graphs are χ-perfect.

Proof:

- Note, that the class is hereditary.
- Let G bipartite graph and $H = L(G)$.
- Then we have by the construction of the linegraph:
 - $\omega(H) = \Delta(G)$ and
 - $\chi(H) = \chi'(G)$.
- Furthermore is already known: $\chi'(G) = \Delta(G)$.
- Thus we have: $\omega(H) = \Delta(G) = \chi'(G) = \chi(H)$.

\[\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Lemma

Linegraphs of bipartite graphs are \(\chi\)-perfect.

Proof:

- Note, that the class is hereditary.
- Let \(G\) bipartite graph and \(H = L(G)\).
- Then we have by the construction of the linegraph:
 - \(\omega(H) = \Delta(G)\) and
 - \(\chi(H) = \chi'(G)\).
- Furthermore is already known: \(\chi'(G) = \Delta(G)\).
- Thus we have: \(\omega(H) = \Delta(G) = \chi'(G) = \chi(H)\).
Lemma

Linegraphs of bipartite graphs are χ-perfect.

Proof:

- Note, that the class is hereditary.
- Let G bipartite graph and $H = L(G)$.
- Then we have by the construction of the linegraph:
 - $\omega(H) = \Delta(G)$ and
 - $\chi(H) = \chi'(G)$.
- Furthermore is already known: $\chi'(G) = \Delta(G)$.
- Thus we have: $\omega(H) = \Delta(G) = \chi'(G) = \chi(H)$.
Linegraphs of Bipartite Graphs

Lemma

Linegraphs of bipartite graphs are χ-perfect.

Proof:

- Note, that the class is hereditary.
- Let G bipartite graph and $H = L(G)$.
- Then we have by the construction of the linegraph:
 - $\omega(H) = \Delta(G)$
 - $\chi(H) = \chi'(G)$.
- Furthermore is already known: $\chi'(G) = \Delta(G)$.
- Thus we have: $\omega(H) = \Delta(G) = \chi'(G) = \chi(H)$.

\[\omega(G) = \overline{\alpha}(G), \quad \alpha(G) = \overline{\omega}(G) = \beta_0(G), \quad \kappa(G) = \overline{\chi}(G) \]
Definition

A relation \leq is called partial ordering, iff:

- Reflexive: $x \leq x$
- Transitive: $x \leq y \land y \leq z \implies x \leq z$
- Antisymmetric: $x \leq y \land y \leq x \implies x = y$

- Two elements are called comparable, if $x \leq y$ oder $y \leq x$.
- A set of pairwise comparable elements is called a chain.
- A set of pairwise not comparable elements is called an anti-chain.
- y covers x ($x \preceq y$), if $x \leq y$ and $x \leq a \leq y \implies a \in \{x, y\}$.
- This is called a PO-set
- The PO-set is denoted by P_{\leq}.

\[\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \kappa(G) = \overline{\kappa}(G) \]
Definition

A relation \leq is called partial ordering, iff:

- **Reflexive:** $x \leq x$
- **Transitive:** $x \leq y \land y \leq z \Rightarrow x \leq z$
- **Antisymmetric:** $x \leq y \land y \leq x \Rightarrow x = y$

- Two elements are called comparable, if $x \leq y$ oder $y \leq x$.
- A set of pairwise comparable elements is called a chain.
- A set of pairwise not comparable elements is called an anti-chain.
- y covers x ($x \preceq y$), if $x \leq y$ and $x \leq a \leq y \Rightarrow a \in \{x, y\}$.
- This is called a PO-set
- The PO-set is denoted by P_{\leq}.
Definition

A relation \(\leq \) is called partial ordering, iff:

- Reflexive: \(x \leq x \)
- Transitive: \(x \leq y \land y \leq z \implies x \leq z \)
- Antisymmetric: \(x \leq y \land y \leq x \implies x = y \)

- Two elements are called comparable, if \(x \leq y \) oder \(y \leq x \).
- A set of pairwise comparable elements is called a chain.
- A set of pairwise not comparable elements is called an anti-chain.
- \(y \) covers \(x \) (\(x \preceq y \)), if \(x \leq y \) and \(x \leq a \leq y \implies a \in \{x, y\} \).
- This is called a PO-set
- The PO-set is denoted by \(P_{\leq} \).

\[\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Definition

A relation \leq is called a partial ordering, iff:

- Reflexive: $x \leq x$
- Transitive: $x \leq y \wedge y \leq z \implies x \leq z$
- Antisymmetric: $x \leq y \wedge y \leq x \implies x = y$

- Two elements are called comparable, if $x \leq y$ or $y \leq x$.
- A set of pairwise comparable elements is called a chain.
- A set of pairwise not comparable elements is called an anti-chain.
- y covers x ($x \preceq y$), if $x \leq y$ and $x \leq a \leq y \implies a \in \{x, y\}$.
- This is called a PO-set
- The PO-set is denoted by P_{\leq}.
Definition

A relation \leq is called a partial ordering, iff:

- Reflexive: $x \leq x$
- Transitive: $x \leq y \land y \leq z \implies x \leq z$
- Antisymmetric: $x \leq y \land y \leq x \implies x = y$

- Two elements are called comparable, if $x \leq y$ oder $y \leq x$.
- A set of pairwise comparable elements is called a chain.
- A set of pairwise not comparable elements is called an anti-chain.
- y covers x ($x \preceq y$), if $x \leq y$ and $x \leq a \leq y \implies a \in \{x, y\}$.
- This is called a PO-set
- The PO-set is denoted by P_{\leq}.
Definition

A relation \leq is called partial ordering, iff:

- Reflexive: $x \leq x$
- Transitive: $x \leq y \land y \leq z \implies x \leq z$
- Antisymmetric: $x \leq y \land y \leq x \implies x = y$

- Two elements are called comparable, if $x \leq y$ oder $y \leq x$.
- A set of pairwise comparable elements is called a chain.
- A set of pairwise not comparable elements is called an anti-chain.
- y covers x ($x \preceq y$), if $x \leq y$ and $x \leq a \leq y \implies a \in \{x, y\}$.
- This is called a PO-set
- The PO-set is denoted by P_{\leq}.

$\omega(G) = \bar{\omega}(G)$, $\alpha(G) = \bar{\alpha}(G) = \beta_0(G)$, $\kappa(G) = \bar{\chi}(G)$
A relation \(\leq \) is called partial ordering, iff:

- Reflexive: \(x \leq x \)
- Transitive: \(x \leq y \land y \leq z \implies x \leq z \)
- Antisymmetric: \(x \leq y \land y \leq x \implies x = y \)

- Two elements are called comparable, if \(x \leq y \) oder \(y \leq x \).
- A set of pairwise comparable elements is called a chain.
- A set of pairwise not comparable elements is called an anti-chain.
- \(y \) covers \(x \) (\(x \preceq y \)), if \(x \leq y \) and \(x \leq a \leq y \implies a \in \{x, y\} \).
- This is called a PO-set
- The PO-set is denoted by \(P_\leq \).
Definition

A relation \(\leq \) is called **partial ordering**, iff:

- **Reflexive**: \(x \leq x \)
- **Transitive**: \(x \leq y \land y \leq z \implies x \leq z \)
- **Antisymmetric**: \(x \leq y \land y \leq x \implies x = y \)

- Two elements are called **comparable**, if \(x \leq y \) oder \(y \leq x \).
- A set of pairwise comparable elements is called a **chain**.
- A set of pairwise not comparable elements is called an **anti-chain**.

- \(y \) covers \(x \) \((x \leq y) \), if \(x \leq y \) and \(x \leq a \leq y \implies a \in \{x, y\} \).
- This is called a **PO-set**
- The PO-set is denoted by \(P_{\leq} \).
A relation \leq is called a partial ordering, iff:

- Reflexive: $x \leq x$
- Transitive: $x \leq y \land y \leq z \implies x \leq z$
- Antisymmetric: $x \leq y \land y \leq x \implies x = y$

- Two elements are called comparable, if $x \leq y$ or $y \leq x$.
- A set of pairwise comparable elements is called a chain.
- A set of pairwise not comparable elements is called an anti-chain.
- y covers x ($x \preceq y$), if $x \leq y$ and $x \leq a \leq y \implies a \in \{x, y\}$.
- This is called a PO-set
- The PO-set is denoted by P_{\leq}.
Definition

A relation \(\leq \) is called **partial ordering**, iff:

- **Reflexive**: \(x \leq x \)
- **Transitive**: \(x \leq y \land y \leq z \implies x \leq z \)
- **Antisymmetric**: \(x \leq y \land y \leq x \implies x = y \)

- Two elements are called comparable, if \(x \leq y \) oder \(y \leq x \).
- A set of pairwise comparable elements is called a **chain**.
- A set of pairwise not comparable elements is called an **anti-chain**.
- \(y \) covers \(x \) (\(x \preceq y \)), if \(x \leq y \) and \(x \leq a \leq y \implies a \in \{x, y\} \).
- **This is called a PO-set**
- The PO-set is denoted by \(P_{\leq} \).

\[\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \kappa(G) = \overline{\kappa}(G) \]
A relation \leq is called **partial ordering**, iff:

- **Reflexive**: $x \leq x$
- **Transitive**: $x \leq y \land y \leq z \implies x \leq z$
- **Antisymmetric**: $x \leq y \land y \leq x \implies x = y$

- Two elements are called **comparable**, if $x \leq y$ oder $y \leq x$.
- A set of pairwise comparable elements is called a **chain**.
- A set of pairwise not comparable elements is called an **anti-chain**.
- y covers x ($x \preceq y$), if $x \leq y$ and $x \leq a \leq y \implies a \in \{x, y\}$.
- This is called a **PO-set**
- The **PO-set** is denoted by P_{\leq}.

\[\omega(G) = \overline{\omega}(G), \ \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \ \kappa(G) = \overline{\chi}(G) \]
Definition

A graph $G = (V, E)$ is called comparability graph, if there is a partial ordering \leq on V, with:

$$\{x, y\} \in E \text{ iff. } x \text{ and } y \text{ are comparable.}$$

- Example: bipartite graphs.
- Comparability graphs are transitive orientable.
- Example: transitive orientation of a bipartite graph.
Definition

A graph $G = (V, E)$ is called comparability graph, if there is a partial ordering \leq on V, with: $
{x, y} \in E$ iff. x and y are comparable.

- Example: bipartite graphs.
- Comparability graphs are transitive orientable.
- Example: transitive orientation of a bipartite graph.
Definition

A graph $G = (V, E)$ is called **comparability graph**, if there is a partial ordering \leq on V, with:

$\{x, y\} \in E$ iff. x and y are comparable.

- **Example**: bipartite graphs.
- Comparability graphs are transitive orientable.
- **Example**: transitive orientation of a bipartite graph.

\[\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
A graph $G = (V, E)$ is called **comparability graph**, if there is a partial ordering \leq on V, with:
\{x, y\} \in E$ iff. x and y are comparable.

- Example: bipartite graphs.
- Comparability graphs are transitive orientable.
- Example: transitive orientation of a bipartite graph.
Definition

A graph \(G = (V, E) \) is called **comparability graph**, if there is a partial ordering \(\leq \) on \(V \), with:

\[\{x, y\} \in E \text{ iff. } x \text{ and } y \text{ are comparable.} \]

- Example: bipartite graphs.
- Comparability graphs are transitive orientable.
- Example: transitive orientation of a bipartite graph.
Lemma

Let $P \leq$ be a PO-set. The maximal length of a chain is equal to the minimal number of anti-chains in which $P \leq$ may be partitioned.

\[
\omega(G) = \overline{\omega}(G), \quad \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \quad \kappa(G) = \overline{\kappa}(G)
\]

\[\leq\] : Clear!

\[\geq\] :

- x minimal: $\forall a \in P \leq : a \leq x \implies a = x$
- From this we may define a height function $h(x)$.
- Let $x = z_1 \leq z_1 \leq \ldots \leq z_{h(y)} = y$ be the longest chain of length $h(y)$.
- The elements of the same height form an anti-chain.
- We have defined a partition of $h(y)$ anti-chains.
Lemma

Let $P \leq$ be a PO-set. The maximal length of a chain is equal to the minimal number of anti-chains in which $P \leq$ may be partitioned.

\[\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]

\[\leq : \text{Clear!} \]

\[\geq : \]

- x minimal: $\forall a \in P \leq : a \leq x \implies a = x$
- From this we may define a height function $h(x)$.
- Let $x = z_1 \leq z_1 \leq \ldots \leq z_{h_y} = y$ be the longest chain of length $h(y)$.
- The elements of the same height form an anti-chain.
- We have defined a partition of $h(y)$ anti-chains.
\[\omega(G) = \alpha(G) = \beta_0(G), \kappa(G) = \chi(G)\]

Lemma

Let \(P \leq \) be a PO-set. The maximal length of a chain is equal to the minimal number of anti-chains in which \(P \leq \) may be partitioned.

\(\leq \) : Clear!

\(\geq \) :

- \(x \) minimal: \(\forall a \in P \leq : a \leq x \implies a = x \)
- From this we may define a height function \(h(x) \).
- Let \(x = z_1 \leq z_1 \leq \ldots \leq z_{h(y)} = y \) be the longest chain of length \(h(y) \).
- The elements of the same height form an anti-chain.
- We have defined a partition of \(h(y) \) anti-chains.
Lemma

Let $P \leq$ be a PO-set. The maximal length of a chain is equal to the minimal number of anti-chains in which $P \leq$ may be partitioned.

\leq : Clear!

\geq :

- x minimal: $\forall a \in P \leq : a \leq x \implies a = x$
- From this we may define a height function $h(x)$.
- Let $x = z_1 \leq z_1 \leq \ldots \leq z_{h(y)} = y$ be the longest chain of length $h(y)$.
- The elements of the same height form an anti-chain.
- We have defined a partition of $h(y)$ anti-chains.
Let $P \leq$ be a PO-set. The maximal length of a chain is equal to the minimal number of anti-chains in which $P \leq$ may be partitioned.

\[\leq: \text{Clear!}\]

\[\geq: \]

- x minimal: $\forall a \in P \leq: a \leq x \implies a = x$
- From this we may define a height function $h(x)$.
- Let $x = z_1 \leq z_1 \leq \ldots \leq z_{h(y)} = y$ be the longest chain of length $h(y)$.
- The elements of the same height form an anti-chain.
- We have defined a partition of $h(y)$ anti-chains.
Lemma

Let $P \leq$ be a PO-set. The maximal length of a chain is equal to the minimal number of anti-chains in which $P \leq$ may be partitioned.

\leq: Clear!

\geq:

- x minimal: $\forall a \in P \leq : a \leq x \implies a = x$
- From this we may define a height function $h(x)$.
- Let $x = z_1 \leq z_1 \leq \ldots \leq z_{h(y)} = y$ be the longest chain of length $h(y)$.
- The elements of the same height form an anti-chain.
- We have defined a partition of $h(y)$ anti-chains.
Lemma

Let $P \subseteq$ be a PO-set. The maximal length of a chain is equal to the minimal number of anti-chains in which $P \subseteq$ may be partitioned.

\[\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]

\[\implies \text{ Clear!} \]

\[\implies : \]

- x minimal: $\forall a \in P \subseteq : a \leq x \implies a = x$
- From this we may define a height function $h(x)$.
- Let $x = z_1 \leq z_1 \leq \ldots \leq z_{h(y)} = y$ be the longest chain of length $h(y)$.
- The elements of the same height form an anti-chain.
- We have defined a partition of $h(y)$ anti-chains.
Let $P \leq$ be a PO-set. The maximal length of a chain is equal to the minimal number of anti-chains in which $P \leq$ may be partitioned.

\leq: Clear!

\geq:

- x minimal: $\forall a \in P \leq : a \leq x \implies a = x$
- From this we may define a height function $h(x)$.
- Let $x = z_1 \leq z_1 \leq \ldots \leq z_{h(y)} = y$ be the longest chain of length $h(y)$.
- The elements of the same height form an anti-chain.
- We have defined a partition of $h(y)$ anti-chains.
Theorem

Comparability graphs are χ-perfect.

Proof: clear!

Note: $\chi(G) \leq \omega(G)$ holds.

Lemma

Let P_\leq be a PO-set. The maximal length of an anti-chain is equal to the minimal number of chains in which P_\leq may be partitioned.

Definition

A topological ordering of $G = (V, A)$ is an ordering of the nodes $\rho : V \mapsto \{1, 2, \ldots, n\}$ with:

$(u, v) \in A \implies \rho(u) < \rho(v)$.

Lemma

The colouring problem may be solved in linear time on comparability graphs by using a topological ordering.
Statements

Theorem

Comparability graphs are χ-perfect.

Proof: clear!

Note: $\chi(G) \leq \omega(G)$ holds.

Lemma

Let P_{\leq} be a PO-set. The maximal length of a anti-chain is equal to the minimal number of chains in which P_{\leq} may be partitioned.

Definition

A topological ordering of $G = (V, A)$ is an ordering of the nodes $\rho : V \mapsto \{1, 2, \ldots, n\}$ with: $(u, v) \in A \implies \rho(u) < \rho(v)$.

Lemma

The colouring problem may be solved in linear time on comparability graphs by using a topological ordering.
Theorem

Comparability graphs are χ-perfect.

Proof: clear!

Note: $\chi(G) \leq \omega(G)$ holds.

Lemma

Let P_\leq be a PO-set. The maximal length of a anti-chain is equal to the minimal number of chains in which P_\leq may be partitioned.

Definition

A topological ordering of $G = (V, A)$ is an ordering of the nodes $\rho : V \mapsto \{1, 2, \ldots, n\}$ with: $(u, v) \in A \Rightarrow \rho(u) < \rho(v)$.

Lemma

The colouring problem may be solved in linear time on comparability graphs by using a topological ordering.
Theorems

Theorem

Comparability graphs are χ-perfect.

Proof: clear!
Note: $\chi(G) \leq \omega(G)$ holds.

Lemma

Let $P \leq$ be a PO-set. The maximal length of a anti-chain is equal to the minimal number of chains in which $P \leq$ may be partitioned.

Definition

A topological ordering of $G = (V, A)$ is an ordering of the nodes $\rho : V \mapsto \{1, 2, \ldots, n\}$ with:

$(u, v) \in A \implies \rho(u) < \rho(v)$.

Lemma

The colouring problem may be solved in linear time on comparability graphs by using a topological ordering.
Theorem

Comparability graphs are χ-perfect.

Proof: clear!
Note: $χ(G) ≤ ω(G)$ holds.

Lemma

Let $P_<$ be a PO-set. The maximal length of a anti-chain is equal to the minimal number of chains in which $P_<$ may be partitioned.

Definition

A topological ordering of $G = (V, A)$ is an ordering of the nodes $ρ : V \mapsto \{1, 2, \ldots, n\}$ with:

$(u, v) ∈ A \implies ρ(u) < ρ(v)$.

Lemma

The colouring problem may be solved in linear time on comparability graphs by using a topological ordering.
Theorem

Comparability graphs are χ-perfect.

Proof: clear!

Note: $\chi(G) \leq \omega(G)$ holds.

Lemma

Let $P \leq$ be a PO-set. The maximal length of a anti-chain is equal to the minimal number of chains in which $P \leq$ may be partitioned.

Definition

A topological ordering of $G = (V, A)$ is an ordering of the nodes $\rho : V \mapsto \{1, 2, \ldots, n\}$ with: $(u, v) \in A \implies \rho(u) < \rho(v).$

Lemma

The colouring problem may be solved in linear time on comparability graphs by using a topological ordering.
Theorem

Comparability graphs are χ-perfect.

Proof: clear!

Note: $\chi(G) \leq \omega(G)$ holds.

Lemma

Let $P \leq$ be a PO-set. The maximal length of a anti-chain is equal to the minimal number of chains in which $P \leq$ may be partitioned.

Definition

A topological ordering of $G = (V, A)$ is an ordering of the nodes $\rho : V \mapsto \{1, 2, \ldots, n\}$ with:

$(u, v) \in A \implies \rho(u) < \rho(v)$.

Lemma

The colouring problem may be solved in linear time on comparability graphs by using a topological ordering.
Theorem

Comparability graphs are χ-perfect.

Proof: clear!
Note: $\chi(G) \leq \omega(G)$ holds.

Lemma

Let $P \preceq$ be a PO-set. The maximal length of a anti-chain is equal to the minimal number of chains in which $P \preceq$ may be partitioned.

Definition

A topological ordering of $G = (V, A)$ is an ordering of the nodes $\rho : V \mapsto \{1, 2, \ldots, n\}$ with:
$(u, v) \in A \implies \rho(u) < \rho(v)$.

Lemma

The colouring problem may be solved in linear time on comparability graphs by using a topological ordering.
Statements

Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

For a graph G are the following statements equivalent:

- G is an interval graph.
- G contains no induced C_4 and \overline{G} is a comparability graph.
- The maximal cliques of G may be ordered such that, the cliques which have a common node, follow in the ordering each other.
Theorems

Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

Statements

\[\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G)\]
Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

For a graph G are the following statements equivalent:

- G is an interval graph.
- G contains no induced C_4 and \overline{G} is a comparability graph.
- The maximal cliques of G may be ordered such that, the cliques which have a common node, follow in the ordering each other.
Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

\[
\omega(G) = \overline{\alpha(G)}, \quad \alpha(G) = \overline{\omega(G)} = \beta_0(G), \quad \kappa(G) = \overline{\chi(G)}
\]
Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

\[\begin{align*}
\omega(G) &= \overline{\alpha}(G), \\
\alpha(G) &= \overline{\omega}(G) = \beta_0(G), \\
\kappa(G) &= \chi(G)
\end{align*} \]

For a graph G are the following statements equivalent:

- G is an interval graph.
- G contains no induced C_4 and \overline{G} is a comparability graph.
- The maximal cliques of G may be ordered such that, the cliques which have a common node, follow in the ordering each other.*
Statements

Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

\[\omega(G) = \overline{\alpha(G)}, \alpha(G) = \overline{\omega(G)} = \beta_0(G), \kappa(G) = \overline{\chi(G)} \]
Statements

Theorem

Interval graphs are \(\chi \)-perfect.

Theorem

The complement of an interval graph is a comparability graph.

For a graph \(G \) are the following statements equivalent:

- \(G \) is an interval graph.
- \(G \) contains no induced \(C_4 \) and \(\overline{G} \) is a comparability graph.
- The maximal cliques of \(G \) may be ordered such that, the cliques which have a common node, follow in the ordering each other.
Statements

Theorem

Interval graphs are χ-*perfect.*

Theorem

The complement of an interval graph is a comparability graph.

\[\begin{align*}
\omega(G) &= \overline{\alpha(G)}, \\
\alpha(G) &= \overline{\omega(G)} = \beta_0(G), \\
\kappa(G) &= \chi(G)
\end{align*}\]

Theorem

For a graph G *are the following statements equivalent:*

- G is an interval graph.
- G contains no induced C_4 and \overline{G} is a comparability graph.
- The maximal cliques of G may be ordered such that, the cliques which have a common node, follow in the ordering each other.*
Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

Theorem

For a graph G are the following statements equivalent:

- *G is an interval graph.*
- *G contains no induced C_4 and \overline{G} is a comparability graph.*
- *The maximal cliques of G may be ordered such that, the cliques which have a common node, follow in the ordering each other.*
Statements

Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

For a graph G are the following statements equivalent:

- G is an interval graph.
- G contains no induced C_4 and \overline{G} is a comparability graph.
- The maximal cliques of G may be ordered such that, the cliques which have a common node, follow in the ordering each other.
Theorem

Interval graphs are χ-perfect.

Theorem

The complement of an interval graph is a comparability graph.

Theorem

For a graph G are the following statements equivalent:

- G is an interval graph.
- G contains no induced C_4 and \overline{G} is a comparability graph.
- The maximal cliques of G may be ordered such that, the cliques which have a common node, follow in the ordering each other.
First Observations

Theorem

The disjoint union of \(\chi \)-perfect graphs is a \(\chi \)-perfect graph.

Theorem

The identification of two \(\chi \)-perfect graphs at a clique gives a \(\chi \)-perfect graph.

Theorem

A graph \(G \) is \(\chi \)-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: \(\forall H \subset G : \exists I : \omega(H - I) \leq \omega(H) - 1 \) and \(I \) is an independent set.
First Observations

Theorem

The disjoint union of \(\chi \)-perfect graphs is a \(\chi \)-perfect graph.

Theorem

The identification of two \(\chi \)-perfect graphs at a clique gives a \(\chi \)-perfect graph.

Theorem

A graph \(G \) is \(\chi \)-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: \(\forall H \subseteq G : \exists I : \omega(H - I) \leq \omega(H) - 1 \) and \(I \) is an independent set.
First Observations

Theorem

The disjoint union of \(\chi \)-perfect graphs is a \(\chi \)-perfect graph.

Theorem

The identification of two \(\chi \)-perfect graphs at a clique gives a \(\chi \)-perfect graph.

Theorem

A graph \(G \) is \(\chi \)-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: \(\forall H \subseteq G : \exists I : \omega(H - I) \leq \omega(H) - 1 \) and \(I \) is an independent set.
First Observations

Theorem

The disjoint union of χ-perfect graphs is a χ-perfect graph.

Theorem

The identification of two χ-perfect graphs at a clique gives a χ-perfect graph.

Theorem

A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subseteq G : \exists I : \omega(H - I) \leq \omega(H) - 1$ and I is an independent set.
First Observations

Theorem
The disjoint union of χ-perfect graphs is a χ-perfect graph.

Theorem
The identification of two χ-perfect graphs at a clique gives a χ-perfect graph.

Theorem
A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subseteq G : \exists I : \omega(H - I) \leq \omega(H) - 1$ and I is an independent set.

$\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \kappa(G) = \overline{\kappa}(G)$
Theorem

A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subseteq G : \exists I : \omega(H - I) \leq \omega(H) - 1$.

Proof:

\implies:

- Because $\chi(G) = \omega(G)$ holds,
- will each colour-class hit all maximum-cliques.

\Leftarrow:

- We may show by induction over $|V(H)|$:

$$\chi(H) \leq \chi(H - I) + 1 \overset{\forall I\subseteq V}{\leq} \omega(H - I) + 1 \leq \omega(H).$$
A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subset G : \exists I : \omega(H - I) \leq \omega(H) - 1$.

Proof:

\implies:

- Because $\chi(G) = \omega(G)$ holds,
- will each colour-class hit all maximum-cliques.

\impliedby:

- We may show by induction over $|V(H)|$:

\[
\chi(H) \leq \chi(H - I) + 1 \overset{\text{IV}}{\Rightarrow} \omega(H - I) + 1 \leq \omega(H).
\]
Proof:

\[\implies : \]
- Because \(\chi(G) = \omega(G) \) holds,
- will each colour-class hit all maximum-cliques.

\[\Leftarrow : \]
- We may show by induction over \(|V(H)| \):

\[\chi(H) \leq \chi(H - I) + 1 \quad \Leftarrow \quad \omega(H - I) + 1 \leq \omega(H). \]
Theorem

A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subset G : \exists I : \omega(H - I) \leq \omega(H) - 1$.

Proof:

\implies:
- Because $\chi(G) = \omega(G)$ holds,
- will each colour-class hit all maximum-cliques.

\Longleftarrow:
- We may show by induction over $|V(H)|$:

$$\chi(H) \leq \chi(H - I) + 1 \implies \omega(H - I) + 1 \leq \omega(H).$$
A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subset G : \exists I : \omega(H - I) \leq \omega(H) - 1$.

Proof:

\Rightarrow:
- Because $\chi(G) = \omega(G)$ holds,
- will each colour-class hit all maximum-cliques.

\Leftarrow: We may show by induction over $|V(H)|$:

$$\chi(H) \leq \chi(H - I) + 1 \implies \omega(H - I) + 1 \leq \omega(H).$$
Theorem

A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subseteq G : \exists I : \omega(H - I) \leq \omega(H) - 1$.

Proof:

\implies:

- Because $\chi(G) = \omega(G)$ holds,
- will each colour-class hit all maximum-cliques.

\impliedby:

- We may show by induction over $|V(H)|$:

$$\chi(H) \leq \chi(H - I) + 1 \overset{\text{i.V.}}{\equiv} \omega(H - I) + 1 \leq \omega(H).$$
Theorem

A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subseteq G : \exists I : \omega(H - I) \leq \omega(H) - 1$.

Proof:

\implies:
- Because $\chi(G) = \omega(G)$ holds,
- will each colour-class hit all maximum-cliques.

\impliedby:
- We may show by induction over $|V(H)|$:

$$\chi(H) \leq \chi(H - I) + 1 \implies \omega(H - I) + 1 \leq \omega(H).$$
A graph G is χ-perfect, iff in all induced subgraphs exists an independent set, which hits all maximum-cliques: $\forall H \subset G : \exists I : \omega(H-I) \leq \omega(H) - 1$.

Proof:

\implies

- Because $\chi(G) = \omega(G)$ holds,
- will each colour-class hit all maximum-cliques.

\impliedby

- We may show by induction over $|V(H)|$:

$$\chi(H) \leq \chi(H-I) + 1 \implies \omega(H-I) + 1 \leq \omega(H).$$
Strong perfect Graphs

Definition

A graph $G = (V, E)$ is called strong perfect, iff for each node-induced subgraph exists an independent set, which hits all maximal cliques.

Theorem

A strong perfect graph is also perfect.

Theorem

The problems for $\chi(G), \alpha(G), \omega(G), \kappa(G)$ are on χ-perfect graphs solvable in polynomial time.

Note: Proof uses the Ellipsoid Method.
Strong perfect Graphs

Definition

A graph $G = (V, E)$ is called strong perfect, iff for each node-induced subgraph exists an independent set, which hits all maximal cliques.

Theorem

A strong perfect graph is also perfect.

Theorem

The problems for $\chi(G), \alpha(G), \omega(G), \kappa(G)$ are on χ-perfect graphs solvable in polynomial time.

Note: Proof uses the Ellipsoid Method.
Strong perfect Graphs

Definition

A graph $G = (V, E)$ is called strong perfect, iff for each node-induced subgraph exists an independent set, which hits all maximal cliques.

Theorem

A *strong perfect graph is also perfect.*

Theorem

The problems for $\chi(G), \alpha(G), \omega(G), \kappa(G)$ are on χ-perfect graphs solvable in polynomial time.

Note: Proof uses the Ellipsoid Method.
Strong perfect Graphs

Definition

A graph $G = (V, E)$ is called strong perfect, iff for each node-induced subgraph exists an independent set, which hits all maximal cliques.

Theorem

A strong perfect graph is also perfect.

Theorem

The problems for $\chi(G), \alpha(G), \omega(G), \kappa(G)$ are on χ-perfect graphs solvable in polynomial time.

Note: Proof uses the Ellipsoid Method.
Definition

A graph $G = (V, E)$ is called strong perfect, iff for each node-induced subgraph exists an independent set, which hits all maximal cliques.

Theorem

A strong perfect graph is also perfect.

Theorem

The problems for $\chi(G), \alpha(G), \omega(G), \kappa(G)$ are on χ-perfect graphs solvable in polynomial time.

Note: Proof uses the Ellipsoid Method.
Strong perfect Graphs

Definition

A graph $G = (V, E)$ is called strong perfect, iff for each node-induced subgraph exists an independent set, which hits all maximal cliques.

Theorem

A strong perfect graph is also perfect.

Theorem

The problems for $\chi(G), \alpha(G), \omega(G), \kappa(G)$ are on χ-perfect graphs solvable in polynomial time.

Note: Proof uses the Ellipsoid Method.
Strong perfect Graphs

Definition
A graph $G = (V, E)$ is called strong perfect, iff for each node-induced subgraph exists an independent set, which hits all maximal cliques.

Theorem
A strong perfect graph is also perfect.

Theorem
The problems for $\chi(G), \alpha(G), \omega(G), \kappa(G)$ are on χ-perfect graphs solvable in polynomial time.

Note: Proof uses the Ellipsoid Method.
The following statements are equivalent for graphs \(G = (V, E) \):

1. \(G \) is \(\chi \)-perfect.
2. \(G \) is \(\alpha \)-perfect
3. For all node-induced subgraphs \(H = (V', E') \) of \(G \) holds: \(\alpha(H) \cdot \omega(H) \geq |V'| \).

Perfect Graphs are closed under complement.
The following statements are equivalent for graphs $G = (V, E)$:

1. G is χ-perfect.
2. G is α-perfect.
3. For all node-induced subgraphs $H = (V', E')$ of G holds: $\alpha(H) \cdot \omega(H) \geq |V'|$.

Perfect Graphs are closed under complement.
Theorem

The following statements are equivalent for graphs $G = (V, E)$:

1. G is χ-perfect.
2. G is α-perfect
3. For all node-induced subgraphs $H = (V', E')$ of G holds: $\alpha(H) \cdot \omega(H) \geq |V'|$.

Theorem

Perfect Graphs are closed under complement.
Theorem

The following statements are equivalent for graphs \(G = (V, E) \):

1. \(G \) is \(\chi \)-perfect.
2. \(G \) is \(\alpha \)-perfect
3. For all node-induced subgraphs \(H = (V', E') \) of \(G \) holds: \(\alpha(H) \cdot \omega(H) \geq |V'| \).

Theorem

Perfect Graphs are closed under complement.
The following statements are equivalent for graphs $G = (V, E)$:

1. G is χ-perfect.
2. G is α-perfect.
3. For all node-induced subgraphs $H = (V', E')$ of G holds: $\alpha(H) \cdot \omega(H) \geq |V'|$.

Perfect Graphs are closed under complement.
The following statements are equivalent for graphs $G = (V, E)$:

1. G is χ-perfect.
2. G is α-perfect
3. For all node-induced subgraphs $H = (V', E')$ of G holds: $\alpha(H) \cdot \omega(H) \geq |V'|$.

Perfect Graphs are closed under complement.
Lemma

If a node x *of a* χ-*perfect graph* G *is substituted by a* χ-*perfect graph* H, *then we get a* χ-*perfect graph* G_H.*

Proof:

- Construct an independent set I, which hits all maximum cliques.
- Colour G with $\chi(G)$ colours.
- Let I_x be the set of nodes with the same colour as x.
- Let I_H be an independent set in H, which hits all maximum-cliques in H.
- Let: $I = I_x \setminus \{x\} \cup I_H$
- Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, than contains C a maximum-clique of H and therefore hits I_H also C.

\[\omega(G) = \bar{\alpha}(G), \alpha(G) = \bar{\omega}(G) = \beta_0(G), \kappa(G) = \chi(G) \]
Statements II

Lemma

If a node x of a χ-perfect graph G is substituted by a χ-perfect graph H, then we get a χ-perfect graph G_H.

Proof:

- Construct an independent set I, which hits all maximum cliques.
- Colour G with $\chi(G)$ colours.
- Let I_x be the set of nodes with the same colour as x.
- Let I_H be an independent set in H, which hits all maximum-cliques in H.
- Let: $I = I_x \setminus \{x\} \cup I_H$
- Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, then contains C a maximum-clique of H and therefore hits I_H also C.

$\omega(G) = \overline{\alpha}(G)$, $\alpha(G) = \overline{\omega}(G) = \beta_0(G)$, $\kappa(G) = \overline{\chi}(G)$
Lemma

If a node x of a χ-perfect graph G is substituted by a χ-perfect graph H, then we get a χ-perfect graph G_H.

Proof:

- Construct an independent set I, which hits all maximum cliques.
- Colour G with $\chi(G)$ colours.
- Let I_x be the set of nodes with the same colour as x.
- Let I_H be an independent set in H, which hits all maximum-cliques in H.
- Let: $I = I_x \setminus \{x\} \cup I_H$
- Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and
 - because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, then contains C a maximum-clique of H
 - and therefore hits I_H also C.

$\omega(G) = \overline{\omega}(G)$, $\alpha(G) = \overline{\alpha}(G) = \beta_0(G)$, $\kappa(G) = \overline{\chi}(G)$
Lemma

If a node x of a χ-perfect graph G is substituted by a χ-perfect graph H, then we get a χ-perfect graph G_H.

Proof:

1. Construct an independent set I, which hits all maximum cliques.
2. Colour G with $\chi(G)$ colours.
3. Let I_x be the set of nodes with the same colour as x.
4. Let I_H be an independent set in H, which hits all maximum-cliques in H.
5. Let: $I = I_x \setminus \{x\} \cup I_H$
6. Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, than contains C a maximum-clique of H and therefore hits I_H also C.
Lemma

If a node x of a χ-perfect graph G is substituted by a χ-perfect graph H, then we get a χ-perfect graph G_H.

Proof:

- Construct an independent set I, which hits all maximum cliques.
- Colour G with $\chi(G)$ colours.
- Let I_x be the set of nodes with the same colour as x.
- Let I_H be an independent set in H, which hits all maximum-Cliques in H.
- Let: $I = I_x \setminus \{x\} \cup I_H$
- Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, than contains C a maximum-clique of H and therefore hits I_H also C.

\[\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Lemma

If a node x of a χ-perfect graph G is substituted by a χ-perfect graph H, then we get a χ-perfect graph G_H.

Proof:

- Construct an independent set I, which hits all maximum cliques.
- Colour G with $\chi(G)$ colours.
- Let I_x be the set of nodes with the same colour as x.
- Let I_H be an independent set in H, which hits all maximum-Cliques in H.
- Let: $I = I_x \setminus \{x\} \cup I_H$
- Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and
 - because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, then contains C a maximum-clique of H
 - and therefore hits I_H also C.
Lemma

If a node x of a χ-perfect graph G is substituted by a χ-perfect graph H, then we get a χ-perfect graph G_H.

Proof:

- Construct an independent set I, which hits all maximum cliques.
- Colour G with $\chi(G)$ colours.
- Let I_x be the set of nodes with the same colour as x.
- Let I_H be an independent set in H, which hits all maximum-cliques in H.
- Let: $I = I_x \setminus \{x\} \cup I_H$
- Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, then contains C a maximum-clique of H and therefore hits I_H also C.
Lemma

If a node \(x \) of a \(\chi \)-perfect graph \(G \) is substituted by a \(\chi \)-perfect graph \(H \), then we get a \(\chi \)-perfect graph \(G_H \).

Proof:

- Construct an independent set \(I \), which hits all maximum cliques.
- Colour \(G \) with \(\chi(G) \) colours.
- Let \(I_x \) be the set of nodes with the same colour as \(x \).
- Let \(I_H \) be an independent set in \(H \), which hits all maximum-Cliques in \(H \).
- Let: \(I = I_x \setminus \{x\} \cup I_H \)
- Let \(C \) be a maximum-clique in \(G_H \).
 - If \(C \cap V(H) = \emptyset \) holds, then is \(C \) in \(G - x \) and
 - because \(\omega(G) \geq \chi(G) \) holds, we get \(C \cap I_x \neq \emptyset \).
 - If \(C \cap V(H) \neq \emptyset \), then contains \(C \) a maximum-clique of \(H \)
 - and therefore hits \(I_H \) also \(C \).
Lemma

If a node x of a χ-perfect graph G is substituted by a χ-perfect graph H, then we get a χ-perfect graph G_H.

Proof:

1. Construct an independent set I, which hits all maximum cliques.
2. Colour G with $\chi(G)$ colours.
3. Let I_x be the set of nodes with the same colour as x.
4. Let I_H be an independent set in H, which hits all maximum-cliques in H.
5. Let: $I = I_x \setminus \{x\} \cup I_H$
6. Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, than contains C a maximum-clique of H and therefore hits I_H also C.
Lemma

If a node x of a χ-perfect graph G is substituted by a χ-perfect graph H, then we get a χ-perfect graph G_H.

Proof:

- Construct an independent set I, which hits all maximum cliques.
- Colour G with $\chi(G)$ colours.
- Let I_x be the set of nodes with the same colour as x.
- Let I_H be an independent set in H, which hits all maximum-Cliques in H.
- Let: $I = I_x \setminus \{x\} \cup I_H$
- Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and
 - because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, then contains C a maximum-clique of H
 - and therefore hits I_H also C.
Statements II

Lemma

If a node x of a χ-perfect graph G is substituted by a χ-perfect graph H, then we get a χ-perfect graph G_H.

Proof:

- Construct an independent set I, which hits all maximum cliques.
- Colour G with $\chi(G)$ colours.
- Let I_x be the set of nodes with the same colour as x.
- Let I_H be an independent set in H, which hits all maximum-cliques in H.
- Let: $I = I_x \setminus \{x\} \cup I_H$
- Let C be a maximum-clique in G_H.
 - If $C \cap V(H) = \emptyset$ holds, then is C in $G - x$ and because $\omega(G) \geq \chi(G)$ holds, we get $C \cap I_x \neq \emptyset$.
 - If $C \cap V(H) \neq \emptyset$, then contains C a maximum-clique of H
 - and therefore hits I_H also C.
Lemma

If a node x of a α-perfect graph G is substituted by an independent set S, then we get a α-perfect graph G_S.

- It is sufficient to add just one node y as a copy of x.
- We consider two cases:
 - x is in an independent set S of size $\alpha(G)$.
 - x is not in an independent set S of size $\alpha(G)$.
Lemma

If a node x of a α-perfect graph G is substituted by an independent set S, then we get a α-perfect graph G_S.

- It is sufficient to add just one node y as a copy of x.
- We consider two cases:
 - x is in an independent set S of size $\alpha(G)$.
 - x is not in an independent set S of size $\alpha(G)$.

\[
\omega(G) = \overline{\alpha}(G), \quad \alpha(G) = \overline{\omega}(G) = \beta_0(G), \quad \kappa(G) = \overline{\chi}(G)
\]
Lemma

If a node x of a α-perfect graph G is substituted by an independent set S, then we get a α-perfect graph G_S.

- It is sufficient to add just one node y as a copy of x.
- We consider two cases:
 - x is in an independent set S of size $\alpha(G)$.
 - x is not in an independent set S of size $\alpha(G)$.
Lemma

If a node x of a α-perfect graph G is substituted by an independent set S, then we get a α-perfect graph G_S.

- It is sufficient to add just one node y as a copy of x.
- We consider two cases:
 - x is in an independent set S of size $\alpha(G)$.
 - x is not in an independent set S of size $\alpha(G)$.

\[
\omega(G) = \overline{\omega}(G), \quad \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \quad \kappa(G) = \overline{\chi}(G)
\]
Lemma

If a node x of a α-perfect graph G is substituted by an independent set S, then we get a α-perfect graph G_S.

- It is sufficient to add just one node y as a copy of x.
- We consider two cases:
 - x is in an independent set S of size $\alpha(G)$.
 - x is not in an independent set S of size $\alpha(G)$.
Lemma

If a node x of a α-perfect graph G is substituted by an independent set S, then we get a α-perfect graph G_S.

- It is sufficient to add just one node y as a copy of x.
- We consider two cases:
 - x is in an independent set S of size $\alpha(G)$.
 - x is not in an independent set S of size $\alpha(G)$.
Lemma

If a node x *of a* α-*perfect graph* G *is substituted by an independent set* S, *then we get a* α-*perfect graph* G_S.

- It is sufficient to add just one node y as a copy of x.
- We consider two cases:
 - x is in an independent set S of size $\alpha(G)$.
 - x is not in an independent set S of size $\alpha(G)$.
Lemma

If a node x of a α-perfect graph G is substituted by an independent set S, then we get a α-perfect graph G_S.

- It is sufficient to add just one node y as a copy of x.
- We consider two cases:
 - x is in an independent set S of size $\alpha(G)$.
 - x is not in an independent set S of size $\alpha(G)$.

\[
\omega(G) = \overline{\alpha}(G), \quad \alpha(G) = \overline{\omega}(G) = \beta_0(G), \quad \kappa(G) = \overline{\chi}(G)
\]
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is in an independent set S of size $\alpha(G)$.

Thus $S \cup \{y\}$ is an independent set and

$\alpha(G_{\{y\}}) = \alpha(G) + 1$ holds.

Because $\mathcal{K} \cup \{y\}$ is a clique cover of $G_{\{y\}}$, we get:

$\kappa(G_{\{y\}}) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G_{\{y\}}) \leq \kappa(G_{\{y\}})$.
Statements II

- Let \(K \) be a clique cover of \(G \) with \(|K| = \kappa(G) = \alpha(G)\).
- \(x \) is in an independent set \(S \) of size \(\alpha(G) \).
 - Thus \(S \cup \{y\} \) is an independent set and \(\alpha(G_{\{y\}}) = \alpha(G) + 1 \) holds.
 - Because \(K \cup \{y\} \) is a clique cover of \(G_{\{y\}} \), we get:
 - \(\kappa(G_{\{y\}}) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G_{\{y\}}) \leq \kappa(G_{\{y\}}) \).
 Statements II

- Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.
- x is in an independent set S of size $\alpha(G)$.
 - Thus $S \cup \{y\}$ is an independent set and $\alpha(G_y) = \alpha(G) + 1$ holds.
 - Because $\mathcal{K} \cup \{y\}$ is a clique cover of G_y, we get:
 - $\kappa(G_y) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G_y) \leq \kappa(G_y)$.

\[\omega(G) = \overline{\omega}(G), \ \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \ \kappa(G) = \overline{\chi}(G) \]
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is in an independent set S of size $\alpha(G)$.
- Thus $S \cup \{y\}$ is an independent set and $\alpha(G_{\{y\}}) = \alpha(G) + 1$ holds.
- Because $\mathcal{K} \cup \{y\}$ is a clique cover of $G_{\{y\}}$, we get:
 - $\kappa(G_{\{y\}}) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G_{\{y\}}) \leq \kappa(G_{\{y\}})$.

\[
\omega(G) = \overline{\omega}(G), \quad \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \quad \kappa(G) = \overline{\chi}(G)
\]
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is in an independent set S of size $\alpha(G)$.

- Thus $S \cup \{y\}$ is an independent set and
- $\alpha(G_{\{y\}}) = \alpha(G) + 1$ holds.
- Because $\mathcal{K} \cup \{y\}$ is a clique cover of $G_{\{y\}}$, we get:
- $\kappa(G_{\{y\}}) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G_{\{y\}}) \leq \kappa(G_{\{y\}})$.

$$\omega(G) = \overline{\omega}(G), \alpha(G) = \overline{\alpha}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G)$$
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is in an independent set S of size $\alpha(G)$.

- Thus $S \cup \{y\}$ is an independent set and $\alpha(G_{\{y\}}) = \alpha(G) + 1$ holds.
- Because $\mathcal{K} \cup \{y\}$ is a clique cover of $G_{\{y\}}$, we get:
 - $\kappa(G_{\{y\}}) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G_{\{y\}}) \leq \kappa(G_{\{y\}})$.

$\omega(G) = \overline{\alpha}(G)$, $\alpha(G) = \overline{\omega}(G) = \beta_0(G)$, $\kappa(G) = \overline{\chi}(G)$
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is in an independent set S of size $\alpha(G)$.

- Thus $S \cup \{y\}$ is an independent set and $\alpha(G_{\{y\}}) = \alpha(G) + 1$ holds.
- Because $\mathcal{K} \cup \{y\}$ is a clique cover of $G_{\{y\}}$, we get:
 - $\kappa(G_{\{y\}}) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G_{\{y\}}) \leq \kappa(G_{\{y\}})$.
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is in an independent set S of size $\alpha(G)$.

- Thus $S \cup \{y\}$ is an independent set and $\alpha(G_{\{y\}}) = \alpha(G) + 1$ holds.
- Because $\mathcal{K} \cup \{y\}$ is a clique cover of $G_{\{y\}}$, we get:
 - $\kappa(G_{\{y\}}) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G_{\{y\}}) \leq \kappa(G_{\{y\}})$.

\[\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G) \]
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is in an independent set S of size $\alpha(G)$.

- Thus $S \cup \{y\}$ is an independent set and $\alpha(G \{y\}) = \alpha(G) + 1$ holds.
- Because $\mathcal{K} \cup \{y\}$ is a clique cover of $G\{y\}$, we get:
 - $\kappa(G \{y\}) \leq \kappa(G) + 1 = \alpha(G) + 1 = \alpha(G \{y\}) \leq \kappa(G \{y\})$.

[Diagram showing a graph with nodes labeled $a, b, c, d, e, f, g, x, y$ and edges connecting them, with certain nodes emphasized in red.]
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

- x is not in an independent set S of size $\alpha(G)$.

 - Thus we have $\alpha(G\{y\}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get:
 $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G\{y\}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G\{y\}) - 1$.
 - Finally we get $\kappa(G\{y\}) = \alpha(G\{y\})$ (Covering: $D \cup \{y\}$).
Statements II

- Let K be a clique cover of G with $|K| = \kappa(G) = \alpha(G)$.
- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from K hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get:
 $\kappa(G[V \setminus D]) = \kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
 - Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is not in an independent set S of size $\alpha(G)$.

- Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
- Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
- Therefore hits K_{x} (the clique, which contains x) each maximum independent set precisely once.
- And $D = K_{x} \setminus \{x\}$ hits each maximum independent set precisely once.
- Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
- By induction we get: $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
- Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
- Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Statements II

- Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.
- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get: $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
 - Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

x is not in an independent set S of size $\alpha(G)$.

- **Thus we have** $\alpha(G\{x\}) = \alpha(G)$.
- Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
- Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
- And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
- **Thus we get:** $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
- By induction we get:
 $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G\{y\}) - 1$.
- Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G\{y\}) - 1$.
- Finally we get $\kappa(G\{y\}) = \alpha(G\{y\})$ (Covering: $D \cup \{y\}$).
Statements II

- Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.
- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get:
 - $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
 - Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Statements II

- Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.
- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get:
 $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
 - Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.

- And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get:
 - $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
 - Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G_{\{x\}}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get:
 - $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
 - Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Statements II

- Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.
- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get:
 $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
 - Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get:
 $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
 - Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Statements II

- Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.
- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G_{\{y\}}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get: $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G_{\{y\}}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G_{\{y\}}) - 1$.
 - Finally we get $\kappa(G_{\{y\}}) = \alpha(G_{\{y\}})$ (Covering: $D \cup \{y\}$).
Let \mathcal{K} be a clique cover of G with $|\mathcal{K}| = \kappa(G) = \alpha(G)$.

- x is not in an independent set S of size $\alpha(G)$.
 - Thus we have $\alpha(G \cup \{y\}) = \alpha(G)$.
 - Because of $\kappa(G) = \alpha(G)$ each clique from \mathcal{K} hits each maximum independent set.
 - Therefore hits K_x (the clique, which contains x) each maximum independent set precisely once.
 - And $D = K_x \setminus \{x\}$ hits each maximum independent set precisely once.
 - Thus we get: $\alpha(G[V \setminus D]) = \alpha(G) - 1$.
 - By induction we get:
 - $\kappa(G[V \setminus D]) = \alpha(G[V \setminus D]) = \alpha(G) - 1 = \alpha(G \cup \{y\}) - 1$.
 - Thus there is a clique cover of $G[V \setminus D]$ of size $\alpha(G \cup \{y\}) - 1$.
 - Finally we get $\kappa(G \cup \{y\}) = \alpha(G \cup \{y\})$ (Covering: $D \cup \{y\}$).
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that α-perfect induces χ-perfect):

- Let G be a α-perfect graph.
- We will use induction over $n = |V(G)|$.
- The statement holds clearly for $n \leq 3$. Let $n \geq 4$.
- For all induces real subgraphs of G holds the statement.
- Thus we have to show $\chi(G) \leq \omega(G)$.
- If G has an independent set S, which hists all maximum cliques,
 - then $\omega(G \setminus S) = \omega(G) - 1$ holds.
 - Thus we get: $\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)$.
- Therefore we assume in the following, that G has not an independent set S, which hists all maximum cliques.
Statements III

Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that \(\alpha \)-perfect induces \(\chi \)-perfect):

- Let \(G \) be a \(\alpha \)-perfect graph.
- We will use induction over \(n = |V(G)| \).
- The statement holds clearly for \(n \leq 3 \). Let \(n \geq 4 \).
- For all induces real subgraphs of \(G \) holds the statement.
- Thus we have to show \(\chi(G) \leq \omega(G) \).
- If \(G \) has an independent set \(S \), which hists all maximum cliques,
 - then \(\omega(G \setminus S) = \omega(G) - 1 \) holds.
 - Thus we get: \(\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G) \).
- Therefore we assume in the following, that \(G \) has not an independent set \(S \), which hists all maximum cliques.
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that α-perfect induces χ-perfect):

- Let G be a α-perfect graph.
- We will use induction over $n = |V(G)|$.
- The statement holds clearly for $n \leq 3$. Let $n \geq 4$.
- For all induces real subgraphs of G holds the statement.
- Thus we have to show $\chi(G) \leq \omega(G)$.
- If G has an independent set S, which hists all maximum cliques,
 - then $\omega(G \setminus S) = \omega(G) - 1$ holds.
 - Thus we get: $\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)$.
- Therefore we assume in the following, that G has not an independent set S, which hists all maximum cliques.
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that α-perfect induces χ-perfect):

- Let G be a α-perfect graph.
- We will use induction over $n = |V(G)|$.
- The statement holds clearly for $n \leq 3$. Let $n \geq 4$.
- For all induces real subgraphs of G holds the statement.
- Thus we have to show $\chi(G) \leq \omega(G)$.
- If G has an independent set S, which hists all maximum cliques,
- then $\omega(G \setminus S) = \omega(G) - 1$ holds.
- Thus we get: $\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)$.
- Therefore we assume in the following, that G has not an independent set S, which hists all maximum cliques.
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that \(\alpha\)-perfect induces \(\chi\)-perfect):

- Let \(G\) be a \(\alpha\)-perfect graph.
- We will use induction over \(n = |V(G)|\).
- The statement holds clearly for \(n \leq 3\). Let \(n \geq 4\).
- For all induces real subgraphs of \(\leq 3\). Let \(n \geq 4\).
- Thus we have to show \(\chi(G) \leq \omega(G)\).
- If \(G\) has an independent set \(S\), which hists all maximum cliques,
- then \(\omega(G \setminus S) = \omega(G) - 1\) holds.
- Thus we get: \(\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)\).
- Therefore we assume in the following, that \(G\) has not an independent set \(S\), which hists all maximum cliques
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that α-perfect induces χ-perfect):

- Let G be a α-perfect graph.
- We will use induction over $n = |V(G)|$.
- The statement holds clearly for $n \leq 3$. Let $n \geq 4$.
- For all induces real subgraphs of G holds the statement.
- Thus we have to show $\chi(G) \leq \omega(G)$.
- If G has an independent set S, which hists all maximum cliques,
 then $\omega(G \setminus S) = \omega(G) - 1$ holds.
- Thus we get: $\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)$.
- Therefore we assume in the following, that G has not an independent set S, which hists all maximum cliques
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that α-perfect induces χ-perfect):

- Let G be a α-perfect graph.
- We will use induction over $n = |V(G)|$.
- The statement holds clearly for $n \leq 3$. Let $n \geq 4$.
- For all induces real subgraphs of G holds the statement.
- Thus we have to show $\chi(G) \leq \omega(G)$.
- If G has an independent set S, which hists all maximum cliques,
 - then $\omega(G \setminus S) = \omega(G) - 1$ holds.
 - Thus we get: $\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)$.
 - Therefore we assume in the following, that G has not an independent set S, which hists all maximum cliques.
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that α-perfect induces χ-perfect):

- Let G be a α-perfect graph.
- We will use induction over $n = |V(G)|$.
- The statement holds clearly for $n \leq 3$. Let $n \geq 4$.
- For all induces real subgraphs of G holds the statement.
- Thus we have to show $\chi(G) \leq \omega(G)$.
- If G has an independent set S, which hists all maximum cliques,
 then $\omega(G \setminus S) = \omega(G) - 1$ holds.
- Thus we get: $\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)$.
- Therefore we assume in the following, that G has not an independent set S, which hists all maximum cliques.
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that α-perfect induces χ-perfect):

- Let G be a α-perfect graph.
- We will use induction over $n = |V(G)|$.
- The statement holds clearly for $n \leq 3$. Let $n \geq 4$.
- For all induces real subgraphs of G holds the statement.
- Thus we have to show $\chi(G) \leq \omega(G)$.
- If G has an independent set S, which hists all maximum cliques,
- then $\omega(G \setminus S) = \omega(G) - 1$ holds.
- Thus we get: $\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)$.
- Therefore we assume in the following, that G has not an independent set S, which hists all maximum cliques
Theorem (Lovász)

The complement of a perfect graph is perfect.

Proof (we will show that α-perfect induces χ-perfect):

- Let G be a α-perfect graph.
- We will use induction over $n = |V(G)|$.
- The statement holds clearly for $n \leq 3$. Let $n \geq 4$.
- For all induces real subgraphs of G holds the statement.
- Thus we have to show $\chi(G) \leq \omega(G)$.
- If G has an independent set S, which hists all maximum cliques,
 then $\omega(G \setminus S) = \omega(G) - 1$ holds.
- Thus we get: $\chi(G) \leq \chi(G \setminus S) + 1 = \omega(G \setminus S) + 1 \leq \omega(G)$.
- Therefore we assume in the following, that G has not an independent set S, which hists all maximum cliques
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{S \in S \mid v_i \in C_S\}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

$$|V(H)| = \sum_{v_i \in V(G)} h_i$$
$$= \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S|$$
$$= \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S|$$
$$= \sum_{S \in S} |C_S|$$
$$= \omega(G) \cdot |S|$$
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{ S \in S \mid v_i \in C_S \}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

$$|V(H)| = \sum_{v_i \in V(G)} h_i$$

$$= \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S|$$

$$= \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S|$$

$$= \sum_{S \in S} |C_S| |S|$$

$$= \omega(G) \cdot |S|$$
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{S \in S \mid v_i \in C_S\}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

$$|V(H)| = \sum_{v_i \in V(G)} h_i$$
$$= \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S|$$
$$= \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S|$$
$$= \sum_{S \in S} |C_S|$$
$$= \omega(G) \cdot |S|$$
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{S \in S \mid v_i \in C_S\}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

\[
|V(H)| = \sum_{v_i \in V(G)} h_i \\
= \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S| \\
= \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S| \\
= \sum_{S \in S} |C_S| \\
= \omega(G) \cdot |S|
\]
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = \{|S \in S \mid v_i \in C_S\}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

$$|V(H)| = \sum_{v_i \in V(G)} h_i$$

$$= \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S|$$

$$= \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S|$$

$$= \sum_{S \in S} |C_S|$$

$$= \omega(G) \cdot |S|$$
Proof

- G has not an independent set S, which hits all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{S \in S \mid v_i \in C_S\}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

\[
|V(H)| = \sum_{v_i \in V(G)} h_i = \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S| = \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S| = \sum_{S \in S} |C_S| = \omega(G) \cdot |S|
\]
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{ S \in S \mid v_i \in C_S \}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.

Furthermore we get:

$$|V(H)| = \sum_{v_i \in V(G)} h_i$$

$$= \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S|$$

$$= \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S|$$

$$= \sum_{S \in S} |C_S|$$

$$= \omega(G) \cdot |S|$$
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{S \in S \mid v_i \in C_S\}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

\[
|V(H)| = \sum_{v_i \in V(G)} h_i \\
= \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S| \\
= \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S| \\
= \sum_{S \in S} |C_S| \\
= \omega(G) \cdot |S|
\]
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{ S \in S \mid v_i \in C_S \}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

$$|V(H)| = \sum_{v_i \in V(G)} h_i = \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S| = \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S| = \sum_{S \in S} |C_S| = \omega(G) \cdot |S|$$

$\omega(G) = \overline{\alpha}(G), \alpha(G) = \overline{\omega}(G) = \beta_0(G), \kappa(G) = \overline{\chi}(G)$
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{S \in S \mid v_i \in C_S\}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

$$|V(H)| = \sum_{v_i \in V(G)} h_i = \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S| = \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S| = \sum_{S \in S} |C_S| = \omega(G) \cdot |S|$$
Proof

- G has not an independent set S, which hists all maximum cliques.
- For each independent set S holds: $G \setminus S$ contains a clique C_S, with $C_S \cap S = \emptyset$ and $|C_S| = \omega(G)$.
- Let S be the set of independent sets in G.
- For $v_i \in V(G)$ let $h_i = |\{ S \in S \mid v_i \in C_S \}|$.
- We replace each node $v_i \in V(G)$ by an independent set of size h_i.
- This new graph H is also α-perfect.
- Furthermore we get:

$$|V(H)| = \sum_{v_i \in V(G)} h_i$$
$$= \sum_{v_i \in V(G)} \sum_{S \in S} |v_i \cap C_S|$$
$$= \sum_{S \in S} \sum_{v_i \in V(G)} |v_i \cap C_S|$$
$$= \sum_{S \in S} |C_S|$$
$$= \omega(G) \cdot |S|$$
Proof

- By Construction of H we have $\omega(H) \leq \omega(G)$.
- Then it holds (note in the following: $|T \cap C_S| \leq 1$ and $|S \cap C_S| = 0$):
 \[
 \alpha(H) = \max_{T \in S} \sum_{x_i \in T} h_i = \max_{T \in S} \sum_{S \in S} |T \cap C_S| \leq |S| - 1
 \]
- Furthermore we get:
 \[
 \kappa(H) \geq \frac{|V(H)|}{\omega(H)} = \frac{|V(H)|}{\omega(G)} = |S|.
 \]
- Thus we get the following contradiction:
 \[
 \kappa(H) \geq |S| > |S| - 1 \geq \alpha(H).
 \]
Proof

- By Construction of H we have $\omega(H) \leq \omega(G)$.
- Then it holds (note in the following: $|T \cap C_S| \leq 1$ and $|S \cap C_S| = 0$):

\[
\alpha(H) = \max_{T \in S} \sum_{x \in T} h_i \\
= \max_{T \in S} \sum_{S \in S} |T \cap C_S| \\
\leq |S| - 1
\]

- Furthermore we get:

\[
\kappa(H) \geq \frac{|V(H)|}{\omega(H)} = \frac{|V(H)|}{\omega(G)} = |S|.
\]

- Thus we get the following contradiction:

\[
\kappa(H) \geq |S| > |S| - 1 \geq \alpha(H).
\]
Proof

- By Construction of H we have $\omega(H) \leq \omega(G)$.
- Then it holds (note in the following: $|T \cap C_S| \leq 1$ and $|S \cap C_S| = 0$):
 \[
 \alpha(H) = \max_{T \in S} \sum_{x_i \in T} h_i = \max_{T \in S} \sum_{S \in S} |T \cap C_S| \leq |S| - 1
 \]
- Furthermore we get:
 \[
 \kappa(H) \geq \frac{|V(H)|}{\omega(H)} = \frac{|V(H)|}{\omega(G)} = |S|.
 \]
- Thus we get the following contradiction:
 \[
 \kappa(H) \geq |S| > |S| - 1 \geq \alpha(H).
 \]
Proof

- By Construction of H we have $\omega(H) \leq \omega(G)$.
- Then it holds (note in the following: $|T \cap CS| \leq 1$ and $|S \cap CS| = 0$):

$$\alpha(H) = \max_{T \in S} \sum_{x_i \in T} h_i$$

$$= \max_{T \in S} \sum_{S \in S} |T \cap CS|$$

$$\leq |S| - 1$$

- Furthermore we get:

$$\kappa(H) \geq \frac{|V(H)|}{\omega(H)} = \frac{|V(H)|}{\omega(G)} = |S|.$$

- Thus we get the following contradiction:

$$\kappa(H) \geq |S| > |S| - 1 \geq \alpha(H).$$
Proof

- By Construction of H we have $\omega(H) \leq \omega(G)$.
- Then it holds (note in the following: $|T \cap C_S| \leq 1$ and $|S \cap C_S| = 0$):

 $\alpha(H) = \max_T \sum_{x_i \in T} h_i$
 \[= \max_T \sum_{S \in S} |T \cap C_S| \leq |S| - 1 \]

- Furthermore we get:

 $\kappa(H) \geq \frac{|V(H)|}{\omega(H)} = \frac{|V(H)|}{\omega(G)} = |S|.$

- Thus we get the following contradiction:

 $\kappa(H) \geq |S| > |S| - 1 \geq \alpha(H).$
Proof

- By Construction of H we have $\omega(H) \leq \omega(G)$.
- Then it holds (note in the following: $|T \cap C_S| \leq 1$ and $|S \cap C_S| = 0$):

$$\alpha(H) = \max_{T \in S} \sum_{x_i \in T} h_i = \max_{T \in S} \sum_{S \in S} |T \cap C_S| \leq |S| - 1$$

- Furthermore we get:

$$\kappa(H) \geq \frac{|V(H)|}{\omega(H)} = \frac{|V(H)|}{\omega(G)} = |S|.$$

- Thus we get the following contradiction:

$$\kappa(H) \geq |S| > |S| - 1 \geq \alpha(H).$$
Proof

- By Construction of H we have $\omega(H) \leq \omega(G)$.
- Then it holds (note in the following: $|T \cap C_S| \leq 1$ and $|S \cap C_S| = 0$):

$$\alpha(H) = \max_{T \in S} \sum_{x_i \in T} h_i = \max_{T \in S} \sum_{S \in S} |T \cap C_S| \leq |S| - 1$$

- Furthermore we get:

$$\kappa(H) \geq \frac{|V(H)|}{\omega(H)} = \frac{|V(H)|}{\omega(G)} = |S|.$$

- Thus we get the following contradiction:

$$\kappa(H) \geq |S| > |S| - 1 \geq \alpha(H).$$
Proof

- By Construction of H we have $\omega(H) \leq \omega(G)$.
- Then it holds (note in the following: $|T \cap C_S| \leq 1$ and $|S \cap C_S| = 0$):

$$\alpha(H) = \max_{T \in S} \sum_{x_i \in T} h_i = \max_{T \in S} \sum_{S \in S} |T \cap C_S| \leq |S| - 1$$

- Furthermore we get:

$$\kappa(H) \geq \frac{|V(H)|}{\omega(H)} = \frac{|V(H)|}{\omega(G)} = |S|.$$

- Thus we get the following contradiction:

$$\kappa(H) \geq |S| > |S| - 1 \geq \alpha(H).$$
Definition

A graph $G = (V, E)$ is called minimal imperfect, iff it is not perfect and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem

A minimal imperfect graph is either an odd cycle of length ≥ 5 or its complement.

Theorem

The Recognition of perfect graphs is in \mathcal{P}.
Definition

A graph $G = (V, E)$ is called minimal imperfect, iff it is not perfect and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem

A minimal imperfect graph is either an odd cycle of length ≥ 5 or its complement.

Theorem

The Recognition of perfect graphs is in \mathcal{P}.
Definition
A graph $G = (V, E)$ is called minimal imperfect, iff it is not perfect and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem
A minimal imperfect graph is either an odd cycle of length ≥ 5 or its complement.

Theorem
The Recognition of perfect graphs is in \mathcal{P}.
Definition
A graph $G = (V, E)$ is called minimal imperfect, iff it is not perfect and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem
A minimal imperfect graph is either an odd cycle of length ≥ 5 or its complement.

Theorem
The Recognition of perfect graphs is in P.
Definition

A graph $G = (V, E)$ is called minimal imperfect, iff it is not perfect ist and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem

A minimal imperfect graph is either an odd cycle of length ≥ 5 or its complement.

Theorem

*The Recognition of perfect graphs is in \mathcal{P}.***
Definition

A graph $G = (V, E)$ is called minimal imperfect, iff it is not perfect ist and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem

A minimal imperfect graph is either an odd cycle of length ≥ 5 or its complement.

Theorem

The Recognition of perfect graphs is in \mathcal{P}.
Definition
A graph \(G = (V, E) \) is called minimal imperfect, iff it is not perfect in itself and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem
A minimal imperfect graph is either an odd cycle of length \(\geq 5 \) or its complement.

Theorem
The Recognition of perfect graphs is in \(\mathcal{P} \).
Definition
A graph $G = (V, E)$ is called minimal imperfect, iff it is not perfect ist and each node induced real subgraph is perfect.

Strong Perfect Graph Theorem
A minimal imperfect graph is either an odd cycle of length ≥ 5 or its complement.

Theorem
The Recognition of perfect graphs is in \mathcal{P}.
Definition

A graph G is called chordal, iff it induces no C_k for $k \geq 4$.

Note: I.e. G does not contain a C_k as induced subgraph.

Note: are sometimes also called triangulated.

Examples:

- Intervall-graphs
- Maximal outer-planar graphs
- K-trees
A graph G is called chordal, iff it induces no C_k for $k \geq 4$.

Note: I.e. G does not contain a C_k as induced subgraph.
Note: are sometimes also called triangulated.
Examples:

- Intervall-graphs
- Maximal outer-planar graphs
- K-trees
Definition

A graph G is called chordal, iff it induces no C_k for $k \geq 4$.

Note: I.e. G does not contain a C_k as induced subgraph.

Note: are sometimes also called triangulated.

Examples:
- Intervall-graphs
- Maximal outer-planar graphs
- K-trees
Definition

A graph G is called chordal, iff it induces no C_k for $k \geq 4$.

Note: I.e. G does not contain a C_k as induced subgraph.

Note: are sometimes also called triangulated.

Examples:
- Intervall-graphs
- Maximal outer-planar graphs
- K-trees
A graph G is called chordal, iff it induces no C_k for $k \geq 4$.

Note: i.e. G does not contain a C_k as induced subgraph.

Note: are sometimes also called triangulated.

Examples:

- Interval-graphs
- Maximal outer-planar graphs
- K-trees
Definition

A graph G is called chordal, iff it induces no C_k for $k \geq 4$.

Note: I.e. G does not contain a C_k as induced subgraph.

Note: are sometimes also called triangulated.

Examples:

- Intervall-graphs
- **Maximal outer-planar graphs**
- K-trees
A graph G is called chordal, iff it induces no C_k for $k \geq 4$.

Note: I.e. G does not contain a C_k as induced subgraph.
Note: are sometimes also called triangulated.
Examples:
- Intervall-graphs
- Maximal outer-planar graphs
- K-trees
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\implies):

- Let S be a inclusion minimal separator is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is shortest path P_i from u to v in H_i.
- Thus three is a cycle given by P_1 and P_2.
- There is an edges $\{u, v\}$.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\Rightarrow):
- Let S be a inclusion minimal separator is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is shortest path P_i from u to v in H_i.
- Thus three is a cycle given by P_1 and P_2.
- There is an edges $\{u, v\}$.
Theorem

A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\Longleftrightarrow):

- Let S be a inclusion minimal separator is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is shortest path P_i from u to v in H_i.
- Thus three is a cycle given by P_1 and P_2.
- There is an edges $\{u, v\}$.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\implies):

- Let S be a inclusion minimal separator is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is shortest path P_i from u to v in H_i.
- Thus three is a cycle given by P_1 and P_2.
- There is an edges $\{u, v\}$.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\Rightarrow):

- Let S be an inclusion minimal separator that is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbors in H_1 and H_2.
- Let u, v be from S.
- There is a shortest path P_i from u to v in H_i.
- Thus there is a cycle given by P_1 and P_2.
- There is an edge $\{u, v\}$.
Theorem

A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\implies):
1. Let S be a inclusion minimal separator is a clique.
2. S separates H_1 and H_2.
3. All nodes from S have neighbours in H_1 and H_2.
4. Let u, v be from S.
5. There is shortest path P_i from u to v in H_i.
6. Thus three is a cycle given by P_1 and P_2.
7. There is an edges $\{u, v\}$.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\Rightarrow):

- Let S be a inclusion minimal separator is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
 - Let u, v be from S.
 - There is shortest path P_i from u to v in H_i.
 - Thus three is a cycle given by P_1 and P_2.
 - There is an edges $\{u, v\}$.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\(\implies\)):

- Let S be a inclusion minimal separator is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is shortest path P_i from u to v in H_i.
- Thus three is a cycle given by P_1 and P_2.
- There is an edges \(\{u, v\}\).
Theorem

A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):

- Let S be a inclusion minimal separator is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is shortest path P_i from u to v in H_i.
- Thus three is a cycle given by P_1 and P_2.
- There is an edges $\{u, v\}$.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\implies):

- Let S be a inclusion minimal separator is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is shortest path P_i from u to v in H_i.
- Thus three is a cycle given by P_1 and P_2.
- There is an edges $\{u, v\}$.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\Rightarrow):

- Let S be a inclusion minimal separator that is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is shortest path P_i from u to v in H_i.
- Thus three is a cycle given by P_1 and P_2.
- There is an edge $\{u, v\}$.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\Longleftrightarrow):

- Let S be an inclusion minimal separator that is a clique.
- S separates H_1 and H_2.
- All nodes from S have neighbours in H_1 and H_2.
- Let u, v be from S.
- There is a shortest path P_i from u to v in H_i.
- Thus there is a cycle given by P_1 and P_2.
- There is an edge $\{u, v\}$.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
Theorem

A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\Longleftrightarrow):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (⇐):
- Let C be a cycle of length ≥ 4.
- Let u, v non-neighbour nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighbour nodes in C.
- If $\{u, v\} \subseteq E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
Theorem

A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):
- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.

On the other side:

- Let S be a minimal separator for u and v.
- This separator is a clique.
- This contains two other nodes from C.
- These other nodes are connected.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
Theorem

A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
Theorem

A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):
- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\Leftarrow):
- Let C be a cycle of length ≥ 4.
- Let u, v non-neighbour nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
A graph G is chordal, iff each inclusion minimal separator is a clique.

Proof (\iff):

- Let C be a cycle of length ≥ 4.
- Let u, v non-neighboured nodes in C.
- If $\{u, v\} \in E$, the statement holds.
- On the other side:
 - Let S be a minimal separator for u and v.
 - This separator is a clique.
 - This contains two other nodes from C.
 - These other nodes are connected.
Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighboured nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
- $H_i \cup S$ contains a simplicial node.
- This node is also simplicial node in G.
Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighboured nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
- $H_i \cup S$ contains a simplicial node.
- This node is also simplicial node in G.
Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighboured nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
- $H_i \cup S$ contains a simplicial node.
- This node is also simplicial node in G.

u

v
A node is called simplicial, iff all its neighbours induce a complete subgraph.

Each clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

Proof by induction. (Statement holds for $|V| \leq 3$.)
1. Let u, v be two non-neighbours.
2. Identify a minimal separator S for u, v.
3. $G - S$ splits into components H_i, with $i \geq 2$.
4. S is a clique.
5. $H_i \cup S$ contains a simplicial node.
6. This node is also simplicial node in G.
Simplicial Nodes

Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighboured nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
- $H_i \cup S$ contains a simplicial node.
- This node is also simplicial node in G.

![Diagram showing simplicial nodes and minimal separator](image.png)
Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

Proof by induction. (Statement holds for $|V| \leq 3$.)

- Let u, v be two non-neighbour nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
- $H_i \cup S$ contains a simplicial node.
- This node is also simplicial node in G.

\[
\begin{array}{c}
H_1 \\
H_2 \\
S \\
C_1 \quad C_2 \quad C_3
\end{array}
\]
Simplicial Nodes

Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- **Proof by induction.** (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighboured nodes.
 - Identify a minimal separator S for u, v.
 - $G - S$ splits into components H_i, with $i \geq 2$.
 - S is a clique.
 - $H_i \cup S$ contains a simplicial node.
 - This node is also simplicial node in G.

![Diagram](image)
Simplicial Nodes

Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighboured nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
- $H_i \cup S$ contains a simplicial node.
- This node is also simplicial node in G.
Simplicial Nodes

Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighbour nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
- $H_i \cup S$ contains a simplicial node.
- This node is also simplicial node in G.
Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighboured nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
 - $H_i \cup S$ contains a simplicial node.
 - This node is also simplicial node in G.
Definition
A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem
Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for $|V| \leq 3$.)
- Let u, v be two non-neighboured nodes.
- Identify a minimal separator S for u, v.
- $G - S$ splits into components H_i, with $i \geq 2$.
- S is a clique.
- $H_i \cup S$ contains a simplicial node.
- This node is also simplicial node in G.
Simplicial Nodes

Definition
A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem
Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

- Proof by induction. (Statement holds for \(|V| \leq 3\).)
- Let \(u, v\) be two non-neighboured nodes.
- Identify a minimal separator \(S\) for \(u, v\).
- \(G - S\) splits into components \(H_i\), with \(i \geq 2\).
- \(S\) is a clique.
- \(H_i \cup S\) contains a simplicial node.
- This node is also simplicial node in \(G\).
Simplicial Nodes

Definition

A node is called simplicial, iff all its neighbours induce a complete subgraph.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

Proof by induction. (Statement holds for $|V| \leq 3$.)

Let u, v be two non-neighboured nodes.

Identify a minimal separator S for u, v.

$G - S$ splits into components H_i, with $i \geq 2$.

S is a clique.

$H_i \cup S$ contains a simplicial node.

This node is also simplicial node in G.
Chordal graphs and their complements are perfect.

Proof (just using chordal graphs):
- By induction.
- Let G be no clique.
- Then contains G a separating clique C.
- $G - C$ splits into components H_i, with $i \geq 2$.
- $H_i \cup C$ are perfect.
- Thus G is perfect.

Proof (using the complement of chordal graphs):
- Identify clique in G, which hists all independent sets.
- Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Theorem

Chordal graphs and their complements are perfect.

- Proof (just using chordal graphs):
 - By induction.
 - Let G be no clique.
 - Then contains G a separating clique C.
 - $G - C$ splits into components H_i, with $i \geq 2$.
 - $H_i \cup C$ are perfect.
 - Thus G is perfect.

- Proof (using the complement of chordal graphs):
 - Identify clique in G, which hists all independent sets.
 - Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Theorem

Chordal graphs and their complements are perfect.

Proof (just using chordal graphs):

- **By induction.**
 - Let G be no clique.
 - Then contains G a separating clique C.
 - $G - C$ splits into components H_i, with $i \geq 2$.
 - $H_i \cup C$ are perfect.
 - Thus G is perfect.

Proof (using the complement of chordal graphs):

- Identify clique in G, which hists all independent sets.
- Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Chordal graphs and their complements are perfect.

Proof (just using chordal graphs):
- By induction.
- **Let G be no clique.**
 - Then contains G a separating clique C.
 - $G - C$ splits into components H_i, with $i \geq 2$.
 - $H_i \cup C$ are perfect.
 - Thus G is perfect.

Proof (using the complement of chordal graphs):
- Identify clique in G, which hist all independent sets.
- Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Theorem

Chordal graphs and their complements are perfect.

- **Proof (just using chordal graphs):**
 - By induction.
 - Let G be no clique.
 - Then contains G a separating clique C.
 - $G - C$ splits into components H_i, with $i \geq 2$.
 - $H_i \cup C$ are perfect.
 - Thus G is perfect.

- **Proof (using the complement of chordal graphs):**
 - Identify clique in G, which histo all independent sets.
 - Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Theorem

Chordal graphs and their complements are perfect.

- **Proof (just using chordal graphs):**
 - By induction.
 - Let G be no clique.
 - Then contains G a separating clique C.
 - $G - C$ splits into components H_i, with $i \geq 2$.
 - $H_i \cup C$ are perfect.
 - Thus G is perfect.

- **Proof (using the complement of chordal graphs):**
 - Identify clique in G, which holds all independent sets.
 - Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Theorem

Chordal graphs and their complements are perfect.

Proof (just using chordal graphs):
- By induction.
- Let G be no clique.
- Then contains G a separating clique C.
- $G - C$ splits into components H_i, with $i \geq 2$.
- $H_i \cup C$ are perfect.
- Thus G is perfect.

Proof (using the complement of chordal graphs):
- Identify clique in G, which hists all independent sets.
- Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Theorem

Chordal graphs and their complements are perfect.

Proof (just using chordal graphs):
- By induction.
- Let G be no clique.
- Then contains G a separating clique C.
- $G - C$ splits into components H_i, with $i \geq 2$.
- $H_i \cup C$ are perfect.
- Thus G is perfect.

Proof (using the complement of chordal graphs):
- Identify clique in G, which hists all independent sets.
- Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Chordal graphs and their complements are perfect.

Proof (just using chordal graphs):
- By induction.
- Let G be no clique.
- Then contains G a separating clique C.
- $G - C$ splits into components H_i, with $i \geq 2$.
- $H_i \cup C$ are perfect.
- Thus G is perfect.

Proof (using the complement of chordal graphs):
- Identify clique in G, which hists all independent sets.
- Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Theorem

Chordal graphs and their complements are perfect.

Proof (just using chordal graphs):
- By induction.
- Let G be no clique.
- Then contains G a separating clique C.
- $G - C$ splits into components H_i, with $i \geq 2$.
- $H_i \cup C$ are perfect.
- Thus G is perfect.

Proof (using the complement of chordal graphs):
- Identify clique in G, which hists all independent sets.
- Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Statements

Theorem

Chordal graphs and their complements are perfect.

Proof (just using chordal graphs):
- By induction.
- Let G be no clique.
- Then contains G a separating clique C.
- $G - C$ splits into components H_i, with $i \geq 2$.
- $H_i \cup C$ are perfect.
- Thus G is perfect.

Proof (using the complement of chordal graphs):
- Identify clique in G, which hists all independent sets.
- Choose simplicial node s, i.e. $C = \{s\} \cup \Gamma(s)$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[[\{u \in V \mid \rho(u) \geq \rho(v)\}]]$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.

![Diagram of a perfect node-elimination scheme](image-url)
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G\{u \in V \mid \rho(u) \geq \rho(v)\}$.
Definition
Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.

\begin{figure}
\centering
\begin{tikzpicture}
 \tikzset{vertex/.style={shape=circle,draw,minimum size=1cm}}
 \node[vertex] (v0) at (0,0) {v_0};
 \node[vertex] (v1) at (1,0) {v_1};
 \node[vertex] (v2) at (2,0) {v_2};
 \node[vertex] (v3) at (3,0) {v_3};
 \node[vertex] (v4) at (4,0) {v_4};
 \node[vertex] (v5) at (5,0) {v_5};
 \node[vertex] (v6) at (6,0) {v_6};
 \node[vertex] (v7) at (7,0) {v_7};
 \node[vertex] (v8) at (8,0) {v_8};
 \node[vertex] (v9) at (9,0) {v_9};

 \draw (v0) -- (v1);
 \draw (v1) -- (v2);
 \draw (v2) -- (v3);
 \draw (v3) -- (v4);
 \draw (v4) -- (v5);
 \draw (v5) -- (v6);
 \draw (v6) -- (v7);
 \draw (v7) -- (v8);
 \draw (v8) -- (v9);
\end{tikzpicture}
\end{figure}
Definition

Let \(G = (V, E) \) be a graph with \(|V| = n\). A total ordering \(\rho : V \mapsto \{1, \ldots, n\} \) is called perfect node-elimination scheme, iff each node \(v \) is a simplicial node in \(G[\{u \in V \mid \rho(u) \geq \rho(v)\}] \).
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[[u \in V \mid \rho(u) \geq \rho(v)]]$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[[u \in V \mid \rho(u) \geq \rho(v)]]$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \rightarrow \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G\{u \in V \mid \rho(u) \geq \rho(v)\}$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.

![Diagram of a chordal graph with a perfect node-elimination scheme]
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.
Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{ u \in V \mid \rho(u) \geq \rho(v) \}]$.
A graph is chordal, iff it has a PES.

Show: \(\Leftarrow\).
- Let \(C\) be a cycle in \(G\).
- Let \(u\) be the first node in \(C\) under the ordering \(\rho\).
- Thus the neighbours of \(u\) are connected.
- Thus \(G\) is chordal.

Show: \(\Rightarrow\).
- Choose simplicial node \(v\) and let \(\rho(v) = 1\).
- Compute recursively more nodes of \(G - v\).
Theorem

A graph is chordal, iff it has a PES.

Show: \Leftarrow.
- Let C be a cycle in G.
- Let u be the first node in C under the ordering ρ.
- Thus the neighbours of u are connected.
- Thus G is chordal.

Show: \Rightarrow.
- Choose simplicial node v and let $\rho(v) = 1$.
- Compute recursively more nodes of $G - v$.

Diagram:

A cycle C with nodes $v_0, v_1, u, v_3, v_4, v_5, v_6, v_7, v_8, v_9$. Node u is the first node in the cycle under the ordering ρ. The cycle is represented with green lines connecting the nodes.
Theorem

A graph is chordal, iff it has a PES.

Show: \Leftarrow.

- Let C be a cycle in G.
- Let u be the first node in C under the ordering ρ.
- Thus the neighbours of u are connected.
- Thus G is chordal.

Show: \Rightarrow.

- Choose simplicial node v and let $\rho(v) = 1$.
- Compute recursively more nodes of $G - v$.

Diagram

A cycle C in a graph G, starting at node u, with its neighbours connected. The cycle includes nodes $0, 1, 3, 4, 5, 6, 7, 8, 9$. The cycle is highlighted with green lines, and the simplicial node v is labeled with a red line.
A graph is chordal, iff it has a PES.

Show: \(\iff \).

- Let \(C \) be a cycle in \(G \).
- Let \(u \) be the first node in \(C \) under the ordering \(\rho \).
- Thus the neighbours of \(u \) are connected.
- Thus \(G \) is chordal.

Show: \(\Rightarrow \).

- Choose simplicial node \(v \) und let \(\rho(v) = 1 \).
- Compute recursively more nodes of \(G - v \).
A graph is chordal, iff it has a PES.

Show: \iff.

- Let C be a cycle in G.
- Let u be the first node in C under the ordering ρ.
- Thus the neighbours of u are connected.
- Thus G is chordal.

Show: \implies.

- Choose simplicial node v and let $\rho(v) = 1$.
- Compute recursively more nodes of $G - v$.

![Diagram of a chordal graph with nodes and edges representing the proof steps.](attachment:diagram.png)
Theorem

A graph is chordal, iff it has a PES.

Show: \iff.

- Let C be a cycle in G.
- Let u be the first node in C under the ordering ρ.
- Thus the neighbours of u are connected.
- Thus G is chordal.

Show: \implies.

- Choose simplicial node v and let $\rho(v) = 1$.
- Compute recursively more nodes of $G - v$.

\[\begin{array}{cccccccccc}
0 & 1 & u & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array} \]
Chordal Graphs and PES

Theorem

A graph is chordal, iff it has a PES.

Show: \iff.

- Let C be a cycle in G.
- Let u be the first node in C under the ordering ρ.
- Thus the neighbours of u are connected.
- Thus G is chordal.

Show: \implies.

- Choose simplicial node v and let $\rho(v) = 1$.
- Compute recursively more nodes of $G - v$.
A graph is chordal, iff it has a PES.

Show: \iff.

- Let C be a cycle in G.
- Let u be the first node in C under the ordering ρ.
- Thus the neighbours of u are connected.
- Thus G is chordal.

Show: \implies.

- Choose simplicial node v and let $\rho(v) = 1$.
- Compute recursively more nodes of $G - v$.
Theorem

\textit{A graph is chordal, iff it has a PES.}

Show: \iff.

- Let C be a cycle in G.
- Let u be the first node in C under the ordering ρ.
- Thus the neighbours of u are connected.
- Thus G is chordal.

Show: \implies.

- Choose simplicial node v and let $\rho(v) = 1$.
- Compute recursively more nodes of $G - v$.
Chordal Graphs and PES

Theorem

A graph is chordal, iff it has a PES.

Show: \Leftarrow.

- Let C be a cycle in G.
- Let u be the first node in C under the ordering ρ.
- Thus the neighbours of u are connected.
- Thus G is chordal.

Show: \Rightarrow.

- Choose simplicial node v und let $\rho(v) = 1$.
- Compute recursively more nodes of $G - v$.
Theorems

Chordal graphs could be recognized in polynomial time.

Proof: determine a PES (on the next slides).

Chordal graphs could be recognized in time $O(n^2 \cdot m)$.

Chordal graphs could be recognized in time $O(n + m)$.

Theorem

Chordal graphs could be recognized in polynomial time.

Proof: determine a PES (on the next slides).

Theorem

Chordal graphs could be recognized in time $O(n^2 \cdot m)$.

Theorem

Chordal graphs could be recognized in time $O(n + m)$.
Theorems

1. Chordal graphs could be recognized in polynomial time.

Proof: determine a PES (on the next slides).

2. Chordal graphs could be recognized in time $O(n^2 \cdot m)$.

3. Chordal graphs could be recognized in time $O(n + m)$.
Theorem

Chordal graphs could be recognized in polynomial time.

Proof: determine a PES (on the next slides).

Theorem

Chordal graphs could be recognized in time $O(n^2 \cdot m)$.

Theorem

Chordal graphs could be recognized in time $O(n + m)$.
Theorem

Chordal graphs could be recognized in polynomial time.

Proof: determine a PES (on the next slides).

Theorem

Chordal graphs could be recognized in time $O(n^2 \cdot m)$.

Theorem

Chordal graphs could be recognized in time $O(n + m)$.
Theorem

Chordal graphs could be recognized in polynomial time.

Proof: determine a PES (on the next slides).

Theorem

Chordal graphs could be recognized in time $O(n^2 \cdot m)$.

Theorem

Chordal graphs could be recognized in time $O(n + m)$.
Overview and Simple Algorithm

- **Compute an ordering for \(G \).**
 - Compute this ordering simply by using the node degrees.
 - Show that this ordering is always a PES, if \(G \) is chordal.

We will get the following algorithm:
- **Compute ordering using the node degrees.**
- **Test if this ordering is a PES.**

Simple Algorithm:
- **Compute the PES in a reverse fashion.**
- **Start with an arbitrary node \(v_n \).**
- **Choose \(v_{i-1} \) such that \(v_{i-1} \) is connected to as many as possible nodes from \(v_i, v_{i+1}, \ldots, v_n \).**
- **Show \(v_1, v_2, \ldots, v_n \) is a PES.**
Overview and Simple Algorithm

- Compute an ordering for G.
- **Compute this ordering simply by using the node degrees.**
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.
- **Simple Algorithm:**
 - Compute the PES in a reverse fashion.
 - Start with an arbitrary node v_n.
 - Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
 - Show v_1, v_2, \ldots, v_n is a PES.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:
- Compute the PES in a reverse fashion.
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:
- Compute the PES in a reverse fashion.
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:
- Compute the PES in a reverse fashion.
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:
- Compute the PES in a reverse fashion.
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:
- Compute the PES in a reverse fashion.
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:
- **Compute the PES in a reverse fashion.**
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:
- Compute the PES in a reverse fashion.
 - **Start with an arbitrary node** v_n.
 - Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
 - Show v_1, v_2, \ldots, v_n is a PES.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:
- Compute the PES in a reverse fashion.
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.
Overview and Simple Algorithm

- Compute an ordering for G.
- Compute this ordering simply by using the node degrees.
- Show that this ordering is always a PES, if G is chordal.
- We will get the following algorithm:
 - Compute ordering using the node degrees.
 - Test if this ordering is a PES.

Simple Algorithm:
- Compute the PES in a reverse fashion.
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that v_{i-1} is connected to as many as possible nodes from $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.
Lemma

A total ordering ρ on V is a PES, iff for all pairs of nodes v_i, v_j, which are connected by a path, for which for all inner nodes u $\rho(u) < \min(\rho(v_i), \rho(v_j))$ holds, then follows that these nodes v_i, v_j are connected by an edge.

- Proof \implies by contradiction.
- Let v_i, v_j be as above with $\{v_i, v_j\} \notin E$.
- Let P the shortest path from v_i to v_j and let u be the leftmost node from P in ρ.
- The neighbours of u on P are connected by an edge.
- Contradiction to the minimality of the path P.

- Proof \Leftarrow is simple.
Lemma

A total ordering \(\rho \) on \(V \) is a PES, iff for all pairs of nodes \(v_i, v_j \), which are connected by a path, for which for all inner nodes \(u \) \(\rho(u) < \min(\rho(v_i), \rho(v_j)) \) holds, then follows that these nodes \(v_i, v_j \) are connected by an edge.

- Proof \(\implies \) by contradiction.
- Let \(v_i, v_j \) be as above with \(\{v_i, v_j\} \notin E \).
- Let \(P \) the shortest path from \(v_i \) to \(v_j \) and let \(u \) be the leftmost node from \(P \) in \(\rho \).
- The neighbours of \(u \) on \(P \) are connected by an edge.
- Contradiction to the minimality of the path \(P \).

- Proof \(\iff \) is simple.
Helpfull Lemma

Lemma

A total ordering ρ on V is a PES, iff for all pairs of nodes v_i, v_j, which are connected by a path, for which for all inner nodes u, $\rho(u) < \min(\rho(v_i), \rho(v_j))$ holds, then follows that these nodes v_i, v_j are connected by an edge.

- Proof \implies by contradiction.
- Let v_i, v_j be as above with $\{v_i, v_j\} \notin E$.
- Let P the shortest path from v_i to v_j and let u be the leftmost node from P in ρ.
- The neighbours of u on P are connected by an edge.
- Contradiction to the minimality of the path P.

- Proof \iff is simple.
Lemma

A total ordering \(\rho \) on \(V \) is a PES, iff for all pairs of nodes \(v_i, v_j \), which are connected by a path, for which for all inner nodes \(u \) \(\rho(u) < \min(\rho(v_i), \rho(v_j)) \) holds, then follows that these nodes \(v_i, v_j \) are connected by an edge.

- Proof \(\implies \) by contradiction.
 - Let \(v_i, v_j \) be as above with \(\{v_i, v_j\} \notin E \).
 - Let \(P \) the shortest path from \(v_i \) to \(v_j \) and let \(u \) be the leftmost node from \(P \) in \(\rho \).
 - The neighbours of \(u \) on \(P \) are connected by an edge.
 - Contradiction to the minimality of the path \(P \).

- Proof \(\impliedby \) is simple.
Helpfull Lemma

Lemma

A total ordering ρ on V is a PES, iff for all pairs of nodes v_i, v_j, which are connected by a path, for which for all inner nodes u $\rho(u) < \min(\rho(v_i), \rho(v_j))$ holds, then follows that these nodes v_i, v_j are connected by an edge.

- Proof \implies by contradiction.
- Let v_i, v_j be as above with $\{v_i, v_j\} \notin E$.
- Let P the shortest path from v_i to v_j and let u be the leftmost node from P in ρ.
- The neighbours of u on P are connected by an edge.
- Contradiction to the minimality of the path P.

- Proof \impliedby is simple.
Lemma

A total ordering ρ on V is a PES, iff for all pairs of nodes v_i, v_j, which are connected by a path, for which for all inner nodes $u \rho(u) < \min(\rho(v_i), \rho(v_j))$ holds, then follows that these nodes v_i, v_j are connected by an edge.

Proof \implies by contradiction.

Let v_i, v_j be as above with $\{v_i, v_j\} \notin E$.

Let P the shortest path from v_i to v_j and let u be the leftmost node from P in ρ.

The neighbours of u on P are connected by an edge.

Contradiction to the minimality of the path P.

Proof \impliedby is simple.
Helpful Lemma

Lemma

A total ordering ρ on V is a PES, iff for all pairs of nodes v_i, v_j, which are connected by a path, for which for all inner nodes u $\rho(u) < \min(\rho(v_i), \rho(v_j))$ holds, then follows that these nodes v_i, v_j are connected by an edge.

- Proof \implies by contradiction.
 - Let v_i, v_j be as above with $\{v_i, v_j\} \notin E$.
 - Let P the shortest path from v_i to v_j and let u be the leftmost node from P in ρ.
 - The neighbours of u on P are connected by an edge.
 - Contradiction to the minimality of the path P.

- Proof \impliedby is simple.
A total ordering \(\rho \) on \(V \) is a PES, iff for all pairs of nodes \(v_i, v_j \), which are connected by a path, for which for all inner nodes \(u \) \(\rho(u) < \min(\rho(v_i), \rho(v_j)) \) holds, then follows that these nodes \(v_i, v_j \) are connected by an edge.

- **Proof \(\Rightarrow \)** by contradiction.
 - Let \(v_i, v_j \) be as above with \(\{v_i, v_j\} \notin E \).
 - Let \(P \) the shortest path from \(v_i \) to \(v_j \) and let \(u \) be the leftmost node from \(P \) in \(\rho \).
 - The neighbours of \(u \) on \(P \) are connected by an edge.
 - Contradiction to the minimality of the path \(P \).

- **Proof \(\Leftarrow \)** is simple.
A total ordering \(\rho \) on \(V \) is a PES, iff for all pairs of nodes \(v_i, v_j \), which are connected by a path, for which for all inner nodes \(u \) \(\rho(u) < \min(\rho(v_i), \rho(v_j)) \) holds, then follows that these nodes \(v_i, v_j \) are connected by an edge.

- Proof \(\implies \) by contradiction.
- Let \(v_i, v_j \) be as above with \(\{v_i, v_j\} \notin E \).
- Let \(P \) the shortest path from \(v_i \) to \(v_j \) and let \(u \) be the leftmost node from \(P \) in \(\rho \).
- The neighbours of \(u \) on \(P \) are connected by an edge.
- Contradiction to the minimality of the path \(P \).

Proof \(\iff \) is simple.
Lemma

A total ordering ρ on V is a PES, iff for all pairs of nodes v_i, v_j, which are connected by a path, for which for all inner nodes u $\rho(u) < \min(\rho(v_i), \rho(v_j))$ holds, then follows that these nodes v_i, v_j are connected by an edge.

Proof \implies by contradiction.

Let v_i, v_j be as above with $\{v_i, v_j\} \notin E$.

Let P the shortest path from v_i to v_j and let u be the leftmost node from P in ρ.

The neighbours of u on P are connected by an edge.

Contradiction to the minimality of the path P.

Proof \impliedby is simple.
A total ordering ρ on V is a PES, iff for all pairs of nodes v_i, v_j, which are connected by a path, for which for all inner nodes $u \rho(u) < \min(\rho(v_i), \rho(v_j))$ holds, then follows that these nodes v_i, v_j are connected by an edge.

- Proof \implies by contradiction.
- Let v_i, v_j be as above with $\{v_i, v_j\} \notin E$.
- Let P the shortest path from v_i to v_j and let u be the leftmost node from P in ρ.
- The neighbours of u on P are connected by an edge.
- Contradiction to the minimality of the path P.

Proof \impliedby is simple.
A total ordering ρ on V is a PES, iff for all pairs of nodes v_i, v_j, which are connected by a path, for which for all inner nodes u $\rho(u) < \min(\rho(v_i), \rho(v_j))$ holds, then follows that these nodes v_i, v_j are connected by an edge.

Proof \Rightarrow by contradiction.

Let v_i, v_j be as above with $\{v_i, v_j\} \notin E$.

Let P the shortest path from v_i to v_j and let u be the leftmost node from P in ρ.

The neighbours of u on P are connected by an edge.

Contradiction to the minimality of the path P.

Proof \Leftarrow is simple.
A total ordering \(\rho \) on \(V \) is a PES, iff for all pairs of nodes \(v_i, v_j \), which are connected by a path, for which for all inner nodes \(u \) \(\rho(u) < \min(\rho(v_i), \rho(v_j)) \) holds, then follows that these nodes \(v_i, v_j \) are connected by an edge.

- Proof \(\Rightarrow \) by contradiction.
- Let \(v_i, v_j \) be as above with \(\{v_i, v_j\} \notin E \).
- Let \(P \) the shortest path from \(v_i \) to \(v_j \) and let \(u \) be the leftmost node from \(P \) in \(\rho \).
- The neighbours of \(u \) on \(P \) are connected by an edge.
- Contradiction to the minimality of the path \(P \).

- Proof \(\Leftarrow \) is simple.
Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

- Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with
- $\{u, w\} \in E$ and $\{v, w\} \not\in E$.
- Then there is a node z with:
 - $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.
Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

- Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with
- $\{u, w\} \in E$ and $\{v, w\} \notin E$.
- Then there is a node z with:
 - $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.
Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

- Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with
- $\{u, w\} \in E$ and $\{v, w\} \not\in E$.
- Then there is a node z with:
 - $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.
The simple algorithm computes for chordal graphs a PES.

Claim

- Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with
 - $\{u, w\} \in E$ and $\{v, w\} \notin E$.
- Then there is a node z with:
 - $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.
Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

Assume \(\rho(u) < \rho(v) < \rho(w) \) holds, with
- \(\{u, w\} \in E \) and \(\{v, w\} \notin E \).
- Then there is a node \(z \) with:
 - \(\rho(v) < \rho(z) \), \(\{u, z\} \notin E \) and \(\{v, z\} \in E \).

Proof:

- Holds due to the chosen ordering.
- \(v \) has at least as many neighbours as \(u \).
Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with $\{u, w\} \in E$ and $\{v, w\} \notin E$.

Then there is a node z with:

- $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.
Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

- Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with
- $\{u, w\} \in E$ and $\{v, w\} \not\in E$.
- Then there is a node z with:
 - $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.
Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

- Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with
- $\{u, w\} \in E$ and $\{v, w\} \notin E$.
- Then there is a node z with:
- $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.
Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

- Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with
- $\{u, w\} \in E$ and $\{v, w\} \not\in E$.
- Then there is a node z with:
- $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.

![Diagram](attachment:diagram.png)
Recognition

Theorem

The simple algorithm computes for chordal graphs a PES.

Claim

- Assume $\rho(u) < \rho(v) < \rho(w)$ holds, with
- $\{u, w\} \in E$ and $\{v, w\} \notin E$.
- Then there is a node z with:
 - $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.

Proof:

- Holds due to the chosen ordering.
- v has at least as many neighbours as u.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \not\in E$ and
- for all inner nodes u on the path P of v, w holds:
 $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, \(\rho \) defines a PES)

1. Assume that this does not hold:
2. There are \(v, w \) with \(\{v, w\} \not\in E \) and
3. for all inner nodes \(u \) on the path \(P \) of \(v, w \) holds:
 - \(\rho(u) < \min(\rho(v), \rho(w)) \).
4. Choose \(\rho(w) \) maximal and after that \(\rho(v) \) maximal.
5. Choose shortest path \(P \) from \(w \) to \(v \).
6. This path contains inner node \(u \).

- There exists \(z \) with: \(\rho(v) \prec \rho(z) \), \(\{u, z\} \not\in E \) and \(\{v, z\} \in E \).
- Therefore is \(w \) with \(z \) connected by a path.
- Because of the choosing of \(v \) and \(w \) holds \(\{z, w\} \in E \).
- There is a cycle traversing \(P \), \(\{v, z\} \) and \(\{z, w\} \).
- Choose the shortest path between \(u \) and \(v \).
- Thus we have a non chordal cycle containing \(\geq 4 \) nodes.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
 - There are v, w with $\{v, w\} \not\in E$ and
 - for all inner nodes u on the path P of v, w holds:
 - $\rho(u) < \min(\rho(v), \rho(w))$.
 - Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
 - Choose shortest path P from w to v.
 - This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \not\in E$ and
- for all inner nodes u on the path P of v, w holds:
 - $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \not\in E$ and
- for all inner nodes u on the path P of v, w holds:
 - $\rho(u) < \min(\rho(v), \rho(w))$.
 - Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
 - Choose shortest path P from w to v.
 - This path contains inner node u.
- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \not\in E$ and
- for all inner nodes u on the path P of v, w holds:
 - $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \notin E$ and
- for all inner nodes u on the path P of v, w holds:
 - $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.
Therefore is w with z connected by a path.
Because of the choosing of v and w holds $\{z, w\} \in E$.
There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
Choose the shortest path between u and v.
Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, \(\rho \) defines a PES)

- Assume that this does not hold:
- There are \(v, w \) with \(\{v, w\} \notin E \) and
- for all inner nodes \(u \) on the path \(P \) of \(v, w \) holds:
 - \(\rho(u) < \min(\rho(v), \rho(w)) \).
- Choose \(\rho(w) \) maximal and after that \(\rho(v) \) maximal.
- Choose shortest path \(P \) from \(w \) to \(v \).
- This path contains inner node \(u \).

- There exists \(z \) with: \(\rho(v) < \rho(z) \), \(\{u, z\} \notin E \) and \(\{v, z\} \in E \).
- Therefore is \(w \) with \(z \) connected by a path.
- Because of the choosing of \(v \) and \(w \) holds \(\{z, w\} \in E \).
- There is a cycle traversing \(P \), \(\{v, z\} \) and \(\{z, w\} \).
- Choose the shortest path between \(u \) and \(v \).
- Thus we have a non chordal cycle containing \(\geq 4 \) nodes.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \not\in E$ and
- for all inner nodes u on the path P of v, w holds:
 - $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \notin E$ and
- for all inner nodes u on the path P of v, w holds:
- $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \notin E$ and
- for all inner nodes u on the path P of v, w holds:
 $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \notin E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, ρ defines a PES)

Assume that this does not hold:
- There are v, w with $\{v, w\} \not\in E$ and
- for all inner nodes u on the path P of v, w holds:
 - $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Assume that this does not hold:
- There are v, w with $\{v, w\} \not\in E$ and
- for all inner nodes u on the path P of v, w holds:
 $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Show, ρ defines a PES)

- Assume that this does not hold:
- There are v, w with $\{v, w\} \not\in E$ and
- for all inner nodes u on the path P of v, w holds:
 - $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

- There exists z with: $\rho(v) < \rho(z)$, $\{u, z\} \not\in E$ and $\{v, z\} \in E$.
- Therefore is w with z connected by a path.
- Because of the choosing of v and w holds $\{z, w\} \in E$.
- There is a cycle traversing P, $\{v, z\}$ and $\{z, w\}$.
- Choose the shortest path between u and v.
- Thus we have a non chordal cycle containing ≥ 4 nodes.
Assume that this does not hold:
- There are \(v, w \) with \(\{v, w\} \not\in E \) and
- for all inner nodes \(u \) on the path \(P \) of \(v, w \) holds:
 - \(\rho(u) < \min(\rho(v), \rho(w)) \).
- Choose \(\rho(w) \) maximal and after that \(\rho(v) \) maximal.
- Choose shortest path \(P \) from \(w \) to \(v \).
- This path contains inner node \(u \).

There exists \(z \) with: \(\rho(v) < \rho(z) \), \(\{u, z\} \not\in E \) and \(\{v, z\} \in E \).
- Therefore is \(w \) with \(z \) connected by a path.
- Because of the choosing of \(v \) and \(w \) holds \(\{z, w\} \in E \).
- There is a cycle traversing \(P \), \(\{v, z\} \) and \(\{z, w\} \).
- Choose the shortest path between \(u \) and \(v \).
- Thus we have a non chordal cycle containing \(\geq 4 \) nodes.
Assume that this does not hold:
- There are v, w with $\{v, w\} \notin E$ and for all inner nodes u on the path P of v, w holds:
- $\rho(u) < \min(\rho(v), \rho(w))$.
- Choose $\rho(w)$ maximal and after that $\rho(v)$ maximal.
- Choose shortest path P from w to v.
- This path contains inner node u.

There exists z with: $\rho(v) < \rho(z), \{u, z\} \notin E$ and $\{v, z\} \in E$.

Therefore is w with z connected by a path.

Because of the choosing of v and w holds $\{z, w\} \in E$.

There is a cycle traversing $P, \{v, z\}$ and $\{z, w\}$.

Choose the shortest path between u and v.

Thus we have a non chordal cycle containing ≥ 4 nodes.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- **Test of the clique property may be done just by using data from the leftmost node of the clique.**
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.
Test of the clique property may be done just by using data from the leftmost node of the clique.
Therefore the edges are considered only once.
Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.

Test of the clique property may be done just by using data from the leftmost node of the clique.

Therefore the edges are considered only once.

Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.
Test of the clique property may be done just by using data from the leftmost node of the clique.
Therefore the edges are considered only once.
Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.
Test of the clique property may be done just by using data from the leftmost node of the clique.
Therefore the edges are considered only once.
Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.

Test of the clique property may be done just by using data from the leftmost node of the clique.

Therefore the edges are considered only once.

Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.

Test of the clique property may be done just by using data from the leftmost node of the clique.

Therefore the edges are considered only once.

Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.

Test of the clique property may be done just by using data from the leftmost node of the clique.

Therefore the edges are considered only once.

Thus the recognition could be done in linear time.
The test of the clique property may be more consuming. Test of the clique property may be done just by using data from the leftmost node of the clique. Therefore the edges are considered only once. Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.
Test of the clique property may be done just by using data from the leftmost node of the clique.
Therefore the edges are considered only once.
Thus the recognition could be done in linear time.
Recognition (Running Time)

- The test of the clique property may be more consuming.
- Test of the clique property may be done just by using data from the leftmost node of the clique.
- Therefore the edges are considered only once.
- Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.
Test of the clique property may be done just by using data from the leftmost node of the clique.
Therefore the edges are considered only once.
Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.
Test of the clique property may be done just by using data from the leftmost node of the clique.
Therefore the edges are considered only once.
Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.
Test of the clique property may be done just by using data from the leftmost node of the clique.
Therefore the edges are considered only once.
Thus the recognition could be done in linear time.
The test of the clique property may be more consuming.
Test of the clique property may be done just by using data from the leftmost node of the clique.
Therefore the edges are considered only once.
Thus the recognition could be done in linear time.
Test PES Property

- **The algorithm:**
 - Start with an arbitrary node v_n.
 - Choose v_{i-1} such that is connected with as many as possible nodes $v_i, v_{i+1}, \ldots, v_n$.
 - Show v_1, v_2, \ldots, v_n is a PES.

- What is necessary to compute the ordering:
 - $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$
 - $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$

- What is necessary to do the following test:
 - Test $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$ induces a clique.
The algorithm:

- Start with an arbitrary node \(v_n \).
- Choose \(v_{i-1} \) such that is connected with as many as possible nodes \(v_i, v_{i+1}, \ldots, v_n \).
- Show \(v_1, v_2, \ldots, v_n \) is a PES.

What is necessary to compute the ordering:

- \(N_i = \{ v_j \in \Gamma(v_i) \mid j > i \} \)
- \(R_i = |\{ v_j \in \Gamma(v_i) \mid j > i \}| \)

What is necessary to do the following test:

- Test \(N_i = \{ v_j \in \Gamma(v_i) \mid j > i \} \) induces a clique.
Test PES Property

- The algorithm:
 - Start with an arbitrary node v_n.
 - Choose v_{i-1} such that is connected with as many as possible nodes $v_i, v_{i+1}, \ldots, v_n$.
 - Show v_1, v_2, \ldots, v_n is a PES.

- What is necessary to compute the ordering:
 - $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$
 - $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$

- What is necessary to do the following test:
 - Test $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$ induces a clique.
The algorithm:
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that is connected with as many as possible nodes $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.

What is necessary to compute the ordering:
- $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$
- $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$

What is necessary to do the following test:
- Test $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$ induces a clique.
Test PES Property

- The algorithm:
 - Start with an arbitrary node v_n.
 - Choose v_{i-1} such that is connected with as many as possible nodes $v_i, v_{i+1}, \ldots, v_n$.
 - Show v_1, v_2, \ldots, v_n is a PES.

- What is necessary to compute the ordering:
 - $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$
 - $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$

- What is necessary to do the following test:
 - Test $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$ induces a clique.
Test PES Property

- The algorithm:
 - Start with an arbitrary node \(v_n \).
 - Choose \(v_{i-1} \) such that it is connected with as many as possible nodes \(v_i, v_{i+1}, \ldots, v_n \).
 - Show \(v_1, v_2, \ldots, v_n \) is a PES.

- What is necessary to compute the ordering:
 - \(N_i = \{v_j \in \Gamma(v_i) \mid j > i\} \)
 - \(R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}| \)

- What is necessary to do the following test:
 - Test \(N_i = \{v_j \in \Gamma(v_i) \mid j > i\} \) induces a clique.
Test PES Property

- The algorithm:
 - Start with an arbitrary node v_n.
 - Choose v_{i-1} such that is connected with as many as possible nodes $v_i, v_{i+1}, \ldots, v_n$.
 - Show v_1, v_2, \ldots, v_n is a PES.

- What is necessary to compute the ordering:
 - $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$
 - $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$

- What is necessary to do the following test:
 - Test $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$ induces a clique.
Test PES Property

- The algorithm:
 - Start with an arbitrary node v_n.
 - Choose v_{i-1} such that is connected with as many as possible nodes $v_i, v_{i+1}, \ldots, v_n$.
 - Show v_1, v_2, \ldots, v_n is a PES.

- What is necessary to compute the ordering:
 - $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$
 - $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$

- What is necessary to do the following test:
 - Test $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$ induces a clique.
The algorithm:
- Start with an arbitrary node v_n.
- Choose v_{i-1} such that is connected with as many as possible nodes $v_i, v_{i+1}, \ldots, v_n$.
- Show v_1, v_2, \ldots, v_n is a PES.

What is necessary to compute the ordering:
- $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$
- $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$

What is necessary to do the following test:
- Test $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$ induces a clique.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 - Choose $x \in B_i$.
 - Let $v_l = x$ and $D = D \cup \{x\}$.
 - Let $\rho(x) = l$.
 - Let $l = l - 1$.
 - Let $B_i = B_i \setminus \{x\}$.
 - For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.
- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V, D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.
- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

1. Let $B_0 = V$, $D = \emptyset$ and $l = n$.
2. Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
3. Let for all $v \in V$ be: $R(v) = 0$.
4. While $B_i \neq \emptyset$ for an i do for the minimal i:

 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:

 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

5. Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.

6. If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
7. Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 1. Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 2. Let $R(v) = R(v) + 1$.
 3. Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Choose v_{i-1} such that is connected with as many as possible nodes $v_i, v_{i+1}, \ldots, v_n$.

Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i:

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_i = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.
- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{ v_j \in \Gamma(v_i) \mid j > i \}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{ v_j \in \Gamma(v_i) \mid j > i \}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.

- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.

- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.

- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Compute R_i

- Let $B_0 = V$, $D = \emptyset$ and $l = n$.
- Let for $1 \leq i \leq n - 1$ be: $B_i = \emptyset$.
- Let for all $v \in V$ be: $R(v) = 0$.
- While $B_i \neq \emptyset$ for an i do for the minimal i:
 1. Choose $x \in B_i$.
 2. Let $v_l = x$ and $D = D \cup \{x\}$.
 3. Let $\rho(x) = l$.
 4. Let $l = l - 1$.
 5. Let $B_i = B_i \setminus \{x\}$.
 6. For all $v \in \Gamma(x) \setminus D$ do:
 - Let $B_{R(v)} = B_{R(v)} \setminus \{v\}$.
 - Let $R(v) = R(v) + 1$.
 - Let $B_{R(v)} = B_{R(v)} \cup \{v\}$.
- Task was to compute: $R_i = |\{v_j \in \Gamma(v_i) \mid j > i\}|$.
- If a node $x = v_i$ as chosen, then $R(x)$ is not changed any more.
- Then: $R_i = R(x) = |\{v_j \in \Gamma(v_i) \mid j > i\}|$ holds.
Test N_i:

- **Getting the idea:**
 - Check the nodes from left to right.
 - For some node v_i do not at once the test of N_i to be a clique.
 - Instead delay the test on for each neighbour v_j of v_i.
 - But prepare, the set of neighbours which v_j should have.
 - Store this in tables $T[v_j]$.

Test $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$ induces a clique.
Test N_i:

- Getting the idea:
 - Check the nodes from left to right.
 - For some node v_i do not at once the test of N_i to be a clique.
 - Instead delay the test on for each neighbour v_j of v_i.
 - But prepare, the set of neighbours which v_j should have.
 - Store this in tables $T[v_j]$.

Test $N_i = \{v_j \in \Gamma(v_i) \mid j > i\}$ induces a clique.
Test N_i:

- Getting the idea:
- Check the nodes from left to right.
- For some node v_i do not at once the test of N_i to be a clique.
- Instead delay the test on for each neighbour v_j of v_i.
- But prepare, the set of neighbours which v_j should have.
- Store this in tables $T[v_j]$.

Test $N_i = \{ v_j \in \Gamma(v_i) \mid j > i \}$ induces a clique.
Test N_i:

- Getting the idea:
- Check the nodes from left to right.
- For some node v_i do not at once the test of N_i to be a clique.
- Instead delay the test on for each neighbour v_j of v_i.
- But prepare, the set of neighbours which v_j should have.
- Store this in tables $T[v_j]$.

Test $N_i = \{ v_j \in \Gamma(v_i) \mid j > i \} \text{ induces a clique.}$
Test N_i:

- Getting the idea:
- Check the nodes from left to right.
- For some node v_i do not at once the test of N_i to be a clique.
- Instead delay the test on for each neighbour v_j of v_i.
- But prepare, the set of neighbours which v_j should have.
- Store this in tables $T[v_j]$.
Test N_i:

- Getting the idea:
 - Check the nodes from left to right.
 - For some node v_i do not at once the test of N_i to be a clique.
 - Instead delay the test on for each neighbour v_j of v_i.
 - But prepare, the set of neighbours which v_j should have.
- Store this in tables $T[v_j]$.

Test $N_i = \{ v_j \in \Gamma(v_i) \mid j > i \}$ induces a clique.
Test N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subseteq N$ holds, stop with message “no PES”.
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_i] = T[v_i] \cup (N \setminus \{v_l\})$.
- Output: the ordering is a PES.
Test N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subset N$ holds, the stop with message “no PES”.
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

Output: the ordering is a PES.
Test N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subseteq N$ holds, the stop with message "no PES".
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Test N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subseteq N$ holds, the stop with message “no PES”.
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Test N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subset N$ holds, the stop with message “no PES”.
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

Output: the ordering is a PES.
Test N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subseteq N$ holds, stop with message “no PES”.
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_i] = T[v_i] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Test N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subseteq N$ holds, the stop with message "no PES".
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Test N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subseteq N$ holds, stop with message “no PES”.
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

Output: the ordering is a PES.
Test N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. If $T[v_i] \not\subseteq N$ holds, the stop with message “no PES”.
 4. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Teste N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message "No PES".
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Teste N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message “No PES”.
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Teste N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message “No PES”.
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_1 be the first (left) node of N.
 - Let $T[v_i] = T[v_i] \cup (N \setminus \{v_i\})$.

- Output: the ordering is a PES.
For all $v_j \in V$ do $T[v_j] = \emptyset$.

For all $v_j \in V$ do $S[v_j] = 0$.

For all i from 1 to n do:

1. Consider the node v_i.
2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
3. For all $v \in N$ do $S[v] = 1$.
4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message “No PES”.
5. For all $v_j \in V$ do $S[v_j] = 0$.
6. If $N \neq \emptyset$ the do:
 - Let v_1 be the first (left) node of N.
 - Let $T[v_i] = T[v_i] \cup (N \setminus \{v_i\})$.

Output: the ordering is a PES.
Teste N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) | j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 a. If $S[u] = 0$ holds, then stop with message “No PES”.
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 a. Let v_l be the first (left) node of N.
 b. Let $T[v_l] = T[v_i] \cup (N \setminus \{v_i\})$.

- Output: the ordering is a PES.
Teste N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message “No PES”.
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

Output: the ordering is a PES.
Teste N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message “No PES”.
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\}$).

- Output: the ordering is a PES.
Introduction

Theorems

Chordal Graphs

Clique-Separators

5:48 Algorithmen 8

Teste N_i:

For all $v_j \in V$ do $T[v_j] = \emptyset$.

For all $v_j \in V$ do $S[v_j] = 0$.

For all i from 1 to n do:

1. Consider the node v_i.
2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
3. For all $v \in N$ do $S[v] = 1$.
4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message “No PES”.
5. For all $v_j \in V$ do $S[v_j] = 0$.
6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

Output: the ordering is a PES.
Teste N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_j]$ do
 - If $S[u] = 0$ holds, then stop with message "No PES".
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.
- Output: the ordering is a PES.
Test N_i

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message "No PES".
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

Output: the ordering is a PES.
Teste N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message "No PES".
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v] \cup (N \setminus \{v_l\})$.

Output: the ordering is a PES.

Teste N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{ v_j \in \Gamma(v_i) \mid j > i \}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message “No PES”.
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

- Output: the ordering is a PES.
Teste N_i:

- For all $v_j \in V$ do $T[v_j] = \emptyset$.
- For all $v_j \in V$ do $S[v_j] = 0$.
- For all i from 1 to n do:
 1. Consider the node v_i.
 2. Let $N = \{v_j \in \Gamma(v_i) \mid j > i\}$.
 3. For all $v \in N$ do $S[v] = 1$.
 4. For all $u \in T[v_i]$ do
 - If $S[u] = 0$ holds, then stop with message “No PES”.
 5. For all $v_j \in V$ do $S[v_j] = 0$.
 6. If $N \neq \emptyset$ the do:
 - Let v_l be the first (left) node of N.
 - Let $T[v_l] = T[v_l] \cup (N \setminus \{v_l\})$.

Output: the ordering is a PES.
Algorithms for Graph Problems

- The standard graph problems could be solved in polynomial time.
- Idea: Greedy algorithm using the PES ordering.
- Note: Chordal Graphs have at most $|V|$ maximum cliques.
- Thus only the simplicial nodes have to be considered for the clique problem.
- For the colouring problem use greedy on the revers PES ordering.
- Similar ideas work for the other problems.
Algorithms for Graph Problems

- The standard graph problems could be solved in polynomial time.
- **Idea:** Greedy algorithm using the PES ordering.
- **Note:** Chordal Graphs have at most $|V|$ maximum cliques.
- Thus only the simplicial nodes have to be considered for the clique problem.
- For the colouring problem use greedy on the reversed PES ordering.
- Similar ideas work for the other problems.
The standard graph problems could be solved in polynomial time.

Idea: Greedy algorithm using the PES ordering.

Note: Chordal Graphs have at most \(|V|\) maximum cliques.

Thus only the simplicial nodes have to be considered for the clique problem.

For the colouring problem use greedy on the revers PES ordering.

Similar ideas work for the other problems.
Algorithms for Graph Problems

- The standard graph problems could be solved in polynomial time.
- Idea: Greedy algorithm using the PES ordering.
- Note: Chordal Graphs have at most $|V|$ maximum cliques.
- **Thus only the simplicial nodes have to be considered for the clique problem.**
- For the colouring problem use greedy on the revers PES ordering.
- Similar ideas work for the other problems.
The standard graph problems could be solved in polynomial time.

Idea: Greedy algorithm using the PES ordering.

Note: Chordal Graphs have at most $|V|$ maximum cliques.

Thus only the simplicial nodes have to be considered for the clique problem.

For the colouring problem use greedy on the reversed PES ordering.

Similar ideas work for the other problems.
Algorithms for Graph Problems

- The standard graph problems could be solved in polynomial time.
- Idea: Greedy algorithm using the PES ordering.
- Note: Chordal Graphs have at most $|V|$ maximum cliques.
- Thus only the simplicial nodes have to be considered for the clique problem.
- For the colouring problem use greedy on the reverse PES ordering.
- Similar ideas work for the other problems.
Lemma

Let $\mathcal{T} = \{T_i \mid 1 \leq i \leq n\}$ be a family of subtrees of some base tree and each pair of trees from \mathcal{T} intersect each other.

- Then they have a common node.
- I.e. $\bigcap_{1 \leq i \leq n} T_i \neq \emptyset$

- The union of all subtrees T_i induces a subtree T'.
- A leave of T' which is not in all T_i could be deleted without changing the intersections of the T_i.
- By repeating we find a node which is common to all T_i.
Lemma

Let $\mathcal{T} = \{ T_i \mid 1 \leq i \leq n \}$ be a family of subtrees of some base tree and each pair of trees from \mathcal{T} intersect each other.

- Then they have a common node.
- I.e. $\bigcap_{1 \leq i \leq n} T_i \neq \emptyset$

- The union of all subtrees T_i induces a subtree T'.
- A leave of T' which is not in all T_i could be deleted without changing the intersections of the T_i.
- By repeating we find a node which is common to all T_i.

Intersection Graph Representation
Lemma

Let \(T = \{ T_i \mid 1 \leq i \leq n \} \) be a family of subtrees of some base tree and each pair of trees from \(T \) intersect each other.

- Then they have a common node.
- I.e. \(\cap_{1 \leq i \leq n} T_i \neq \emptyset \)

- The union of all subtrees \(T_i \) induces a subtree \(T' \).
- A leave of \(T' \) which is not in all \(T_i \) could be deleted without changing the intersections of the \(T_i \).
- By repeating we find a node which is common to all \(T_i \).
Lemma

Let \(T = \{ T_i \mid 1 \leq i \leq n \} \) be a family of subtrees of some base tree and each pair of trees from \(T \) intersect each other.

- Then they have a common node.
- I.e. \(\cap_{1 \leq i \leq n} T_i \neq \emptyset \)

- The union of all subtrees \(T_i \) induces a subtree \(T' \).
- A leaf of \(T' \) which is not in all \(T_i \) could be deleted without changing the intersections of the \(T_i \).
- By repeating we find a node which is common to all \(T_i \).
Lemma

Let $\mathcal{T} = \{T_i \mid 1 \leq i \leq n\}$ be a family of subtrees of some base tree and each pair of trees from \mathcal{T} intersect each other.

- Then they have a common node.
- I.e. $\cap_{1 \leq i \leq n} T_i \neq \emptyset$

- The union of all subtrees T_i induces a subtree T'.
- A leave of T' which is not in all T_i could be deleted without changing the intersections of the T_i.
- By repeating we find a node which is common to all T_i.
Lemma

Let $\mathcal{T} = \{T_i \mid 1 \leq i \leq n\}$ be a family of subtrees of some base tree and each pair of trees from \mathcal{T} intersect each other.

- Then they have a common node.
- I.e. $\cap_{1 \leq i \leq n} T_i \neq \emptyset$

The union of all subtrees T_i induces a subtree T'.

A leaf of T' which is not in all T_i could be deleted without changing the intersections of the T_i.

By repeating we find a node which is common to all T_i.
Lemma

Let \(T = \{ T_i \mid 1 \leq i \leq n \} \) be a family of subtrees of some base tree and each pair of trees from \(T \) intersect each other.

- Then they have a common node.
- I.e. \(\bigcap_{1 \leq i \leq n} T_i \neq \emptyset \)

- The union of all subtrees \(T_i \) induces a subtree \(T' \).
- A leave of \(T' \) which is not in all \(T_i \) could be deleted without changing the intersections of the \(T_i \).
- By repeating we find a node which is common to all \(T_i \).
Lemma

Let $\mathcal{T} = \{T_i \mid 1 \leq i \leq n\}$ be a family of subtrees of some base tree and each pair of trees from \mathcal{T} intersect each other.

- Then they have a common node.
- I.e. $\bigcap_{1 \leq i \leq n} T_i \neq \emptyset$

- The union of all subtrees T_i induces a subtree T'.
- A leave of T' which is not in all T_i could be deleted without changing the intersections of the T_i.
- By repeating we find a node which is common to all T_i.

\begin{center}
\begin{tikzpicture}[level/.style={sibling distance=50mm/#1}]

\node {$T_1 T_2$}
 child {node {$T_1 T_2 T_3$}}
 child {node {$T_1 T_3$}};
\end{tikzpicture}
\end{center}
Lemma

Let $T = \{ T_i \mid 1 \leq i \leq n \}$ be a family of subtrees of some base tree and each pair of trees from T intersect each other.

- Then they have a common node.
- I.e. $\cap_{1 \leq i \leq n} T_i \neq \emptyset$

- The union of all subtrees T_i induces a subtree T'.
- A leave of T' which is not in all T_i could be deleted without changing the intersections of the T_i.
- By repeating we find a node which is common to all T_i.

Lemma

Let $\mathcal{T} = \{ T_i \mid 1 \leq i \leq n \}$ be a family of subtrees of some base tree and each pair of trees from \mathcal{T} intersect each other.

- Then they have a common node.
- I.e. $\bigcap_{1 \leq i \leq n} T_i \neq \emptyset$

- The union of all subtrees T_i induces a subtree T'.

- A leave of T' which is not in all T_i could be deleted without changing the intersections of the T_i.

- By repeating we find a node which is common to all T_i.

$T_1 T_2 T_3$
Theorem

Let $G = (\{v_1, v_2, \ldots, v_n\}, E)$ be a Graph. The following statements are equivalent:

1. G is chordal.
2. G is the intersection graph of a family of subtrees.
3. There is a tree B on the set of maximal cliques of G such that for a pair of cliques C', C'' holds:
 - The clique $C' \cap C''$ is part of each maximal clique, which
 - is on the path from C' to C'' in B.
Let $G = (\{v_1, v_2, \ldots, v_n\}, E)$ be a Graph. The following statements are equivalent:

1. G is chordal.
2. G is the intersection graph of a family of subtrees.
3. There is a tree B on the set of maximal cliques of G such that for a pair of cliques C', C'' holds:
 - The clique $C' \cap C''$ is part of each maximal clique, which
 - is on the path from C' to C'' in B.
Theorem

Let $G = (\{v_1, v_2, \ldots, v_n\}, E)$ be a Graph. The following statements are equivalent:

1. G is chordal.
2. G is the intersection graph of a family of subtrees.
3. There is a tree B on the set of maximal cliques of G such that for a pair of cliques C', C'' holds:
 - The clique $C' \cap C''$ is part of each maximal clique, which
 - is on the path from C' to C'' in B.
Statements

Theorem

Let $G = (\{v_1, v_2, \ldots, v_n\}, E)$ be a Graph. The following statements are equivalent:

1. G is chordal.
2. G is the intersection graph of a family of subtrees.
3. There is a tree B on the set of maximal cliques of G such that for a pair of cliques C', C'' holds:
 - The clique $C' \cap C''$ is part of each maximal clique, which
 - is on the path from C' to C'' in B.

5:51 An alternative Characterisation 4/6

Let $G = (\{v_1, v_2, \ldots, v_n\}, E)$ be a Graph. The following statements are equivalent:

1. G is chordal.
2. G is the intersection graph of a family of subtrees.
3. There is a tree B on the set of maximal cliques of G such that for a pair of cliques C', C'' holds:
 - The clique $C' \cap C''$ is part of each maximal clique, which
 - is on the path from C' to C'' in B.

Let $G = (\{v_1, v_2, \ldots, v_n\}, E)$ be a Graph. The following statements are equivalent:

1. G is chordal.
2. G is the intersection graph of a family of subtrees.
3. There is a tree B on the set of maximal cliques of G such that for a pair of cliques C', C'' holds:
 - The clique $C' \cap C''$ is part of each maximal clique, which
 - is on the path from C' to C'' in B.

Proof I

Show: G is chordal \implies G is intersection graph of a family of subtrees.

- **Proof by Induction.**
 - $n = 1$ clear.
 - Induction step: $n - 1 \to n$
 - Nodes v_1, v_2, \ldots, v_n and $s = v_n$ a simplicial node.
 - Let $(B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\})$ intersection graph representation for $v_1, v_2, \ldots, v_{n-1}$
 - $\Gamma(s) \setminus \{s\}$ is a clique.
 - There is a common node a in $\cap_{v \in \Gamma(s)} V(T_v)$.
 - Add to B_{n-1} a new leave b for a.
 - And generate a new subtree, which consists of b.
 - And enlarge each subtree from $\Gamma(s)$ with b.

Proof I

Show: G is chordal $\implies G$ is intersection graph of a family of subtrees.

- Proof by Induction.

- $n = 1$ clear.

- Induction step: $n - 1 \rightarrow n$
 - Nodes v_1, v_2, \ldots, v_n and $s = v_n$ a simplicial node.
 - Let $(B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\})$ intersection graph representation for $v_1, v_2, \ldots, v_{n-1}$
 - $\Gamma(s) \setminus \{s\}$ is a clique.
 - There is a common node a in $\cap_{v \in \Gamma(s)} V(T_v)$.
 - Add to B_{n-1} a new leave b for a.
 - And generate a new subtree, which consists of b.
 - And enlarge each subtree from $\Gamma(s)$ with b.
Proof I

Show: G is chordal $\implies G$ is intersection graph of a family of subtrees.

- Proof by Induction.
- $n = 1$ clear.
- Induction step: $n - 1 \rightarrow n$
 - Nodes v_1, v_2, \ldots, v_n and $s = v_n$ a simplicial node.
 - Let $(B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\})$ intersection graph representation for $v_1, v_2, \ldots, v_{n-1}$
 - $\Gamma(s) \setminus \{s\}$ is a clique.
 - There is a common node a in $\cap_{v \in \Gamma(s)} V(T_v)$.
 - Add to B_{n-1} a new leaf b for a.
 - And generate a new subtree, which consists of b.
 - And enlarge each subtree from $\Gamma(s)$ with b.
Proof I

Show: \(G \) is chordal \(\implies \) \(G \) is intersection graph of a family of subtrees.

- Proof by Induction.
- \(n = 1 \) clear.
- Induction step: \(n - 1 \rightarrow n \)
 - Nodes \(v_1, v_2, \ldots, v_n \) and \(s = v_n \) a simplicial node.
 - Let \((B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\}) \) intersection graph representation for \(v_1, v_2, \ldots, v_{n-1} \)
 - \(\Gamma(s) \setminus \{s\} \) is a clique.
 - There is a common node \(a \) in \(\bigcap_{v \in \Gamma(s)} V(T_v) \).
 - Add to \(B_{n-1} \) a new leave \(b \) for \(a \).
 - And generate a new subtree, which consists of \(b \).
 - And enlarge each subtree from \(\Gamma(s) \) with \(b \).
Proof I

Show: G is chordal $\implies G$ is intersection graph of a family of subtrees.

- Proof by Induction.
- $n = 1$ clear.
- Induction step: $n - 1 \to n$
 - Nodes v_1, v_2, \ldots, v_n and $s = v_n$ a simplicial node.
 - Let $(B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\})$ intersection graph representation for $v_1, v_2, \ldots, v_{n-1}$
 - $\Gamma(s) \setminus \{s\}$ is a clique.
 - There is a common node a in $\cap_{v \in \Gamma(s)} V(T_v)$.
 - Add to B_{n-1} a new leave b for a.
 - And generate a new subtree, which consists of b.
 - And enlarge each subtree from $\Gamma(s)$ with b.
Proof I

Show: G is chordal \iff G is intersection graph of a family of subtrees.

- Proof by Induction.
- $n = 1$ clear.
- Induction step: $n-1 \to n$
 - Nodes v_1, v_2, \ldots, v_n and $s = v_n$ a simplicial node.
 - Let $(B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\})$ intersection graph representation for $v_1, v_2, \ldots, v_{n-1}$
 - $\Gamma(s) \setminus \{s\}$ is a clique.
 - There is a common node a in $\bigcap_{v \in \Gamma(s)} \mathcal{V}(T_v)$.
 - Add to B_{n-1} a new leaf b for a.
 - And generate a new subtree, which consists of b.
 - And enlarge each subtree from $\Gamma(s)$ with b.

![Diagram of subtrees connecting with nodes](attachment:diagram.png)
Proof: G is chordal \iff G is intersection graph of a family of subtrees.

- Proof by Induction.
- $n = 1$ clear.
- Induction step: $n - 1 \to n$
 - Nodes v_1, v_2, \ldots, v_n and $s = v_n$ a simplicial node.
 - Let $(B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\})$ intersection graph representation for $v_1, v_2, \ldots, v_{n-1}$
 - $\Gamma(s) \setminus \{s\}$ is a clique.
 - There is a common node a in $\bigcap_{v \in \Gamma(s)} V(T_v)$.
 - Add to B_{n-1} a new leave b for a.
 - And generate a new subtree, which consists of b.
 - And enlarge each subtree from $\Gamma(s)$ with b.
Proof I

Show: \(G \) is chordal \(\implies \) \(G \) is intersection graph of a family of subtrees.

- Proof by Induction.
- \(n = 1 \) clear.
- Induction step: \(n - 1 \rightarrow n \)
 - Nodes \(v_1, v_2, \ldots, v_n \) and \(s = v_n \) a simplicial node.
 - Let \((B_{n-1}, \{ T_1, T_2, \ldots, T_{n-1} \}) \) intersection graph representation for \(v_1, v_2, \ldots, v_{n-1} \)
 - \(\Gamma(s) \setminus \{s\} \) is a clique.
 - There is a common node \(a \) in \(\bigcap_{v \in \Gamma(s)} V(T_v) \).
 - Add to \(B_{n-1} \) a new leaf \(b \) for \(a \).
 - And generate a new subtree, which consists of \(b \).
 - And enlarge each subtree from \(\Gamma(s) \) with \(b \).

\[
\begin{array}{c}
T_1 T_2 T_3 \\
\hline
T_1 T_2 T_3 T_4 T_5 \\
\hline
T_1 T_4
\end{array}
\]
Show: G is chordal \implies G is intersection graph of a family of subtrees.

- Proof by Induction.
- $n = 1$ clear.
- Induction step: $n - 1 \rightarrow n$
 - Nodes v_1, v_2, \ldots, v_n and $s = v_n$ a simplicial node.
 - Let $(B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\})$ intersection graph representation for $v_1, v_2, \ldots, v_{n-1}$
 - $\Gamma(s) \setminus \{s\}$ is a clique.
 - There is a common node a in $\bigcap_{v \in \Gamma(s)} V(T_v)$.
 - Add to B_{n-1} a new leaf b for a.
 - And generate a new subtree, which consists of b.
 - And enlarge each subtree from $\Gamma(s)$ with b.

![Diagram showing the construction of the intersection graph representation for v_1, v_2, \ldots, v_n.](attachment:diagram.png)
Proof 1

Show: G is chordal $\iff G$ is intersection graph of a family of subtrees.

- Proof by Induction.
- $n = 1$ clear.
- Induction step: $n - 1 \to n$
 - Nodes v_1, v_2, \ldots, v_n and $s = v_n$ a simplicial node.
 - Let $(B_{n-1}, \{T_1, T_2, \ldots, T_{n-1}\})$ intersection graph representation for $v_1, v_2, \ldots, v_{n-1}$
 - $\Gamma(s) \setminus \{s\}$ is a clique.
 - There is a common node a in $\bigcap_{v \in \Gamma(s)} V(T_v)$.
 - Add to B_{n-1} a new leaf b for a.
 - And generate a new subtree, which consists of b.
 - And enlarge each subtree from $\Gamma(s)$ with b.
Proof II

Show: G is intersection graph of a family of subtrees $\implies G$ is chordal.

- Let $C = (v_0, v_1, \ldots, v_{k-1})$ cycle of length $k \geq 4$.
- Let $T_0, T_1, \ldots, T_{k-1}$ be the corresponding trees.
- These subtrees will form a cycle in the base tree.

The other part of the proof follows in a similar way.
Proof II

Show: G is intersection graph of a family of subtrees $\implies G$ is chordal.

- Let $C = (v_0, v_1, \ldots, v_{k-1})$ cycle of length $k \geq 4$.
- Let $T_0, T_1, \ldots, T_{k-1}$ be the corresponding trees.
 - These subtrees will from a cycle in the base tree.

The other part of the proof follow in a similar way.
Proof II

Show: G is intersection graph of a family of subtrees $\implies G$ is chordal.

- Let $C = (v_0, v_1, \ldots, v_{k-1})$ cycle of length $k \geq 4$.
- Let $T_0, T_1, \ldots, T_{k-1}$ be the corresponding trees.
- These subtrees will from a cycle in the base tree.

The other part of the proof follow in a similar way.
Proof II

Show: G is intersection graph of a family of subtrees $\implies G$ is chordal.

- Let $C = (v_0, v_1, \ldots, v_{k-1})$ cycle of length $k \geq 4$.
- Let $T_0, T_1, \ldots, T_{k-1}$ be the corresponding trees.
- These subtrees will from a cycle in the base tree.

The other part of the proof follow in a similar way.
Proof II

Show: G is intersection graph of a family of subtrees $\implies G$ is chordal.

- Let $C = (v_0, v_1, \ldots, v_{k-1})$ cycle of length $k \geq 4$.
- Let $T_0, T_1, \ldots, T_{k-1}$ be the corresponding trees.
- These subtrees will form a cycle in the base tree.

The other part of the proof follow in a similar way.
Lemma

Let G be a chordal graph. A node v of G is simplicial, iff it is contained in only one maximal clique.

Lemma

Let G be a chordal graph and C a clique in G. Then exitst a PES, which enumerates the nodes from C last.
Lemma

Let G be a chordal graph. A node v of G is simplicial, iff it is contained in only one maximal clique.

Lemma

Let G be a chordal graph and C a clique in G. Then existst a PES, which enumerates the nodes from C last.
Lemma

Let G be a chordal graph. A node v of G is simplicial, iff it is contained in only one maximal clique.

Lemma

Let G be a chordal graph and C a clique in G. Then exist a PES, which enumerates the nodes from C last.
Theorem

Any chordal graph with \(n \) nodes has a \((\omega(G), 1/2)\)-separator, which is a clique.

- Note: A separator of size \(\omega(G) \) must not be a Clique.
- Note: A clique-separator must not be minimal separating.
Theorem

Any chordal graph with \(n \) nodes has a \((\omega(G), 1/2)\)-separator, which is a clique.

- Note: A separator of size \(\omega(G) \) must not be a Clique.
- Note: A clique-separator must not be minimal separating.
Theorem

Any chordal graph with n nodes has a $(\omega(G), 1/2)$-separator, which is a clique.

- Note: A separator of size $\omega(G)$ must not be a Clique.
- Note: A clique-separator must not be minimal separating.
Any chordal graph with n nodes has a $(\omega(G), 1/2)$-separator, which is a clique.

Note: A separator of size $\omega(G)$ must not be a Clique.

Note: A clique-separator must not be minimal separating.
Proof

- **Algorithm to compute a chordal separator:**
 - \(C := \emptyset \)
 - As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C | \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subset \Gamma(a) \)
 - \(C := C \cup \{a\} \)

- There is at most one component \(A \) with: \(|A| > n/2 \).
- At each round, one node will be removed from that component.
- There are at most \(\lceil n/2 \rceil \) iterations.
- Show \(\exists a : C \subset \Gamma(a) \).
- Note:
 - At the start \(a \) is freely chosen.
 - \(C \) is always minimal separating for \(A \) and \(V \setminus (C \cup A) \).
 - All nodes from \(C \) have neighbours in \(A \).
Proof

- **Algorithm to compute a chordal separator:**
 - \(C := \emptyset \)
 - As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subset \Gamma(a) \)
 - \(C := C \cup \{a\} \)

- There is at most one component \(A \) with: \(|A| > n/2 \).
- At each round, one node will be removed from that component.
- There are at most \(\lceil n/2 \rceil \) iterations.
- Show \(\exists a : C \subset \Gamma(a) \).
- Note:
 - At the start \(a \) is freely chosen.
 - \(C \) is always minimal separating for \(A \) and \(V \setminus (C \cup A) \).
 - All nodes from \(C \) have neighbours in \(A \).
Proof

- Algorithm to compute a chordal separator:
 1. $C := \emptyset$
 2. As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- There is at most one component A with: $|A| > n/2$.
- At each round, one node will be removed from that component.
- There are at most $\lceil n/2 \rceil$ iterations.
- Show $\exists a : C \subset \Gamma(a)$.
- Note:
 - At the start a is freely chosen.
 - C is always minimal separating for A and $V \setminus (C \cup A)$.
 - All nodes from C have neighbours in A.
Proof

- Algorithm to compute a chordal separator:
 - $C := \emptyset$
 - As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- There is at most one component A with: $|A| > n/2$.
- At each round, one node will be removed from that component.
- There are at most $\lceil n/2 \rceil$ iterations.
- Show $\exists a : C \subset \Gamma(a)$.
- Note:
 - At the start a is freely chosen.
 - C is always minimal separating for A and $V \setminus (C \cup A)$.
 - All nodes from C have neighbours in A.
Proof

- Algorithm to compute a chordal separator:
 - $C := \emptyset$
 - As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- There is at most one component A with: $|A| > n/2$.
- At each round, one node will be removed from that component.
- There are at most $\lceil n/2 \rceil$ iterations.
- Show $\exists a : C \subset \Gamma(a)$.
- Note:
 - At the start a is freely chosen.
 - C is always minimal separating for A and $V \setminus (C \cup A)$.
 - All nodes from C have neighbours in A.
Proof

- Algorithm to compute a chordal separator:
 - $C := \emptyset$
 - As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- There is at most one component A with: $|A| > n/2$.
- At each round, one node will be removed from that component.
- There are at most $\lceil n/2 \rceil$ iterations.
- Show $\exists a : C \subset \Gamma(a)$.

Note:
- At the start a is freely chosen.
- C is always minimal separating for A and $V \setminus (C \cup A)$.
- All nodes from C have neighbours in A.
Proof

- Algorithm to compute a chordal separator:
 - \(C := \emptyset \)
 - As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > \frac{n}{2} \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subseteq \Gamma(a) \)
 - \(C := C \cup \{ a \} \)

- There is at most one component \(A \) with: \(|A| > \frac{n}{2} \).
- At each round, one node will be removed from that component.
- There are at most \(\lceil \frac{n}{2} \rceil \) iterations.
- Show \(\exists a : C \subseteq \Gamma(a) \).
- Note:
 - At the start \(a \) is freely chosen.
 - \(C \) is always minimal separating for \(A \) and \(V \setminus (C \cup A) \).
 - All nodes from \(C \) have neighbours in \(A \).
Proof

- Algorithm to compute a chordal separator:
 - \(C := \emptyset \)
 - As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subset \Gamma(a) \)
 - \(C := C \cup \{ a \} \)

- There is at most one component \(A \) with: \(|A| > n/2 \).

- At each round, one node will be removed from that component.

- There are at most \(\lceil n/2 \rceil \) iterations.

- Show \(\exists a : C \subset \Gamma(a) \).

- Note:
 - At the start \(a \) is freely chosen.
 - \(C \) is always minimal separating for \(A \) and \(V \setminus (C \cup A) \).
 - All nodes from \(C \) have neighbours in \(A \).
Proof

- Algorithm to compute a chordal separator:
 - $C := \emptyset$
 - As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- There is at most one component A with: $|A| > n/2$.
- At each round, one node will be removed from that component.
- There are at most \lfloor n/2 \rfloor iterations.
- Show $\exists a : C \subset \Gamma(a)$.
- Note:
 - At the start a is freely chosen.
 - C is always minimal separating for A and $V \setminus (C \cup A)$.
 - All nodes from C have neighbours in A.
Proof

- Algorithm to compute a chordal separator:
 - \(C := \emptyset \)
 - As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subset \Gamma(a) \)
 - \(C := C \cup \{a\} \)

- There is at most one component \(A \) with: \(|A| > n/2 \).
- At each round, one node will be removed from that component.
- There are at most \(\lceil n/2 \rceil \) iterations.
- Show \(\exists a : C \subset \Gamma(a) \).
- Note:
 - At the start \(a \) is freely chosen.
 - \(C \) is always minimal separating for \(A \) and \(V \setminus (C \cup A) \).
 - All nodes from \(C \) have neighbours in \(A \).
Proof

- Algorithm to compute a chordal separator:
 - \(C := \emptyset \)
 - As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subset \Gamma(a) \)
 - \(C := C \cup \{ a \} \)

- There is at most one component \(A \) with: \(|A| > n/2 \).
- At each round, one node will be removed from that component.
- There are at most \(\lceil n/2 \rceil \) iterations.
- Show \(\exists a : C \subset \Gamma(a) \).

Note:

- At the start \(a \) is freely chosen.
- \(C \) is always minimal separating for \(A \) and \(V \setminus (C \cup A) \).
- All nodes from \(C \) have neighbours in \(A \).
Proof

- Algorithm to compute a chordal separator:
 - $C := \emptyset$
 - As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- There is at most one component A with: $|A| > n/2$.
- At each round, one node will be removed from that component.
- There are at most $\lceil n/2 \rceil$ iterations.
- Show $\exists a : C \subset \Gamma(a)$.
- Note:
 - At the start a is freely chosen.
 - C is always minimal separating for A and $V \setminus (C \cup A)$.
 - All nodes from C have neighbours in A.
Proof

- Algorithm to compute a chordal separator:
 - $C := \emptyset$
 - As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- There is at most one component A with: $|A| > n/2$.
- At each round, one node will be removed from that component.
- There are at most $\lceil n/2 \rceil$ iterations.
- Show $\exists a : C \subset \Gamma(a)$.
- Note:
 - At the start a is freely chosen.
 - C is always minimal separating for A and $V \setminus (C \cup A)$.
 - All nodes from C have neighbours in A.
Algorithm to compute a chordal separator:

1. \(C := \emptyset \)
2. As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subseteq \Gamma(a) \)
 - \(C := C \cup \{a\} \)

There is at most one component \(A \) with: \(|A| > n/2 \).

At each round, one node will be removed from that component.

There are at most \(\lceil n/2 \rceil \) iterations.

Show \(\exists a : C \subseteq \Gamma(a) \).

Note:

- At the start \(a \) is freely chosen.
- \(C \) is always minimal separating for \(A \) and \(V \setminus (C \cup A) \).
- All nodes from \(C \) have neighbours in \(A \).
Proof

- \(C := \emptyset \)
- As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subseteq \Gamma(a) \)
 - \(C := C \cup \{a\} \)

Show \(\exists a : C \subseteq \Gamma(a) \).
- Let \(\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|}) \) be a PES for \(G[A \cup C] \).
- Consider now \(a = a_{|A|} \):
 - Each node from \(C \) is connected by a path with \(a \).
 - Thus each node from \(C \) is directly connected with \(a \).
 - Furthermore \(\{a\} \cup C \) is a clique.
- The computation could be done in time \(O(n \cdot m) \).
- Using an other algorithm a linear running-time is possible.
Proof

- $C := \emptyset$
- As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subseteq \Gamma(a)$
 - $C := C \cup \{a\}$

Show $\exists a : C \subseteq \Gamma(a)$.
- Let $\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|})$ be a PES for $G[A \cup C]$.
- Consider now $a = a_{|A|}$:
 - Each node from C is connected by a path with a.
 - Thus each node from C is directly connected with a.
 - Furthermore $\{a\} \cup C$ is a clique.
- The computation could be done in time $O(n \cdot m)$.
- Using an other algorithm a linear running-time is possible.
Proof

- $C := \emptyset$
- As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$
- Show $\exists a : C \subset \Gamma(a)$.
- Let $\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|})$ be a PES for $G[A \cup C]$.
- Consider now $a = a_{|A|}$:
 - Each node from C is connected by a path with a.
 - Thus each node from C is directly connected with a.
 - Furthermore $\{a\} \cup C$ is a clique.
- The computation could be done in time $O(n \cdot m)$.
- Using an other algorithm a linear running-time is possible.
Proof

- $C := \emptyset$
- As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- Show $\exists a : C \subset \Gamma(a)$.
- Let $\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|})$ be a PES for $G[A \cup C]$.
- Consider now $a = a_{|A|}$:
 - Each node from C is connected by a path with a.
 - Thus each node from C is directly connected with a.
 - Furthermore $\{a\} \cup C$ is a clique.
- The computation could be done in time $O(n \cdot m)$.
- Using an other algorithm a linear running-time is possible.
Proof

- $C := \emptyset$
- As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$
- Show $\exists a : C \subset \Gamma(a)$.
- Let $\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|})$ be a PES for $G[A \cup C]$.
- Consider now $a = a_{|A|}$:
 - Each node from C is connected by a path with a.
 - Thus each node from C is directly connected with a.
 - Furthermore $\{a\} \cup C$ is a clique.
- The computation could be done in time $O(n \cdot m)$.
- Using an other algorithm a linear running-time is possible.
Proof

- \(C := \emptyset \)
- As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subseteq \Gamma(a) \)
 - \(C := C \cup \{ a \} \)

Show \(\exists a : C \subseteq \Gamma(a) \).
- Let \(\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|}) \) be a PES for \(G[A \cup C] \).
- Consider now \(a = a_{|A|} \):
 - Each node from \(C \) is connected by a path with \(a \).
 - Thus each node from \(C \) is directly connected with \(a \).
 - Furthermore \(\{ a \} \cup C \) is a clique.
 - The computation could be done in time \(O(n \cdot m) \).
 - Using an other algorithm a linear running-time is possible.
Proof

- $C := \emptyset$
- As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$
- Show $\exists a : C \subset \Gamma(a)$.
- Let $\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|})$ be a PES for $G[A \cup C]$.
- Consider now $a = a_{|A|}$:
 - Each node from C is connected by a path with a.
 - Thus each node from C is directly connected with a.
 - Furthermore $\{a\} \cup C$ is a clique.
- The computation could be done in time $O(n \cdot m)$.
- Using an other algorithm a linear running-time is possible.
Proof

- $C := \emptyset$
- As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- Show $\exists a : C \subset \Gamma(a)$.
- Let $\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|})$ be a PES for $G[A \cup C]$.
- Consider now $a = a_{|A|}$:
 - Each node from C is connected by a path with a.
 - Thus each node from C is directly connected with a.
 - Furthermore $\{a\} \cup C$ is a clique.
 - The computation could be done in time $O(n \cdot m)$.
 - Using an other algorithm a linear running-time is possible.
Proof

- \(C := \emptyset \)
- As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subset \Gamma(a) \)
 - \(C := C \cup \{ a \} \)

- Show \(\exists a : C \subset \Gamma(a) \).
- Let \(\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|}) \) be a PES for \(G[A \cup C] \).
- Consider now \(a = a_{|A|} \):
 - Each node from \(C \) is connected by a path with \(a \).
 - Thus each node from \(C \) is directly connected with \(a \).
 - Furthermore \(\{ a \} \cup C \) is a clique.
 - The computation could be done in time \(O(n \cdot m) \).
 - Using an other algorithm a linear running-time is possible.
Proof

- \(C := \emptyset \)
- As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subseteq \Gamma(a) \)
 - \(C := C \cup \{ a \} \)

- Show \(\exists a : C \subseteq \Gamma(a) \).
- Let \(\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|}) \) be a PES for \(G[A \cup C] \).
- Consider now \(a = a_{|A|} \):
 - Each node from \(C \) is connected by a path with \(a \).
 - Thus each node from \(C \) is directly connected with \(a \).
 - Furthermore \(\{ a \} \cup C \) is a clique.
- The computation could be done in time \(O(n \cdot m) \).
- Using an other algorithm a linear running-time is possible.
Proof

- $C := \emptyset$
- As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- Show $\exists a : C \subset \Gamma(a)$.
- Let $\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|})$ be a PES for $G[A \cup C]$.
- Consider now $a = a_{|A|}$:
 - Each node from C is connected by a path with a.
 - Thus each node from C is directly connected with a.
 - Furthermore $\{a\} \cup C$ is a clique.

- The computation could be done in time $O(n \cdot m)$.
- Using an other algorithm a linear running-time is possible.
Proof

- \(C := \emptyset \)
- As long a component \(A \) in \(G[V \setminus C] \) exists with \(|A| > n/2 \) do:
 - \(C := \{ c \in C \mid \Gamma(c) \cap A \neq \emptyset \} \)
 - Choose \(a \in A \) with: \(C \subset \Gamma(a) \)
 - \(C := C \cup \{ a \} \)

- Show \(\exists a : C \subset \Gamma(a) \).
- Let \(\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|}) \) be a PES for \(G[A \cup C] \).
- Consider now \(a = a_{|A|} \):
 - Each node from \(C \) is connected by a path with \(a \).
 - Thus each node from \(C \) is directly connected with \(a \).
 - Furthermore \(\{ a \} \cup C \) is a clique.
- The computation could be done in time \(O(n \cdot m) \).
- Using an other algorithm a linear running-time is possible.
Proof

- $C := \emptyset$
- As long a component A in $G[V \setminus C]$ exists with $|A| > n/2$ do:
 - $C := \{c \in C \mid \Gamma(c) \cap A \neq \emptyset\}$
 - Choose $a \in A$ with: $C \subset \Gamma(a)$
 - $C := C \cup \{a\}$

- Show $\exists a : C \subset \Gamma(a)$.
- Let $\rho = (a_1, a_2, \ldots, a_{|A|}, c_1, c_2, \ldots, c_{|C|})$ be a PES for $G[A \cup C]$.
- Consider now $a = a_{|A|}$:
 - Each node from C is connected by a path with a.
 - Thus each node from C is directly connected with a.
 - Furthermore $\{a\} \cup C$ is a clique.
- The computation could be done in time $O(n \cdot m)$.
- Using an other algorithm a linear running-time is possible.
Introduction

Definition (Clique-Separator)

Clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

Clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

Clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

Clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

Clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

- The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

Clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

A clique in $G = (V, E)$ is called a Clique-Separator, if $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- **If $G = (V, E)$ contains no clique-separator:**
 - T consists only of the node w.
 - To w is the set V associated.

- **If $G = (V, E)$ has a clique-separator C:**
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

A clique C in $G = (V, E)$ is called a Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

A clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \cdots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

- The leaves of the clique-separator-tree are called atoms.
Introduction

Definition (Clique-Separator)
Clique C in G = (V, E) is called Clique-Separator, iff G[V \ C] is disconnected.

Definition (Clique-Separator-Tree)
A clique-separator-tree T is defined recursively:

- If G = (V, E) contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If G = (V, E) has a clique-separator C:
 - Let A₁, A₂, ..., Aᵢ be the components of G[V \ C]
 - T consists of the root w and subtrees T₁, T₂, ..., Tᵢ.
 - To a tree Tᵢ is the graph G[Aᵢ \cup C] associated.
 - To w is the set C associated.

- The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

Clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - To w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - To w is the set C associated.

The leaves of the clique-separator-tree are called atoms.
Definition (Clique-Separator)

Clique C in $G = (V, E)$ is called Clique-Separator, iff $G[V \setminus C]$ is disconnected.

Definition (Clique-Separator-Tree)

A clique-separator-tree T is defined recursively:

- If $G = (V, E)$ contains no clique-separator:
 - T consists only of the node w.
 - w is the set V associated.

- If $G = (V, E)$ has a clique-separator C:
 - Let A_1, A_2, \ldots, A_l be the components of $G[V \setminus C]$.
 - T consists of the root w and subtrees T_1, T_2, \ldots, T_l.
 - To a tree T_i is the graph $G[A_i \cup C]$ associated.
 - w is the set C associated.

The leaves of the clique-separator-tree are called atoms.
Basics, Motivation

- A clique-separator-tree has at most $\binom{n}{2} - m$ atoms (Exercise).
- Each chordal graph has a clique-separator-tree, where all atoms are cliques.
- If the atoms are “simple”, then many problems become easy solvable.
- We will now introduce the MES, which is similar to PES.
A clique-separator-tree has at most $\binom{n}{2} - m$ atoms (Exercise).

Each chordal graph has a clique-separator-tree, where all atoms are cliques.

If the atoms are “simple”, then many problems become easy solvable.

We will now introduce the MES, which is similar to PES.
Basics, Motivation

- A clique-separator-tree has at most $\binom{n}{2} - m$ atoms (Exercise).
- Each chordal graph has a clique-separator-tree, where all atoms are cliques.
- If the atoms are “simple”, then many problems become easy solvable.
- We will now introduce the MES, which is similar to PES.
A clique-separator-tree has at most \(\binom{n}{2} - m \) atoms (Exercise).

Each chordal graph has a clique-separator-tree, where all atoms are cliques.

If the atoms are “simple”, then many problems become easy solvable.

We will now introduce the MES, which is similar to PES.
Definition

A node is called simplicial, iff all its neighbours are connected by an edge.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.

Theorem

A graph is chordal, iff it has a PES.
Reminder

Definition

A node is called simplicial, iff all its neighbours are connected by an edge.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.

Theorem

A graph is chordal, iff it has a PES.
Reminder

Definition

A node is called simplicial, iff all its neighbours are connected by an edge.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[[u \in V \mid \rho(u) \geq \rho(v)]]$.

Theorem

A graph is chordal, iff it has a PES.
Reminder

Definition

A node is called simplicial, iff all its neighbours are connected by an edge.

Theorem

Each Clique has a simplicial node and each chordal graph, who is not a clique, has two simplicial nodes, which are not connected.

Definition

Let $G = (V, E)$ be a graph with $|V| = n$. A total ordering $\rho : V \mapsto \{1, \ldots, n\}$ is called perfect node-elimination scheme, iff each node v is a simplicial node in $G[\{u \in V \mid \rho(u) \geq \rho(v)\}]$.

Theorem

A graph is chordal, iff it has a PES.
Definition (Fill-in)

Let $G = (V, E)$ be a graph with $|V| = n$ and $\rho : V \mapsto \{1, \ldots, n\}$ an ordering of the nodes. The fill-in for ρ is:

$$F_\rho := \left\{ \{v, w\} : v \neq w \land \{v, w\} \not\in E \land \text{there is a path } v = x_1x_2\ldots x_l = w \text{ with: } \rho(x_i) < \min(\rho(v), \rho(w)) \forall i = 2, 3, \ldots, l - 1 \right\}$$

- Notation: $G_\rho = (V, E \cup F_\rho)$
- Any ordering ρ is a PES for G_ρ.
- The fill-in for ρ in G_ρ is the empty set.
- Thus G_ρ is chordal.
- $\Gamma_{\rho,F}(v) := \{w \mid \{v, w\} \in E \cup F \land \rho(w) > \rho(v)\}$
- $m_F(v)$ the node u with: $\rho(u) = \min\{\rho(w) \mid w \in \Gamma_{\rho,F}(v)\}$.
Definition (Fill-in)

Let $G = (V, E)$ be a graph with $|V| = n$ and $\rho : V \mapsto \{1, \ldots, n\}$ an ordering of the nodes. The fill-in F_ρ for ρ is:

$$F_\rho := \begin{cases}
\{v, w\} : & v \neq w \land \{v, w\} \not\in E \land \\
& \text{there is a path } v = x_1 x_2 \ldots x_l = w \text{ with:} \\
& \rho(x_i) < \min(\rho(v), \rho(w)) \forall i = 2, 3, \ldots, l - 1
\end{cases}$$

- **Notation:** $G_\rho = (V, E \cup F_\rho)$
- Any ordering ρ is a PES for G_ρ.
- The fill-in for ρ in G_ρ is the empty set.
- Thus G_ρ is chordal.
- $\Gamma_{\rho,F}(v) := \{w \mid \{v, w\} \in E \cup F \land \rho(w) > \rho(v)\}$
- $m_F(v)$ the node u with: $\rho(u) = \min\{\rho(w) \mid w \in \Gamma_{\rho,F}(v)\}$.
Definition (Fill-in)

Let $G = (V, E)$ be a graph with $|V| = n$ and $\rho : V \mapsto \{1, \ldots, n\}$ an ordering of the nodes. The fill-in for ρ is:

$$F_\rho := \begin{cases}
\{v, w\} : & v \neq w \land \{v, w\} \not\in E \land \text{there is a path } v = x_1x_2 \ldots x_l = w \text{ with:} \\
& \rho(x_i) < \min(\rho(v), \rho(w)) \forall i = 2, 3, \ldots, l - 1
\end{cases}$$

Notation: $G_\rho = (V, E \cup F_\rho)$

- Any ordering ρ is a PES for G_ρ.
- The fill-in for ρ in G_ρ is the empty set.
- Thus G_ρ is chordal.
- $\Gamma_{\rho,F}(v) := \{w \mid \{v, w\} \in E \cup F \land \rho(w) > \rho(v)\}$
- $m_F(v)$ the node u with: $\rho(u) = \min\{\rho(w) \mid w \in \Gamma_{\rho,F}(v)\}$.
Definition (Fill-in)

Let \(G = (V, E) \) be a graph with \(|V| = n\) and \(\rho : V \leftrightarrow \{1, \ldots, n\} \) an ordering of the nodes. The fill-in for \(\rho \) is:

\[
F_\rho := \left\{ \{v, w\} : \begin{array}{l}
v \neq w \land \{v, w\} \not\in E \land \\
\text{there is a path } v = x_1x_2 \ldots x_l = w \text{ with:} \\
\rho(x_i) < \min(\rho(v), \rho(w)) \forall i = 2, 3, \ldots, l - 1
\end{array} \right\}
\]

- **Notation:** \(G_\rho = (V, E \cup F_\rho) \)
- Any ordering \(\rho \) is a PES for \(G_\rho \).
- The fill-in for \(\rho \) in \(G_\rho \) is the empty set.
- Thus \(G_\rho \) is chordal.
- \(\Gamma_{\rho,F}(v) := \{w \mid \{v, w\} \in E \cup F \land \rho(w) > \rho(v)\} \)
- \(m_F(v) \) the node \(u \) with: \(\rho(u) = \min\{\rho(w) \mid w \in \Gamma_{\rho,F}(v)\} \).
Definition (Fill-in)

Let $G = (V, E)$ be a graph with $|V| = n$ and $\rho : V \mapsto \{1, \ldots, n\}$ an ordering of the nodes. The fill-in for ρ is:

$$F_\rho := \left\{ \{v, w\} : v \neq w \land \{v, w\} \not\in E \land \text{there is a path } v = x_1 x_2 \ldots x_l = w \text{ with:} \right.$$

$$\rho(x_i) < \min(\rho(v), \rho(w)) \forall i = 2, 3, \ldots, l - 1 \left. \right\}$$

- Notation: $G_\rho = (V, E \cup F_\rho)$
- Any ordering ρ is a PES for G_ρ.
- The fill-in for ρ in G_ρ is the empty set.
- Thus G_ρ is chordal.
- $\Gamma_{\rho, F}(v) := \{w \mid \{v, w\} \in E \cup F \land \rho(w) > \rho(v)\}$
- $m_F(v)$ the node u with: $\rho(u) = \min\{\rho(w) \mid w \in \Gamma_{\rho, F}(v)\}$.
Definition (Fill-in)

Let $G = (V, E)$ be a graph with $|V| = n$ and $\rho : V \mapsto \{1, \ldots, n\}$ an ordering of the nodes. The fill-in for ρ is:

$$F_\rho := \begin{cases}
\{v, w\} : & v \neq w \land \{v, w\} \not\in E \land \\
& \text{there is a path } v = x_1x_2 \ldots x_l = w \text{ with:} \\
& \rho(x_i) < \min(\rho(v), \rho(w)) \forall i = 2, 3, \ldots, l - 1
\end{cases}$$

- Notation: $G_\rho = (V, E \cup F_\rho)$
- Any ordering ρ is a PES for G_ρ.
- The fill-in for ρ in G_ρ is the empty set.
- Thus G_ρ is chordal.
- $\Gamma_{\rho,F}(v) := \{w \mid \{v, w\} \in E \cup F \land \rho(w) > \rho(v)\}$
- $m_F(v)$ the node u with: $\rho(u) = \min\{\rho(w) \mid w \in \Gamma_{\rho,F}(v)\}$.
Fill-In

Definition (Fill-in)

Let $G = (V, E)$ be a graph with $|V| = n$ and $\rho : V \mapsto \{1, \ldots, n\}$ an ordering of the nodes. The fill-in for ρ is:

$$F_\rho := \begin{cases}
\{v, w\} : & v \neq w \land \{v, w\} \not\in E \land \\
& \text{there is a path } v = x_1x_2\ldots x_l = w \text{ with:} \\
& \rho(x_i) < \min(\rho(v), \rho(w)) \forall i = 2, 3, \ldots, l - 1
\end{cases}$$

- **Notation:** $G_\rho = (V, E \cup F_\rho)$
- Any ordering ρ is a PES for G_ρ.
- The fill-in for ρ in G_ρ is the empty set.
- Thus G_ρ is chordal.
- $\Gamma_{\rho,F}(v) := \{w \mid \{v, w\} \in E \cup F \land \rho(w) > \rho(v)\}$
- $m_F(v)$ the node u with: $\rho(u) = \min\{\rho(w) \mid w \in \Gamma_{\rho,F}(v)\}$.
Lemma

Let $G = (V, E)$ be graph and ρ a ordering.
Then is the fill-in F_ρ the smallest set F, such that for all $v \in V$ holds:

\[\Gamma_{\rho,F}(v) \subseteq \Gamma_{\rho,F}(m_F(v)) \cup m_F(v) \]

Proof:

- Show that for $F = F_\rho$ the above equation holds.
 - Let v be a node.
 - Let $w \in \Gamma_{\rho,F_\rho}(v)$ and $w \neq m_F(v) = x$.
 - Then is $m_F(v), v, w$ a path in G_ρ with $\rho(v) < \min(\rho(m_F(v)), \rho(w))$.
 - Thus $\{w, m_F(v)\} \in E \cup F_\rho$ holds.
 - And $w \in \Gamma_{\rho,F_\rho}(m_F(v))$ holds.
Lemma

Let $G = (V, E)$ be graph and ρ a ordering. Then is the fill-in F_ρ the smallest set F, such that for all $v \in V$ holds:

$$\Gamma_{\rho,F}(v) \subseteq \Gamma_{\rho,F}(m_F(v)) \cup m_F(v)$$

Proof:

- Show that for $F = F_\rho$ the above equation holds.
 - Let v be a node.
 - Let $w \in \Gamma_{\rho,F}(v)$ and $w \neq m_F(v) = x$.
 - Then is $m_F(v), v, w$ a path in G_ρ with $\rho(v) < \min(\rho(m_F(v)), \rho(w))$.
 - Thus $\{w, m_F(v)\} \in E \cup F_\rho$ holds.
 - And $w \in \Gamma_{\rho,F}(m_F(v))$ holds.
Lemma

Let $G = (V, E)$ be a graph and ρ a ordering.

Then is the fill-in F_ρ the smallest set F, such that for all $v \in V$ holds:

$$\Gamma_{\rho,F}(v) \subseteq \Gamma_{\rho,F}(m_F(v)) \cup m_F(v)$$

Proof:

- Show that for $F = F_\rho$ the above equation holds.
 - Let v be a node.
 - Let $w \in \Gamma_{\rho,F_\rho}(v)$ and $w \neq m_F(v) = x$.
 - Then is $m_F(v), v, w$ a path in G_ρ with $\rho(v) < \min(\rho(m_F(v)), \rho(w))$.
 - Thus $\{w, m_F(v)\} \in E \cup F_\rho$ holds.
 - And $w \in \Gamma_{\rho,F_\rho}(m_F(v))$ holds.
Lemma

Let \(G = (V, E) \) be a graph and \(\rho \) a ordering. Then is the fill-in \(F_\rho \) the smallest set \(F \), such that for all \(v \in V \) holds:

\[
\Gamma_{\rho,F}(v) \subseteq \Gamma_{\rho,F}(m_F(v)) \cup m_F(v)
\]

Proof:

- Show that for \(F = F_\rho \) the above equation holds.
 - Let \(v \) be a node.
 - Let \(w \in \Gamma_{\rho,F_\rho}(v) \) and \(w \neq m_F(v) = x \). Then is \(m_F(v), v, w \) a path in \(G_\rho \) with \(\rho(v) < \min(\rho(m_F(v)), \rho(w)) \).
 - Thus \(\{w, m_F(v)\} \in E \cup F_\rho \) holds.
 - And \(w \in \Gamma_{\rho,F_\rho}(m_F(v)) \) holds.
Lemma

Let $G = (V, E)$ be graph and ρ a ordering. Then is the fill-in F_ρ the smallest set F, such that for all $v \in V$ holds:

$$\Gamma_{\rho,F}(v) \subseteq \Gamma_{\rho,F}(m_F(v)) \cup m_F(v)$$

Proof:

- Show that for $F = F_\rho$ the above equation holds.
 - Let v be a node.
 - Let $w \in \Gamma_{\rho,F_\rho}(v)$ and $w \neq m_F(v) = x$.
 - Then is $m_F(v), v, w$ a path in G_ρ with $\rho(v) < \min(\rho(m_F(v)), \rho(w))$.
 - Thus $\{w, m_F(v)\} \in E \cup F_\rho$ holds.
 - And $w \in \Gamma_{\rho,F_\rho}(m_F(v))$ holds.
Lemma

Let $G = (V, E)$ be a graph and ρ a ordering. Then the fill-in F_ρ is the smallest set F, such that for all $v \in V$ holds:

$$\Gamma_{\rho,F}(v) \subseteq \Gamma_{\rho,F}(m_F(v)) \cup m_F(v)$$

Proof:

- Show that for $F = F_\rho$ the above equation holds.
 - Let v be a node.
 - Let $w \in \Gamma_{\rho,F_\rho}(v)$ and $w \neq m_F(v) = x$.
 - Then $m_F(v), v, w$ are subpaths in G_ρ with $\rho(v) < \min(\rho(m_F(v)), \rho(w))$.
 - Thus $\{w, m_F(v)\} \in E \cup F_\rho$ holds.
 - And $w \in \Gamma_{\rho,F_\rho}(m_F(v))$ holds.
Lemma

Let $G = (V, E)$ be graph and ρ a ordering. Then is the fill-in F_ρ the smallest set F, such that for all $v \in V$ holds:

$$\Gamma_{\rho,F}(v) \subseteq \Gamma_{\rho,F}(m_F(v)) \cup m_F(v)$$

Proof:

- Show that for $F = F_\rho$ the above equation holds.
 - Let v be a node.
 - Let $w \in \Gamma_{\rho,F_\rho}(v)$ and $w \neq m_F(v) = x$.
 - Then is $m_F(v), v, w$ a path in G_ρ with $\rho(v) < \min(\rho(m_F(v)), \rho(w))$.
 - Thus $\{w, m_F(v)\} \in E \cup F_\rho$ holds.
 - And $w \in \Gamma_{\rho,F_\rho}(m_F(v))$ holds.
Proof (Let F be as defined, show that $F_\rho \subseteq F$ holds)

- Show by induction over i:
 \[\forall \{v, w\} \in F_\rho \text{ with } \rho(v) \leq i : \{v, w\} \in F \]

- Assume the above holds for $i \leq i_0$.
- Let $\{v, w\} \in F_\rho$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.
- Thus there is a path $v = x_1x_2 \ldots x_k = w$ in $G_\rho = (V, E \cup F_\rho)$ with:
 \[k \geq 3 \text{ and } \rho(x_j) < \min(\rho(v), \rho(w)) \text{ for } j = 2, 3, \ldots k - 1. \]
- Let k be minimal.
- If $k > 3$ holds, the let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.
- Then is $v = x_1, x_2, \ldots, x_l$ a path in G_ρ with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.
- Thus $\{v, x_l\} \in F_\rho$ holds.
- This is a contradiction to the minimality of the path.
Proof (Let F be as defined, show that $F_{\rho} \subseteq F$ holds)

- Show by induction over i:
 $\forall \{v, w\} \in F_{\rho}$ with $\rho(v) \leq i$: $\{v, w\} \in F$

- Assume the above holds for $i \leq i_0$.
 - Let $\{v, w\} \in F_{\rho}$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.
 - Thus there is a path $v = x_1 x_2 \ldots x_k = w$ in $G_{\rho} = (V, E \cup F_{\rho})$ with:
 - $k \geq 3$ and $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots k - 1$.
 - Let k be minimal.
 - If $k > 3$ holds, the let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.
 - Then is $v = x_1, x_2, \ldots, x_l$ a path in G_{ρ} with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.
 - Thus $\{v, x_l\} \in F_{\rho}$ holds.
 - This is a contradiction to the minimality of the path.
Proof (Let F be as defined, show that $F_{\rho} \subseteq F$ holds)

- Show by induction over i:
 \[\forall \{v, w\} \in F_{\rho} \text{ with } \rho(v) \leq i: \{v, w\} \in F \]
- Assume the above holds for $i \leq i_0$.
- Let $\{v, w\} \in F_{\rho}$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.
- Thus there is a path $v = x_1 x_2 \ldots x_k = w$ in $G_{\rho} = (V, E \cup F_{\rho})$ with:
 - $k \geq 3$ and $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots k - 1$.
 - Let k be minimal.
 - If $k > 3$ holds, then let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.
 - Then is $v = x_1, x_2, \ldots, x_l$ a path in G_{ρ} with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.
 - Thus $\{v, x_l\} \in F_{\rho}$ holds.
 - This is a contradiction to the minimality of the path.
Proof (Let F be as defined, show that $F_\rho \subseteq F$ holds)

- Show by induction over i:
 $\forall \{v, w\} \in F_\rho$ with $\rho(v) \leq i$: $\{v, w\} \in F$

- Assume the above holds for $i \leq i_0$.

- Let $\{v, w\} \in F_\rho$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.

- Thus there is a path $v = x_1 x_2 \ldots x_k = w$ in $G_\rho = (V, E \cup F_\rho)$ with:
 - $k \geq 3$ and $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots k - 1$.
 - Let k be minimal.

- If $k > 3$ holds, let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.

- Then is $v = x_1, x_2, \ldots, x_l$ a path in G_ρ with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.

- Thus $\{v, x_l\} \in F_\rho$ holds.

- This is a contradiction to the minimality of the path.
Proof (Let F be as defined, show that $F_\rho \subseteq F$ holds)

- Show by induction over i:
 $\forall \{v, w\} \in F_\rho$ with $\rho(v) \leq i$: $\{v, w\} \in F$

- Assume the above holds for $i \leq i_0$.

- Let $\{v, w\} \in F_\rho$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.

- Thus there is a path $v = x_1 x_2 \ldots x_k = w$ in $G_\rho = (V, E \cup F_\rho)$ with:
 - $k \geq 3$ and $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots k - 1$.

- Let k be minimal.

 - If $k > 3$ holds, let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.

 - Then is $v = x_1, x_2, \ldots, x_l$ a path in G_ρ with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.

- Thus $\{v, x_l\} \in F_\rho$ holds.

- This is a contradiction to the minimality of the path.
Proof (Let F be as defined, show that $F_{\rho} \subseteq F$ holds)

- Show by induction over i:
 $$\forall \{v, w\} \in F_{\rho} \text{ with } \rho(v) \leq i : \{v, w\} \in F$$

- Assume the above holds for $i \leq i_0$.

- Let $\{v, w\} \in F_{\rho}$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.

- Thus there is a path $v = x_1 x_2 \ldots x_k = w$ in $G_\rho = (V, E \cup F_{\rho})$ with:
 - $k \geq 3$ and $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots k - 1$.

- Let k be minimal.

 - If $k > 3$ holds, let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.

 - Then is $v = x_1, x_2, \ldots, x_l$ a path in G_ρ with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.

 - Thus $\{v, x_l\} \in F_{\rho}$ holds.

 - This is a contradiction to the minimality of the path.
Proof (Let F be as defined, show that $F_\rho \subseteq F$ holds)

- Show by induction over i:
 $\forall \{v, w\} \in F_\rho$ with $\rho(v) \leq i$: $\{v, w\} \in F$

- Assume the above holds for $i \leq i_0$.

- Let $\{v, w\} \in F_\rho$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.

- Thus there is a path $v = x_1x_2 \ldots x_k = w$ in $G_\rho = (V, E \cup F_\rho)$ with:
 - $k \geq 3$ and $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots k - 1$.

- Let k be minimal.

- If $k > 3$ holds, let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.

 Then $v = x_1, x_2, \ldots, x_l$ a path in G_ρ with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.

 Thus $\{v, x_l\} \in F_\rho$ holds.

 This is a contradiction to the minimality of the path.
Proof (Let F be as defined, show that $F_{\rho} \subseteq F$ holds)

- Show by induction over i:
 $\forall \{v, w\} \in F_{\rho}$ with $\rho(v) \leq i$: $\{v, w\} \in F$

- Assume the above holds for $i \leq i_0$.

- Let $\{v, w\} \in F_{\rho}$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.

- Thus there is a path $v = x_1 x_2 \ldots x_k = w$ in $G_{\rho} = (V, E \cup F_{\rho})$ with:
 - $k \geq 3$ and $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots k - 1$.
 - Let k be minimal.

- If $k > 3$ holds, the let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.

- Then is $v = x_1, x_2, \ldots, x_l$ a path in G_{ρ} with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.

- Thus $\{v, x_l\} \in F_{\rho}$ holds.

- This is a contradiction to the minimality of the path.
Proof (Let F be as defined, show that $F_{\rho} \subseteq F$ holds)

- Show by induction over i:
 \[\forall \{v, w\} \in F_{\rho} \text{ with } \rho(v) \leq i : \{v, w\} \in F \]

- Assume the above holds for $i \leq i_0$.

- Let $\{v, w\} \in F_{\rho}$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.

- Thus there is a path $v = x_1 x_2 \ldots x_k = w$ in $G_{\rho} = (V, E \cup F_{\rho})$ with:
 \[k \geq 3 \text{ and } \rho(x_j) < \min(\rho(v), \rho(w)) \text{ for } j = 2, 3, \ldots k - 1. \]

- Let k be minimal.

- If $k > 3$ holds, let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.

- Then is $v = x_1, x_2, \ldots, x_l$ a path in G_{ρ} with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.

- Thus $\{v, x_l\} \in F_{\rho}$ holds.

- This is a contradiction to the minimality of the path.
Proof (Let F be as defined, show that $F_{\rho} \subseteq F$ holds)

- Show by induction over i:
 $\forall \{v, w\} \in F_{\rho}$ with $\rho(v) \leq i$: $\{v, w\} \in F$

- Assume the above holds for $i \leq i_0$.

- Let $\{v, w\} \in F_{\rho}$ with $\rho(v) = i_0 + 1 \leq \rho(w)$.

- Thus there is a path $v = x_1 x_2 \ldots x_k = w$ in $G_{\rho} = (V, E \cup F_{\rho})$ with:
 - $k \geq 3$ and $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots k - 1$.
 - Let k be minimal.

 - If $k > 3$ holds, the let $l \geq 2$ be with $\rho(x_l) \geq \rho(x_j)$ for $j = 2, 3, \ldots k - 1$.

 - Then is $v = x_1, x_2, \ldots, x_l$ a path in G_{ρ} with $\rho(x_j) < \min(\rho(v), \rho(w))$ for $j = 2, 3, \ldots l - 1$.

 - Thus $\{v, x_l\} \in F_{\rho}$ holds.

 - This is a contradiction to the minimality of the path.
Proof (Let F be a set satisfying the above equation, show that $F_{\rho} \subseteq F$ holds)

- Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho,F_{\rho}}(u)$.
- Choose u such that $\rho(u)$ is maximal.
- By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho,F}(u)$ hold.
- If $v \neq m_{F}(u)$ then we would get $v, w \in \Gamma_{\rho,F}(m_{F}(u))$.
- But this is a contradiction to the maximality of $\rho(u)$.
- Thus we have $v = m_{F}(u)$.
- But then is $w \in \Gamma_{\rho,F}(m_{F}(u))$.
- And also $\{v, w\} = \{m_{F}(u), w\} \in F$.
- Thus we get by induction: $F_{\rho} \subseteq F$.

F_{ρ}

$F \cap F_{\rho}$

\[
\begin{align*}
F_{\rho} &= \Gamma_{\rho,F_{\rho}F_{\rho}}(v) \subseteq \Gamma_{\rho,F(m_{F}(v)) \cup m_{F}(v)} \\
v &= x_{1}x_{2}x_{3} = w \\
\rho(x_{2}) &< \min(\rho(v), \rho(w))
\end{align*}
\]
Proof (Let F be a set satisfying the above equation, show that $F_\rho \subseteq F$ holds)

Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho,F_\rho}(u)$.

- Choose u such that $\rho(u)$ is maximal.
- By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho,F}(u)$ hold.
- If $v \neq m_F(u)$ then we would get $v, w \in \Gamma_{\rho,F}(m_F(u))$.
- But this is a contradiction to the maximality of $\rho(u)$.
- Thus we have $v = m_F(u)$.
- But then is $w \in \Gamma_{\rho,F}(m_F(u))$.
- And also $\{v, w\} = \{m_F(u), w\} \in F$.
- Thus we get by induction: $F_\rho \subseteq F$.

\[
\begin{align*}
F & F_\rho \\
F \cap F_\rho
\end{align*}
\]
Proof (Let F be a set satisfying the above equation, show that $F_\rho \subseteq F$ holds)

- Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho,F}(u)$.
- Choose u such that $\rho(u)$ is maximal.
- By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho,F}(u)$ hold.
- If $v \neq m_F(u)$ then we would get $v, w \in \Gamma_{\rho,F}(m_F(u))$.
- But this is a contradiction to the maximality of $\rho(u)$.
- Thus we have $v = m_F(u)$.
- But then is $w \in \Gamma_{\rho,F}(m_F(u))$.
- And also $\{v, w\} = \{m_F(u), w\} \in F$.
- Thus we get by induction: $F_\rho \subseteq F$.

\[F_{\rho,F}(v) \subseteq \Gamma_{\rho,F}(m_F(v)) \cup m_F(v) \]
\[v = x_1, x_2, x_3 = w \]
\[\rho(x_2) < \min(\rho(v), \rho(w)) \]
Proof (Let F be a set satisfying the above equation, show that $F_\rho \subseteq F$ holds)

- Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho,F}(u)$.
- Choose u such that $\rho(u)$ is maximal.
- By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho,F}(u)$ hold.
- If $v \neq m_F(u)$ then we would get $v, w \in \Gamma_{\rho,F}(m_F(u))$.
- But this is a contradiction to the maximality of $\rho(u)$.
- Thus we have $v = m_F(u)$.
- But then is $w \in \Gamma_{\rho,F}(m_F(u))$.
- And also $\{v, w\} = \{m_F(u), w\} \in F$.
- Thus we get by induction: $F_\rho \subseteq F$.
Proof (Let F be a set satisfying the above equation, show that $F_{\rho} \subseteq F$ holds)

Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho, F}(u)$.

Choose u such that $\rho(u)$ is maximal.

By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho, F}(u)$ hold.

If $v \neq m_F(u)$ then we would get $v, w \in \Gamma_{\rho, F}(m_F(u))$.

But this is a contradiction to the maximality of $\rho(u)$.

Thus we have $v = m_F(u)$.

But then is $w \in \Gamma_{\rho, F}(m_F(u))$.

And also $\{v, w\} = \{m_F(u), w\} \in F$.

Thus we get by induction: $F_{\rho} \subseteq F$.

\begin{equation}
F_{\rho}, F(v) \subseteq \Gamma_{\rho, F}(m_F(v)) \cup m_F(v)
\end{equation}

$\rho(x_2) < \min(\rho(v), \rho(w))$

\begin{equation}
v = x_1 x_2 x_3 = w
\end{equation}
Proof (Let F be a set satisfying the above equation, show that $F_{\rho} \subseteq F$ holds)

- Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho, F_{\rho}}(u)$.
- Choose u such that $\rho(u)$ is maximal.
- By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho, F}(u)$ hold.
- If $v \neq m_F(u)$ then we would get $v, w \in \Gamma_{\rho, F}(m_F(u))$.
- But this is a contradiction to the maximality of $\rho(u)$.
- Thus we have $v = m_F(u)$.
- But then is $w \in \Gamma_{\rho, F}(m_F(u))$.
- And also $\{v, w\} = \{m_F(u), w\} \in F$.
- Thus we get by induction: $F_{\rho} \subseteq F$.

\[
\begin{align*}
\Gamma_{\rho, F}(v) &\subseteq \Gamma_{\rho, F}(m_F(v)) \cup m_F(v) \\
v & = x_1^1 x_2^2 x_3^3 = w \\
\rho(x_2) & < \min(\rho(v), \rho(w))
\end{align*}
\]
Proof (Let F be a set satisfying the above equation, show that $F_\rho \subseteq F$ holds)

- Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho,F}(u)$.
- Choose u such that $\rho(u)$ is maximal.
- By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho,F}(u)$ hold.
- If $v \neq m_{F}(u)$ then we would get $v, w \in \Gamma_{\rho,F}(m_{F}(u))$.
- But this is a contradiction to the maximality of $\rho(u)$.
- Thus we have $v = m_{F}(u)$.
- But then is $w \in \Gamma_{\rho,F}(m_{F}(u))$.
- And also $\{v, w\} = \{m_{F}(u), w\} \in F$.
- Thus we get by induction: $F_\rho \subseteq F$.

\[
\begin{align*}
\Gamma_{\rho,F}(v) &\subseteq \Gamma_{\rho,F}(m_{F}(v)) \cup m_{F}(v) \\
v &= x_1 x_2 x_3 = w \\
\rho(x_2) &< \min(\rho(v), \rho(w))
\end{align*}
\]
Proof (Let F be a set satisfying the above equation, show that $F_{\rho} \subseteq F$ holds)

- Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho, F}(u)$.
- Choose u such that $\rho(u)$ is maximal.
- By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho, F}(u)$ hold.
- If $v \neq m_F(u)$ then we would get $v, w \in \Gamma_{\rho, F}(m_F(u))$.
- But this is a contradiction to the maximality of $\rho(u)$.
- Thus we have $v = m_F(u)$.
- But then is $w \in \Gamma_{\rho, F}(m_F(u))$.
- And also $\{v, w\} = \{m_F(u), w\} \in F$.
- Thus we get by induction: $F_{\rho} \subseteq F$.

\[
\rho(u) = \min(\rho(v), \rho(w))
\]
Proof (Let F be a set satisfying the above equation, show that $F_\rho \subseteq F$ holds)

- Let $k = 3$ and $u = x_2$ with: $v, w \in \Gamma_{\rho,F}(u)$.
- Choose u such that $\rho(u)$ is maximal.
- By induction and $\rho(u) < \rho(v)$ does $v, w \in \Gamma_{\rho,F}(u)$ hold.
- If $v \neq m_F(u)$ then we would get $v, w \in \Gamma_{\rho,F}(m_F(u))$.
- But this is a contradiction to the maximality of $\rho(u)$.
- Thus we have $v = m_F(u)$.
- But then is $w \in \Gamma_{\rho,F}(m_F(u))$.
- And also $\{v, w\} = \{m_F(u), w\} \in F$.
- Thus we get by induction: $F_\rho \subseteq F$.

\[
\rho(x_2) < \min(\rho(v), \rho(w))
\]
Lemma

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm Fill _In(G, ρ)

- For all $v \in V$ do:
 - $A(v) := \Gamma_{\rho, \emptyset}(v) = \{w \in \Gamma(V) \mid \rho(w) > \rho(v)\}$

- For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$

- $F_\rho = \emptyset$

- For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
Theorem

Lemma

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $\text{Fill_In}(G, \rho)$

- For all $v \in V$ do:
 - $A(v) := \Gamma_{\rho, \emptyset}(v) = \{w \in \Gamma(V) \mid \rho(w) > \rho(v)\}$

- For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$

- $F_\rho = \emptyset$

- For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
Lemma

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $\text{Fill_In}(G, \rho)$

For all $v \in V$ do:
- $A(v) := \Gamma_{\rho, \emptyset}(v) = \{w \in \Gamma(V) \mid \rho(w) > \rho(v)\}$

For $i := 1$ bis $n - 1$ do:
- $v := \rho^{-1}(i)$
- $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
- $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$

$F_\rho = \emptyset$

For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
- $F_\rho = F_\rho \cup \{v, w\}$
Theorem

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $Fill_In(G, \rho)$

1. For all $v \in V$ do:
 - $A(v) := \Gamma_{\rho,\emptyset}(v) = \{w \in \Gamma(V) \mid \rho(w) > \rho(v)\}$

2. For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$

3. $F_\rho = \emptyset$

4. For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
Lemma

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $Fill_In(G, \rho)$

- For all $v \in V$ do:
 - $A(v) := \Gamma_{\rho,\emptyset}(v) = \{w \in \Gamma(V) | \rho(w) > \rho(v)\}$

- For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) | u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) | w \neq m(v)\}$

- $F_\rho = \emptyset$

- For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
Lemma

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $\text{Fill_In}(G, \rho)$

- For all $v \in V$ do:
 - $A(v) := \Gamma_{\rho, \emptyset}(v) = \{w \in \Gamma(V) \mid \rho(w) > \rho(v)\}$
- For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$
- $F_\rho = \emptyset$
- For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
 Lemma

For a graph G and an ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $Fill_In(G, \rho)$

- For all $v \in V$ do:
 - $A(v) := \Gamma_{\rho,\emptyset}(v) = \{w \in \Gamma(V) \mid \rho(w) > \rho(v)\}$

- For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$

- $F_\rho = \emptyset$

- For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
Theorem

Lemma

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $\text{Fill_In}(G, \rho)$

- For all $v \in V$ do:
 - $A(v) := \Gamma_\rho,\emptyset(v) = \{w \in \Gamma(V) \mid \rho(w) > \rho(v)\}$
- For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$
- $F_\rho = \emptyset$
- For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
Lemma

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $\text{Fill}_\text{In}(G, \rho)$

- For all $v \in V$ do:
 - $A(v) := \Gamma_{\rho,\emptyset}(v) = \{w \in \Gamma(v) \mid \rho(w) > \rho(v)\}$

- For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$

- $F_\rho = \emptyset$

- For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
Lemma

For a graph G and a ordering ρ is the fill-in computable in time $O(n + m + |F_\rho|)$.

Algorithm $Fill_\text{In}(G, \rho)$

- For all $v \in V$ do:
 - $A(v) := \Gamma_\rho,\emptyset(v) = \{w \in \Gamma(V) \mid \rho(w) > \rho(v)\}$

- For $i := 1$ bis $n - 1$ do:
 - $v := \rho^{-1}(i)$
 - $m(v) := \rho^{-1}(\min\{\rho(u) \mid u \in A(v)\})$
 - $A(m(v)) := A(m(v)) \cup \{w \in A(v) \mid w \neq m(v)\}$

- $F_\rho = \emptyset$

- For all $v \in V$ and $w \in A(v) \setminus \Gamma(v)$ do:
 - $F_\rho = F_\rho \cup \{v, w\}$
An ordering ρ for $G = (V, E)$ is called minimal elimination schema (MES), iff the Fill-in F_ρ is minimal, i.e. $\not\exists \rho' : F_{\rho'} \subset F_\rho$.

- **Aim:** clique-separator for G should also be clique-separator for G_ρ, if ρ is a MES.
- **Note:** to find the smallest MES is in NPC.
- **But here we only need a MES.**
- **This is possible in polynomial time:**
 - Lexicographical breath-first-search
 - Comparing sets by their lexicographical order:
 - Thus $\{2, 5\} < \{2, 4, 5\}$
 - And $\emptyset < \{2\}$
Definition

An ordering ρ for $G = (V, E)$ is called minimal elimination schema (MES), iff the Fill-in F_ρ is minimal, i.e. $\nexists \rho' : F_{\rho'} \subset F_\rho$.

- Aim: clique-separator for G should also be clique-separator for G_ρ, if ρ is a MES.
- Note: to find the smallest MES is in NPC.
- But here we only need a MES.
- This is possible in polynomial time:
 - Lexicographical breath-first-search
 - Comparing sets by their lexicographical order:
 - Thus $\{2, 5\} < \{2, 4, 5\}$
 - And $\emptyset < \{2\}$
Definition

An ordering ρ for $G = (V, E)$ is called minimal elimination schema (MES), iff the Fill-in F_{ρ} is minimal, i.e. $\not\exists \rho' : F_{\rho'} \subset F_{\rho}$.

- Aim: clique-separator for G should also be clique-separator for G_{ρ}, if ρ is a MES.
- Note: to find the smallest MES is in NPC.
- But here we only need a MES.
- This is possible in polynomial time:
 - Lexicographical breath-first-search
 - Comparing sets by their lexicographical order:
 - Thus $\{2, 5\} < \{2, 4, 5\}$
 - And $\emptyset < \{2\}$
Definition

An ordering ρ for $G = (V, E)$ is called minimal elimination schema (MES), iff the Fill-in F_ρ is minimal, i.e. $\nexists \rho' : F_{\rho'} \subset F_\rho$.

- **Aim:** clique-separator for G should also be clique-separator for G_ρ, if ρ is a MES.
- **Note:** to find the smallest MES is in NPC.
- **But here we only need a MES.**
- **This is possible in polynomial time:**
 - Lexicographical breath-first-search
 - Comparing sets by their lexicographical order:
 - Thus $\{2, 5\} < \{2, 4, 5\}$
 - And $\emptyset < \{2\}$
Definition

An ordering ρ for $G = (V, E)$ is called minimal elimination schema (MES), iff the Fill-in F_ρ is minimal, i.e. $\not\exists \rho' : F_{\rho'} \subset F_\rho$.

- **Aim:** clique-separator for G should also be clique-separator for G_ρ, if ρ is a MES.
- **Note:** to find the smallest MES is in NPC.
- **But here we only need a MES.**
- **This is possible in polynomial time:**
 - Lexicographical breath-first-search
 - Comparing sets by their lexicographical order:
 - Thus $\{2, 5\} < \{2, 4, 5\}$
 - And $\emptyset < \{2\}$
Definition

An ordering ρ for $G = (V, E)$ is called minimal elimination schema (MES), iff the Fill-in F_ρ is minimal, i.e. $\not\exists \rho': F_{\rho'} \subset F_\rho$.

- Aim: clique-separator for G should also be clique-separator for G_ρ, if ρ is a MES.
- Note: to find the smallest MES is in NPC.
- But here we only need a MES.
- This is possible in polynomial time:
 - Lexicographical breath-first-search
 - Comparing sets by their lexicographical order:
 - Thus $\{2, 5\} < \{2, 4, 5\}$
 - And $\emptyset < \{2\}$
An ordering ρ for $G = (V, E)$ is called minimal elimination schema (MES), iff the Fill-in F_ρ is minimal, i.e. $\nexists \rho' : F_{\rho'} \subset F_\rho$.

Aim: clique-separator for G should also be clique-separator for G_ρ, if ρ is a MES.

Note: to find the smallest MES is in NPC.

But here we only need a MES.

This is possible in polynomial time:

- Lexicographical breath-first-search
- Comparing sets by their lexicographical order:
 - Thus $\{2, 5\} < \{2, 4, 5\}$
 - And $\emptyset < \{2\}$
Definition

An ordering ρ for $G = (V, E)$ is called minimal elimination schema (MES), iff the Fill-in F_ρ is minimal, i.e. $\nexists \rho' : F_{\rho'} \subset F_\rho$.

- Aim: clique-separator for G should also be clique-separator for G_ρ, if ρ is a MES.
- Note: to find the smallest MES is in NPC.
- But here we only need a MES.
- This is possible in polynomial time:
 - Lexicographical breath-first-search
 - Comparing sets by their lexicographical order:
 - Thus $\{2, 5\} < \{2, 4, 5\}$
 - And $\emptyset < \{2\}$
Definition

An ordering ρ for $G = (V, E)$ is called minimal elimination schema (MES), iff the Fill-in F_ρ is minimal, i.e. $\nexists \rho' : F_\rho' \subset F_\rho$.

- Aim: clique-separator for G should also be clique-separator for G_ρ, if ρ is a MES.
- Note: to find the smallest MES is in NPC.
- But here we only need a MES.
- This is possible in polynomial time:
 - Lexicographical breath-first-search
 - Comparing sets by their lexicographical order:
 - Thus $\{2, 5\} < \{2, 4, 5\}$
 - And $\emptyset < \{2\}$
Algorithm

- For all \(v \in V \) do:
 - \(pr(v) := \emptyset \)
 - \(\rho(v) := 0 \)

- For \(i := n \) down to 1 do:
 - Choose node \(v \) with \(pr(v) \) maximal and \(\rho(v) = 0 \)
 - \(\rho(v) := i \)
 - For all \(w \) with \(\rho(w) = 0 \) do:
 - If there is a path \(v = v_1, v_2, \ldots, v_k = w \) with:
 - \(\rho(v_i) = 0 \) and \(pr(v_j) < pr(v_w) \)
 - for \(j = 2, 3, \ldots, k - 1 \), do:
 - \(pr(w) := pr(w) \cup \{i\} \)

- Proof of correctness is complicated.
- Running-time \(O(n(m + n)) \)
Algorithm

- For all $v \in V$ do:
 - $pr(v) := \emptyset$
 - $\rho(v) := 0$

- For $i := n$ down to 1 do:
 - Choose node v with $pr(v)$ maximal and $\rho(v) = 0$
 - $\rho(v) := i$
 - For all w with $\rho(w) = 0$ do
 - If there is a path $v = v_1, v_2, \ldots, v_k = w$ with:
 - $\rho(v_i) = 0$ and $pr(v_j) < pr(v_w)$
 - for $j = 2, 3, \ldots, k - 1$, do:
 - $pr(w) := pr(w) \cup \{i\}$

- Proof of correctness is complicated.

- Running-time $O(n(m + n))$
Algorithm

- For all \(v \in V \) do:
 - \(pr(v) := \emptyset \)
 - \(\rho(v) := 0 \)

- For \(i := n \) down to 1 do:
 - Choose node \(v \) with \(pr(v) \) maximal and \(\rho(v) = 0 \)
 - \(\rho(v) := i \)
 - For all \(w \) with \(\rho(w) = 0 \) do:
 - If there is a path \(v = v_1, v_2, \ldots, v_k = w \) with:
 - \(\rho(v_i) = 0 \) and \(pr(v_j) < pr(v_w) \)
 - for \(j = 2, 3, \ldots, k - 1 \), do:
 - \(pr(w) := pr(w) \cup \{i\} \)

- Proof of correctness is complicated.
- Running-time \(O(n(m+n)) \)
Algorithm

- For all $v \in V$ do:
 - $pr(v) := \emptyset$
 - $\rho(v) := 0$

- For $i := n$ down to 1 do:
 - Choose node v with $pr(v)$ maximal and $\rho(v) = 0$
 - $\rho(v) := i$
 - For all w with $\rho(w) = 0$ do
 - If there is a path $v = v_1, v_2, \ldots, v_k = w$ with:
 - $\rho(v_i) = 0$ and $pr(v_j) < pr(v_w)$
 - for $j = 2, 3, \ldots, k - 1$, do:
 - $pr(w) := pr(w) \cup \{i\}$
 - Proof of correctness is complicated.
 - Running-time $O(n(m + n))$
Algorithm

- For all \(v \in V \) do:
 - \(pr(v) := \emptyset \)
 - \(\rho(v) := 0 \)

- For \(i := n \) down to 1 do:
 - Choose node \(v \) with \(pr(v) \) maximal and \(\rho(v) = 0 \)
 - \(\rho(v) := i \)
 - For all \(w \) with \(\rho(w) = 0 \) do
 - If there is a path \(v = v_1, v_2, \ldots, v_k = w \) with:
 - \(\rho(v_i) = 0 \) and \(pr(v_j) < pr(v_w) \)
 - for \(j = 2, 3, \ldots, k - 1 \), do:
 - \(pr(w) := pr(w) \cup \{i\} \)

- Proof of correctness is complicated.
- Running-time \(O(n(m + n)) \)
Algorithm

- For all $v \in V$ do:
 - $pr(v) := \emptyset$
 - $\rho(v) := 0$

- For $i := n$ down to 1 do:
 - Choose node v with $pr(v)$ maximal and $\rho(v) = 0$
 - $\rho(v) := i$
 - For all w with $\rho(w) = 0$ do
 - If there is a path $v = v_1, v_2, \ldots, v_k = w$ with:
 $\rho(v_i) = 0$ and $pr(v_j) < pr(v_w)$
 for $j = 2, 3, \ldots, k - 1$, do:
 - $pr(w) := pr(w) \cup \{i\}$

- Proof of correctness is complicated.
- Running-time $O(n(m + n))$
Algorithm

For all $v \in V$ do:
 - $pr(v) := \emptyset$
 - $\rho(v) := 0$

For $i := n$ down to 1 do:
 - Choose node v with $pr(v)$ maximal and $\rho(v) = 0$
 - $\rho(v) := i$
 - For all w with $\rho(w) = 0$ do
 - If there is a path $v = v_1, v_2, \ldots, v_k = w$ with:
 - $\rho(v_i) = 0$ and $pr(v_j) < pr(v_w)$
 for $j = 2, 3, \ldots, k - 1$, do:
 - $pr(w) := pr(w) \cup \{i\}$

Proof of correctness is complicated.

Running-time $O(n(m + n))$
Algorithm

- For all $v \in V$ do:
 - $pr(v) := \emptyset$
 - $\rho(v) := 0$

- For $i := n$ down to 1 do:
 - Choose node v with $pr(v)$ maximal and $\rho(v) = 0$
 - $\rho(v) := i$
 - For all w with $\rho(w) = 0$ do
 - If there is a path $v = v_1, v_2, \ldots, v_k = w$ with:
 - $\rho(v_i) = 0$ and $pr(v_j) < pr(v_w)$
 - for $j = 2, 3, \ldots, k - 1$, do:
 - $pr(w) := pr(w) \cup \{i\}$

- Proof of correctness is complicated.

- Running-time $O(n(m + n))$
Algorithm

For all $v \in V$ do:
- $pr(v) := \emptyset$
- $\rho(v) := 0$

For $i := n$ down to 1 do:
- Choose node v with $pr(v)$ maximal and $\rho(v) = 0$
- $\rho(v) := i$
- For all w with $\rho(w) = 0$ do
 - If there is a path $v = v_1, v_2, \ldots, v_k = w$ with:
 $\rho(v_i) = 0$ and $pr(v_j) < pr(v_w)$
 for $j = 2, 3, \ldots, k - 1$, do:
 - $pr(w) := pr(w) \cup \{i\}$

Proof of correctness is complicated.

Running-time $O(n(m + n))$
Algorithm

- For all $v \in V$ do:
 - $pr(v) := \emptyset$
 - $\rho(v) := 0$

- For $i := n$ down to 1 do:
 - Choose node v with $pr(v)$ maximal and $\rho(v) = 0$
 - $\rho(v) := i$
 - For all w with $\rho(w) = 0$ do
 - If there is a path $v = v_1, v_2, \ldots, v_k = w$ with:
 - $\rho(v_i) = 0$ and $pr(v_j) < pr(v_w)$
 - for $j = 2, 3, \ldots, k - 1$, do:
 - $pr(w) := pr(w) \cup \{i\}$

- Proof of correctness is complicated.

- Running-time $O(n(m + n))$
Algorithm

- For all $v \in V$ do:
 - $pr(v) := \emptyset$
 - $\rho(v) := 0$

- For $i := n$ down to 1 do:
 - Choose node v with $pr(v)$ maximal and $\rho(v) = 0$
 - $\rho(v) := i$
 - For all w with $\rho(w) = 0$ do
 - If there is a path $v = v_1, v_2, \ldots, v_k = w$ with:
 $\rho(v_i) = 0$ and $pr(v_j) < pr(v_w)$
 for $j = 2, 3, \ldots, k - 1$, do:
 - $pr(w) := pr(w) \cup \{i\}$

- Proof of correctness is complicated.

- Running-time $O(n(m + n))$
Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connect two components.
- Call this new edge set F, $F \subset F_\rho$.
- Show: $G' = (V, E \cup F)$ is chordal.
 - Let K be a cycle in G' of length ≥ 4.
 - If $K \subset G[V_i \cup C]$, then has K a chord in F_ρ, because G_ρ is chordal.
 - This chord is in $E \cup F$.
 - If K goes through different V_i, then has K two nodes in C, which are not connected in C.
 - Thus K has a chord in G'.
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connect two components.
- Call this new edge set $F, F \subset F_\rho$.
- Show: $G' = (V, E \cup F)$ is chordal.
 - Let K be a cycle in G' of length ≥ 4.
 - If $K \subset G[V_i \cup C]$, then has K a chord in F_ρ, because G_ρ is chordal.
 - This chord is in $E \cup F$.
 - If K goes through different V_i, then has K two nodes in C, which are not connected in C.
 - Thus K has a chord in G'.
Statements

Theorem

Let \(\rho \) be a MES for \(G = (V, E) \). Then a clique-separator for \(G \) is also a clique-separator for \(G_\rho \).

- Let \(V_1, \ldots, V_k \) be the node sets of the components from \(G[V \setminus C] \).
- Delete from \(F_\rho \) all edges, which connect two components.
- Call this new edge set \(F, F \subset F_\rho \).
- Show: \(G' = (V, E \cup F) \) is chordal.
 - Let \(K \) be a cycle in \(G' \) of length \(\geq 4 \).
 - If \(K \subset G[V_i \cup C] \), then has \(K \) a chord in \(F_\rho \), because \(G_\rho \) is chordal.
 - This chord is in \(E \cup F \).
 - If \(K \) goes through different \(V_i \), then has \(K \) two nodes in \(C \), which are not connected in \(C \).
 - Thus \(K \) has a chord in \(G' \).
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_{ρ}.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_{ρ} all edges, which connect two components.
- Call this new edge set F, $F \subset F_{\rho}$.
- Show: $G' = (V, E \cup F)$ is chordal.
 - Let K be a cycle in G' of length ≥ 4.
 - If $K \subset G[V_i \cup C]$, then has K a chord in F_{ρ}, because G_{ρ} is chordal.
 - This chord is in $E \cup F$.
 - If K goes through different V_i, then has K two nodes in C, which are not connected in C.
 - Thus K has a chord in G'.
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connect two components.
- Call this new edge set F, $F \subset F_\rho$.
- Show: $G' = (V, E \cup F)$ is chordal.
 - Let K be a cycle in G' of length ≥ 4.
 - If $K \subset G[V_i \cup C]$, then has K a chord in F_ρ, because G_ρ is chordal.
 - This chord is in $E \cup F$.
 - If K goes through different V_i, then has K two nodes in C, which are not connected in C.
 - Thus K has a chord in G'.

Theorem

Let \(\rho \) be a MES for \(G = (V, E) \). Then a clique-separator for \(G \) is also a clique-separator for \(G_\rho \).

Let \(V_1, \ldots, V_k \) be the node sets of the components from \(G[V \setminus C] \).

Delete from \(F_\rho \) all edges, which connect two components.

Call this new edge set \(F, F \subset F_\rho \).

Show: \(G' = (V, E \cup F) \) is chordal.

- Let \(K \) be a cycle in \(G' \) of length \(\geq 4 \).
- If \(K \subset G[V_i \cup C] \), then has \(K \) a chord in \(F_\rho \), because \(G_\rho \) is chordal.
- This chord is in \(E \cup F \).
- If \(K \) goes through different \(V_i \), then has \(K \) two nodes in \(C \), which are not connected in \(C \).
- Thus \(K \) has a chord in \(G' \).
Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connect two components.
- Call this new edge set F, $F \subset F_\rho$.
- Show: $G' = (V, E \cup F)$ is chordal.
 - Let K be a cycle in G' of length ≥ 4.
 - If $K \subset G[V_i \cup C]$, then has K a chord in F_ρ, because G_ρ is chordal.
 - This chord is in $E \cup F$.
 - If K goes through different V_i, then has K two nodes in C, which are not connected in C.
 - Thus K has a chord in G'.
Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.

Delete from F_ρ all edges, which connect two components.

Call this new edge set F, $F \subset F_\rho$.

Show: $G' = (V, E \cup F)$ is chordal.

Let K be a cycle in G' of length ≥ 4.

If $K \subset G[V_i \cup C]$, then has K a chord in F_ρ, because G_ρ is chordal.

This chord is in $E \cup F$.

If K goes through different V_i, then has K two nodes in C, which are not connected in C.

Thus K has a chord in G'.
Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connect two components.
- Call this new edge set F, $F \subset F_\rho$.
- Show: $G' = (V, E \cup F)$ is chordal.
 - Let K be a cycle in G' of length ≥ 4.
 - If $K \subset G[V_i \cup C]$, then has K a chord in F_ρ, because G_ρ is chordal.
 - This chord is in $E \cup F$.
 - If K goes through different V_i, then has K two nodes in C, which are not connected in C.
 - Thus K has a chord in G'.

Statements
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from ρ all edges, which connect two components.
- Call this new edge set $F, F \subset \rho$.
- Show: $G' = (V, E \cup F)$ is chordal.
 - Let K be a cycle in G' of length ≥ 4.
 - If $K \subset G[V_i \cup C]$, then has K a chord in ρ,
 because G_ρ is chordal.
 - This chord is in $E \cup F$.
 - If K goes through different V_i, then has K two nodes in C, which are not connected in C.
 - Thus K has a chord in G'.
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_{ρ}.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_{ρ} all edges, which connects two components.
- Call this new edge set F, $F \subseteq F_{\rho}$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_{\rho} = F$.
- This ends the proof.
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connects two components.
- Call this new edge set $F, F \subset F_\rho$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal.
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_\rho = F$.
- This ends the proof.
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_{ρ}.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_{ρ} all edges, which connects two components.
- Call this new edge set $F, F \subset F_{\rho}$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_{\rho} = F$.
- This ends the proof.
Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connects two components.
- Call this new edge set $F, F \subseteq F_\rho$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_\rho = F$.
- This ends the proof.
Theorem

Let \(\rho \) be a MES for \(G = (V, E) \). Then a clique-separator for \(G \) is also a clique-separator for \(G_\rho \).

- Let \(V_1, \ldots, V_k \) be the node sets of the components from \(G[V \setminus C] \).
- Delete from \(F_\rho \) all edges, which connects two components.
- Call this new edge set \(F, F \subset F_\rho \).
- Shown on the last slide: \(G' = (V, E \cup F) \) is chordal
 - Thus \(G' \) is chordal and has PES \(\rho' \) with \(F_{\rho'} = F \).
 - \(\rho \) is a MES, thus: \(F_{\rho'} = F_\rho = F \).
- This ends the proof.
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connects two components.
- Call this new edge set $F, F \subseteq F_\rho$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_\rho = F$.
- This ends the proof.
Theorem

*Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.***

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connect two components.
- Call this new edge set F, $F \subseteq F_\rho$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal.
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_\rho = F$.
- This ends the proof.
Theorem

Let \(\rho \) be a MES for \(G = (V, E) \). Then a clique-separator for \(G \) is also a clique-separator for \(G_\rho \).

- Let \(V_1, \ldots, V_k \) be the node sets of the components from \(G[V \setminus C] \).
- Delete from \(F_\rho \) all edges, which connects two components.
- Call this new edge set \(F, F \subset F_\rho \).
- Shown on the last slide: \(G' = (V, E \cup F) \) is chordal
- Thus \(G' \) is chordal and has PES \(\rho' \) with \(F_{\rho'} = F \).
- \(\rho \) is a MES, thus: \(F_{\rho'} = F_\rho = F \).
- This ends the proof.
Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connects two components.
- Call this new edge set F, $F \subset F_\rho$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal.
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_\rho = F$.
- This ends the proof.
Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connects two components.
- Call this new edge set F, $F \subseteq F_\rho$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal.
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_\rho = F$.
- This ends the proof.
Theorem

Let ρ be a MES for $G = (V, E)$. Then a clique-separator for G is also a clique-separator for G_ρ.

- Let V_1, \ldots, V_k be the node sets of the components from $G[V \setminus C]$.
- Delete from F_ρ all edges, which connects two components.
- Call this new edge set F, $F \subset F_\rho$.
- Shown on the last slide: $G' = (V, E \cup F)$ is chordal
- Thus G' is chordal and has PES ρ' with $F_{\rho'} = F$.
- ρ is a MES, thus: $F_{\rho'} = F_{\rho} = F$.
- This ends the proof.
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]
\[F_\rho := \text{Fill}_\text{In}(G, \rho) \]

For all \(v \in V \) do:
 - \(C(v) := \emptyset \)
 - For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_\rho \) holds, then do:
 - \(C(v) := C(v) \cup \{w\} \)

\[k := 1 \]

For all \(i := 1 \) bis \(n - 1 \) do:
 - \(v := \rho^{-1}(i) \)
 - Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
 - Let \(B = V \setminus (A \cup C(v)) \)
 - If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)

\(\text{Atoms}(k) := V(G) \)
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]
\[F_\rho := \text{Fill}_\text{In}(G, \rho) \]

For all \(v \in V \) do:

- \(C(v) := \emptyset \)
- For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_\rho \) holds, then do:
 - \(C(v) := C(v) \cup \{w\} \)

\(k := 1 \)

For all \(i := 1 \) bis \(n - 1 \) do:

- \(v := \rho^{-1}(i) \)
- Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
- Let \(B = V \setminus (A \cup C(v)) \)
- If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)

\(\text{Atoms}(k) := V(G) \)
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]

\[F_{\rho} := \text{Fill}_\text{In}(G, \rho) \]

For all \(v \in V \) do:
- \(C(v) := \emptyset \)
 - For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_{\rho} \) holds, then do:
 - \(C(v) := C(v) \cup \{w\} \)

\[k := 1 \]

For all \(i := 1 \) bis \(n - 1 \) do:
- \(v := \rho^{-1}(i) \)
 - Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
 - Let \(B = V \setminus (A \cup C(v)) \)
 - If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)

\[\text{Atoms}(k) := V(G) \]
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G)\]
\[F_{\rho} := \text{Fill}_\text{In}(G, \rho)\]

For all \(v \in V\) do:

- \(C(v) := \emptyset\)
 - For all \(w \in V\) do:
 - If \(\rho(w) > \rho(v)\) and \(\{v, w\} \in E \cup F_{\rho}\) holds, then do:
 - \(C(v) := C(v) \cup \{w\}\)

\(k := 1\)

For all \(i := 1\) bis \(n - 1\) do:

- \(v := \rho^{-1}(i)\)
- Let \(A\) be a component in \(G[V \setminus C(v)]\) which contains \(v\).
- Let \(B = V \setminus (A \cup C(v))\)
- If \(B \neq \emptyset\) and \(C(v)\) is a clique:
 - \(\text{Atoms}(k) := A\)
 - \(k := k + 1\)
 - \(G := G[B \cup C(v)]\)

\(\text{Atoms}(k) := V(G)\)
Clique-Separator-Tree Algorithm

- \(\rho := \text{LexBFS}(G) \)
- \(F_\rho := \text{Fill}_\rho(G, \rho) \)

For all \(v \in V \) do:
 - \(C(v) := \emptyset \)
 - For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_\rho \) holds, then do:
 - \(C(v) := C(v) \cup \{w\} \)

- \(k := 1 \)

For all \(i := 1 \) bis \(n - 1 \) do:
 - \(v := \rho^{-1}(i) \)
 - Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
 - Let \(B = V \setminus (A \cup C(v)) \)
 - If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)

- \(\text{Atoms}(k) := V(G) \)
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]
\[F_\rho := \text{Fill_In}(G, \rho) \]

For all \(v \in V \) do:
\[C(v) := \emptyset \]
For all \(w \in V \) do:
\[\text{If } \rho(w) > \rho(v) \text{ and } \{v, w\} \in E \cup F_\rho \text{ holds, then do:} \]
\[C(v) := C(v) \cup \{w\} \]

\[k := 1 \]

For all \(i := 1 \) bis \(n - 1 \) do:
\[v := \rho^{-1}(i) \]
\[\text{Let } A \text{ be a component in } G[V \setminus C(v)] \text{ which contains } v. \]
\[\text{Let } B = V \setminus (A \cup C(v)) \]
\[\text{If } B \neq \emptyset \text{ and } C(v) \text{ is a clique:} \]
\[\text{Atoms}(k) := A \]
\[k := k + 1 \]
\[G := G[B \cup C(v)] \]

\[\text{Atoms}(k) := V(G) \]
Clique-Separator-Tree Algorithm

- \(\rho := \text{LexBFS}(G) \)
- \(F_\rho := \text{Fill_In}(G, \rho) \)

For all \(v \in V \) do:
 - \(C(v) := \emptyset \)
 - For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_\rho \) holds, then do:
 - \(C(v) := C(v) \cup \{w\} \)

- \(k := 1 \)

For all \(i := 1 \) bis \(n - 1 \) do:
 - \(v := \rho^{-1}(i) \)
 - Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
 - Let \(B = V \setminus (A \cup C(v)) \)
 - If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)

- \(\text{Atoms}(k) := V(G) \)
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]
\[F_{\rho} := \text{Fill}_{\text{In}}(G, \rho) \]

For all \(v \in V \) do:
- \(C(v) := \emptyset \)
- For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_{\rho} \) holds, then:
 - \(C(v) := C(v) \cup \{w\} \)

\[k := 1 \]

For all \(i := 1 \) bis \(n - 1 \) do:
- \(v := \rho^{-1}(i) \)
- Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
- Let \(B = V \setminus (A \cup C(v)) \)
- If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)

\[\text{Atoms}(k) := V(G) \]
Clique-Separator-Tree Algorithm

\begin{itemize}
 \item \(\rho := \text{LexBFS}(G) \)
 \item \(F_\rho := \text{Fill}_\text{In}(G, \rho) \)
 \item For all \(v \in V \) do:
 \begin{itemize}
 \item \(C(v) := \emptyset \)
 \item For all \(w \in V \) do:
 \begin{itemize}
 \item If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_\rho \) holds, then do:
 \begin{itemize}
 \item \(C(v) := C(v) \cup \{w\} \)
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \item \(k := 1 \)
 \item For all \(i := 1 \) bis \(n - 1 \) do:
 \begin{itemize}
 \item \(v := \rho^{-1}(i) \)
 \item Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
 \item Let \(B = V \setminus (A \cup C(v)) \)
 \item If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 \begin{itemize}
 \item \(\text{Atoms}(k) := A \)
 \item \(k := k + 1 \)
 \item \(G := G[B \cup C(v)] \)
 \end{itemize}
 \end{itemize}
 \item \(\text{Atoms}(k) := V(G) \)
\end{itemize}
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]
\[F_\rho := \text{Fill In}(G, \rho) \]

For all \(v \in V \) do:
- \(C(v) := \emptyset \)
- For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_\rho \) holds, then do:
 - \(C(v) := C(v) \cup \{w\} \)

\[k := 1 \]

For all \(i := 1 \) bis \(n - 1 \) do:
- \(v := \rho^{-1}(i) \)
- Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
- Let \(B = V \setminus (A \cup C(v)) \)
- If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)

\(\text{Atoms}(k) := V(G) \)
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]
\[F_\rho := \text{Fill}_\text{In}(G, \rho) \]

For all \(v \in V \) do:
 \[C(v) := \emptyset \]
 For all \(w \in V \) do:
 If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_\rho \) holds, then do:
 \[C(v) := C(v) \cup \{w\} \]

\[k := 1 \]

For all \(i := 1 \) bis \(n - 1 \) do:
 \[v := \rho^{-1}(i) \]
 Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
 Let \(B = V \setminus (A \cup C(v)) \)
 If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 \[\text{Atoms}(k) := A \]
 \[k := k + 1 \]
 \[G := G[B \cup C(v)] \]
 \[\text{Atoms}(k) := V(G) \]
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G)\]

\[F_\rho := \text{Fill}_\text{In}(G, \rho)\]

For all \(v \in V\) do:

- \(C(v) := \emptyset\)
- For all \(w \in V\) do:
 - If \(\rho(w) > \rho(v)\) and \(\{v, w\} \in E \cup F_\rho\) holds, then do:
 - \(C(v) := C(v) \cup \{w\}\)

\(k := 1\)

For all \(i := 1\) bis \(n - 1\) do:

- \(v := \rho^{-1}(i)\)
- Let \(A\) be a component in \(G[V \setminus C(v)]\) which contains \(v\).
- Let \(B = V \setminus (A \cup C(v))\)
- If \(B \neq \emptyset\) and \(C(v)\) is a clique:
 - \(\text{Atoms}(k) := A\)
 - \(k := k + 1\)
 - \(G := G[B \cup C(v)]\)

\(\text{Atoms}(k) := V(G)\)
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G)\]
\[F_\rho := \text{Fill}_\text{In}(G, \rho)\]

For all \(v \in V\) do:
\[C(v) := \emptyset\]

For all \(w \in V\) do:
\[\text{If } \rho(w) > \rho(v) \text{ and } \{v, w\} \in E \cup F_\rho \text{ holds, then do:}\]
\[C(v) := C(v) \cup \{w\}\]

\[k := 1\]

For all \(i := 1 \text{ bis } n - 1\) do:
\[v := \rho^{-1}(i)\]
\[\text{Let } A \text{ be a component in } G[V \setminus C(v)] \text{ which contains } v.\]
\[\text{Let } B = V \setminus (A \cup C(v))\]
\[\text{If } B \neq \emptyset \text{ and } C(v) \text{ is a clique:}\]
\[\text{Atoms}(k) := A\]
\[k := k + 1\]
\[G := G[B \cup C(v)]\]

\[\text{Atoms}(k) := V(G)\]
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]
\[F_\rho := \text{Fill}_\text{In}(G, \rho) \]

For all \(v \in V \) do:
\[C(v) := \emptyset \]

For all \(w \in V \) do:
\[\text{If } \rho(w) > \rho(v) \text{ and } \{v, w\} \in E \cup F_\rho \text{ holds, then do:} \]
\[C(v) := C(v) \cup \{w\} \]

\[k := 1 \]

For all \(i := 1 \) bis \(n - 1 \) do:
\[v := \rho^{-1}(i) \]
\[\text{Let } A \text{ be a component in } G[V \setminus C(v)] \text{ which contains } v. \]
\[\text{Let } B = V \setminus (A \cup C(v)) \]
\[\text{If } B \neq \emptyset \text{ and } C(v) \text{ is a clique:} \]
\[\text{Atoms}(k) := A \]
\[k := k + 1 \]
\[G := G[B \cup C(v)] \]

\[\text{Atoms}(k) := V(G) \]
Clique-Separator-Tree Algorithm

\[\rho := \text{LexBFS}(G) \]
\[F_{\rho} := \text{Fill}_\text{In}(G, \rho) \]

For all \(v \in V \) do:
 \[C(v) := \emptyset \]
 For all \(w \in V \) do:
 If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_{\rho} \) holds, then do:
 \[C(v) := C(v) \cup \{w\} \]

\(k := 1 \)

For all \(i := 1 \) bis \(n - 1 \) do:
 \(v := \rho^{-1}(i) \)
 Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
 Let \(B = V \setminus (A \cup C(v)) \)
 If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 \[\text{Atoms}(k) := A \]
 \[k := k + 1 \]
 \[G := G[B \cup C(v)] \]

\[\text{Atoms}(k) := V(G) \]
Clique-Separator-Tree Algorithm

- \(\rho := \text{LexBFS}(G) \)
- \(F_\rho := \text{Fill}_{\rho}(G, \rho) \)

For all \(v \in V \) do:
- \(C(v) := \emptyset \)
 For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_\rho \) holds, then do:
 - \(C(v) := C(v) \cup \{w\} \)

- \(k := 1 \)

For all \(i := 1 \) bis \(n - 1 \) do:
 - \(v := \rho^{-1}(i) \)
 - Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
 - Let \(B = V \setminus (A \cup C(v)) \)
 - If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)

- \(\text{Atoms}(k) := V(G) \)
Clique-Separator-Tree Algorithm

\(\rho := \text{LexBFS}(G) \)
\(F_\rho := \text{Fill}_\text{In}(G, \rho) \)

For all \(v \in V \) do:
- \(C(v) := \emptyset \)
 - For all \(w \in V \) do:
 - If \(\rho(w) > \rho(v) \) and \(\{v, w\} \in E \cup F_\rho \) holds, then do:
 - \(C(v) := C(v) \cup \{w\} \)

\(k := 1 \)

For all \(i := 1 \) bis \(n - 1 \) do:
- \(v := \rho^{-1}(i) \)
 - Let \(A \) be a component in \(G[V \setminus C(v)] \) which contains \(v \).
 - Let \(B = V \setminus (A \cup C(v)) \)
 - If \(B \neq \emptyset \) and \(C(v) \) is a clique:
 - \(\text{Atoms}(k) := A \)
 - \(k := k + 1 \)
 - \(G := G[B \cup C(v)] \)

\(\text{Atoms}(k) := V(G) \)
Correctness

Theorem

*If G has a clique-separator. Then is this separator $C(v)$ for some node v.***

- Let ρ a MES as computed by the above slides.
- Let C be a inclusion minimal clique-separator.
- Let A, B be two components from $G[V \setminus C]$.
- Thus each node from C has a neighbour in A and B.
- Let x, y be nodes with the largest ρ values in A and B.
- Show now: there is no node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.
 - By contradiction
 - on the next slide.
Correctness

Theorem

If G *has a clique-separator. Then is this separator* $C(v)$ *for some node* v.*

- Let ρ a MES as computed by the above slides.
- Let C be a inclusion minimal clique-separator.
- Let A, B be two components from $G[V \setminus C]$.
- Thus each node from C has a neighbour in A and B.
- Let x, y be nodes with the largest ρ values in A and B.
- Show now: there is no node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.
 - By contradiction
 - on the next slide.
Correctness

Theorem

If G has a clique-separator. Then is this separator $C(v)$ for some node v.

- Let ρ a MES as computed by the above slides.
- Let C be a inclusion minimal clique-separator.
- Let A, B be two components from $G[V \setminus C]$.
- Thus each node from C has a neighbour in A and B.
- Let x, y be nodes with the largest ρ values in A and B.
- Show now: there is no node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.
 - By contradiction
 - on the next slide.
Correctness

Theorem

If G *has a clique-separator. Then is this separator* $C(v)$ *for some node* v.

- Let ρ a MES as computed by the above slides.
- Let C be a inclusion minimal clique-separator.
- Let A, B be two components from $G[V \setminus C]$.
- Thus each node from C has a neighbour in A and B.
- Let x, y be nodes with the largest ρ values in A and B.
- Show now: there is no node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.
 - By contradiction
 - on the next slide.
Theorem

If G has a clique-separator. Then is this separator $C(v)$ for some node v.

- Let ρ a MES as computed by the above slides.
- Let C be a inclusion minimal clique-separator.
- Let A, B be two components from $G[V \setminus C]$.
- Thus each node from C has a neighbour in A and B.
- Let x, y be nodes with the largest ρ values in A and B.
- Show now: there is no node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.
 - By contradiction
 - on the next slide.
Correctness

Theorem

If G has a clique-separator. Then is this separator $C(v)$ for some node v.

- Let ρ a MES as computed by the above slides.
- Let C be a inclusion minimal clique-separator.
- Let A, B be two components from $G[V \setminus C]$.
- Thus each node from C has a neighbour in A and B.
- Let x, y be nodes with the largest ρ values in A and B.
- Show now: there is no node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.
 - By contradiction
 - on the next slide.
Correctness

Theorem

If \(G \) has a clique-separator. Then is this separator \(C(v) \) for some node \(v \).

- Let \(\rho \) a MES as computed by the above slides.
- Let \(C \) be a inclusion minimal clique-separator.
- Let \(A, B \) be two components from \(G[V \setminus C] \).
- Thus each node from \(C \) has a neighbour in \(A \) and \(B \).
- Let \(x, y \) be nodes with the largest \(\rho \) values in \(A \) and \(B \).
- **Show now:** there is no node \(z \in C \) with: \(\rho(z) \leq \min\{\rho(x), \rho(y)\} \).
 - By contradiction
 - on the next slide.
Correctness

Theorem

If G has a clique-separator. Then is this separator C(v) for some node v.

- Let ρ a MES as computed by the above slides.
- Let C be a inclusion minimal clique-separator.
- Let A, B be two components from $G[V \setminus C]$.
- Thus each node from C has a neighbour in A and B.
- Let x, y be nodes with the largest ρ values in A and B.
- Show now: there is no node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.
 - By contradiction
 - on the next slide.
Correctness

Theorem

If G has a clique-separator. Then is this separator $C(v)$ for some node v.

- Let ρ a MES as computed by the above slides.
- Let C be a inclusion minimal clique-separator.
- Let A, B be two components from $G[V \setminus C]$.
- Thus each node from C has a neighbour in A and B.
- Let x, y be nodes with the largest ρ values in A and B.
- Show now: there is no node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.
 - By contradiction
 - **on the next slide.**
Correctness (intermediate step)

Assume: There is a node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.

- Let $x = x_1, x_2, \ldots, x_{j-1}, x_j = z$ be the shortest path in G_ρ with $x_1x_2\ldots x_{j-1} \in A$.
- If there is an i with $i \leq j - 1$ and $\rho(x_i) \leq \rho(x_{j-1})$, then choose such i maximal.
- Thus we have $i \geq 2$ (Note: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$)
- And $\{x_{i-1}, x_{i+1}\} \in F_\rho$ holds, because of $\rho(x_i) \leq \min\{\rho(x_{i-1}), \rho(x_{i+1})\}$ and the definition of Fill-In
- This is a contradiction to the minimality of the path.
Correctness (intermediate step)

Assume: There is a node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.

- Let $x = x_1, x_2, \ldots, x_{j-1}, x_j = z$ be the shortest path in G_ρ with $x_1x_2 \ldots x_{j-1} \in A$.
- If there is an i with $i \leq j - 1$ and $\rho(x_i) \leq \rho(x_{j-1})$, then choose such i maximal.
- Thus we have $i \geq 2$ (Note: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$)
- And $\{x_{i-1}, x_{i+1}\} \in F_\rho$ holds, because of $\rho(x_i) \leq \min\{\rho(x_{i-1}), \rho(x_{i+1})\}$ and the definition of Fill-In
- This is a contradiction to the minimality of the path.
Correctness (intermediate step)

Assume: There is a node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.

- Let $x = x_1, x_2, \ldots, x_{j-1}, x_j = z$ be the shortest path in G_ρ with $x_1x_2\ldots x_{j-1} \in A$.
- If there is an i with $i \leq j - 1$ and $\rho(x_i) \leq \rho(x_{j-1})$, then choose such i maximal.
- Thus we have $i \geq 2$ (Note: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$)
- And $\{x_{i-1}, x_{i+1}\} \in F_\rho$ holds, because of $\rho(x_i) \leq \min\{\rho(x_{i-1}), \rho(x_{i+1})\}$ and the definition of Fill-In
- This is a contradiction to the minimality of the path.
Correctness (intermediate step)

Assume: There is a node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.

- Let $x = x_1, x_2, \ldots, x_{j-1}, x_j = z$ be the shortest path in G_ρ with $x_1x_2\ldots x_{j-1} \in A$.
- If there is an i with $i \leq j - 1$ and $\rho(x_i) \leq \rho(x_{j-1})$, then choose such i maximal.
- Thus we have $i \geq 2$ (Note: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$)
- And $\{x_{i-1}, x_{i+1}\} \in F_\rho$ holds, because of $\rho(x_i) \leq \min\{\rho(x_{i-1}), \rho(x_{i+1})\}$ and the definition of Fill-In
- This is a contradiction to the minimality of the path.
Correctness (intermediate step)

Assume: There is a node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.

- Let $x = x_1, x_2, \ldots, x_{j-1}, x_j = z$ be the shortest path in G_ρ with $x_1x_2 \ldots x_{j-1} \in A$.
- If there is an i with $i \leq j - 1$ and $\rho(x_i) \leq \rho(x_{j-1})$,
 then choose such i maximal.
- Thus we have $i \geq 2$ (Note: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$)
- And $\{x_{i-1}, x_{i+1}\} \in F_\rho$ holds, because of $\rho(x_i) \leq \min\{\rho(x_{i-1}), \rho(x_{i+1})\}$ and the definition of Fill-In
- This is a contradiction to the minimality of the path.
Correctness (intermediate step)

Assume: There is a node \(z \in C \) with: \(\rho(z) \leq \min\{\rho(x), \rho(y)\} \).

- Thus there is a path \(x = x_1x_2 \ldots x_{j-1}x_j = z \) in \(G_\rho \) with \(\rho(x_i) > \rho(x_{i+1}) \) for \(i = 1, 2, \ldots, j - 1 \).
- Thus there a path \(y = y_1y_2 \ldots y_{l-1}y_l = z \) in \(G_\rho \) with \(\rho(y_i) > \rho(y_{i+1}) \) for \(i = 1, 2, \ldots, l - 1 \).
- Thus \(\{x, y\} \in F_\rho \) holds, which is a contradiction.
Correctness (intermediate step)

Assume: There is a node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.

- Thus there is a path $x = x_1x_2 \ldots x_{j-1}x_j = z$ in G_ρ with $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j - 1$.
- Thus there a path $y = y_1y_2 \ldots y_{l-1}x_l = z$ in G_ρ with $\rho(y_i) > \rho(y_{i+1})$ for $i = 1, 2, \ldots, l - 1$.
- Thus $\{x, y\} \in F_\rho$ holds, which is a contradiction.
Correctness (intermediate step)

Assume: There is a node $z \in C$ with: $\rho(z) \leq \min\{\rho(x), \rho(y)\}$.

- Thus there is a path $x = x_1x_2 \ldots x_{j-1}x_j = z$ in G_ρ with $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j - 1$.
- Thus there a path $y = y_1y_2 \ldots y_{l-1}y_l = z$ in G_ρ with $\rho(y_i) > \rho(y_{i+1})$ for $i = 1, 2, \ldots, l - 1$.
- Thus $\{x, y\} \in F_\rho$ holds, which is a contradiction.
Correctness (Continuation)

- W.l.o.g. let now be $\rho(x) < \rho(y)$.
- Then holds: $\max\{\rho(v) \mid v \in A\} = \rho(x) < \rho(z)$ for all $z \in C$.
- Show now $C(x) = C$
- i.e. show: $\forall z \in C : \{x, z\} \in E \cup F_\rho$.
- Let $x = x_1x_2 \ldots x_{j-1}x_j = z$ be the shortest path in G_ρ with $x_1, x_2, \ldots, x_{j-1} \in A$.
- If $j \geq 3$ holds, then we have $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j - 1$.
- This is contradiction to $\rho(z) > \rho(x)$.
- Thus $j = 2$ and $\{x, z\} \in E \cup F_\rho$.

If G has a clique-separator, then it is $C(v)$ for some node v.

Correctness (Continuation)

- W.l.o.g. let now be $\rho(x) < \rho(y)$.
- Then holds: $\max\{\rho(v) \mid v \in A\} = \rho(x) < \rho(z)$ for all $z \in C$.
- Show now $C(x) = C$
 - i.e. show: $\forall z \in C : \{x, z\} \in E \cup F_{\rho}$.
- Let $x = x_1x_2 \ldots x_{j-1}x_j = z$ be the shortest path in G_{ρ} with $x_1, x_2, \ldots, x_{j-1} \in A$.
 - If $j \geq 3$ holds, then we have $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j-1$.
 - This is contradiction to $\rho(z) > \rho(x)$.
 - Thus $j = 2$ and $\{x, z\} \in E \cup F_{\rho}$.

If G has a clique-separator, then is $C(v)$ for some node v.

Correctness (Continuation)

- W.l.o.g. let now be \(\rho(x) < \rho(y) \).
- Then holds: \(\max\{\rho(v) \mid v \in A\} = \rho(x) < \rho(z) \) for all \(z \in C \).
- Show now \(C(x) = C \)
 - I.e. show: \(\forall z \in C : \{x, z\} \in E \cup F_\rho \).
 - Let \(x = x_1 x_2 \ldots x_{j-1} x_j = z \) be the shortest path in \(G_\rho \) with \(x_1, x_2, \ldots, x_{j-1} \in A \).
 - If \(j \geq 3 \) holds, then we have \(\rho(x_i) > \rho(x_{i+1}) \) for \(i = 1, 2, \ldots, j-1 \).
 - This is contradiction to \(\rho(z) > \rho(x) \).
 - Thus \(j = 2 \) and \(\{x, z\} \in E \cup F_\rho \).
Correctness (Continuation)

W.l.o.g. let now be $\rho(x) < \rho(y)$.

Then holds: $\max\{\rho(v) \mid v \in A\} = \rho(x) < \rho(z)$ for all $z \in C$.

Show now $C(x) = C$

I.e. show: $\forall z \in C : \{x, z\} \in E \cup F_\rho$.

Let $x = x_1 x_2 \ldots x_{j-1} x_j = z$ be the shortest path in G_ρ with $x_1, x_2, \ldots, x_{j-1} \in A$.

If $j \geq 3$ holds, then we have $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j-1$.

This is contradiction to $\rho(z) > \rho(x)$.

Thus $j = 2$ and $\{x, z\} \in E \cup F_\rho$.
Correctness (Continuation)

- W.l.o.g. let now be $\rho(x) < \rho(y)$.
- Then holds: $\max\{\rho(v) \mid v \in A\} = \rho(x) < \rho(z)$ for all $z \in C$.
- Show now $C(x) = C$
- I.e. show: $\forall z \in C : \{x, z\} \in E \cup F_\rho$.
- Let $x = x_1 x_2 \ldots x_{j-1} x_j = z$ be the shortest path in G_ρ with $x_1, x_2, \ldots, x_{j-1} \in A$.
 - If $j \geq 3$ holds, then we have $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j - 1$.
 - This is contradiction to $\rho(z) > \rho(x)$.
 - Thus $j = 2$ and $\{x, z\} \in E \cup F_\rho$.

If G has a clique-separator, then it is $C(v)$ for some node v.
Correctness (Continuation)

- W.l.o.g. let now be $\rho(x) < \rho(y)$.
- Then holds: $\max\{\rho(v) \mid v \in A\} = \rho(x) < \rho(z)$ for all $z \in C$.
- Show now $C(x) = C$
- I.e. show: $\forall z \in C: \{x, z\} \in E \cup F_\rho$.
- Let $x = x_1x_2 \ldots x_{j-1}x_j = z$ be the shortest path in G_ρ with $x_1, x_2, \ldots, x_{j-1} \in A$.
- If $j \geq 3$ holds, then we have $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j - 1$.
- This is contradiction to $\rho(z) > \rho(x)$.
- Thus $j = 2$ and $\{x, z\} \in E \cup F_\rho$.

If G has a clique-separator, then it is $C(v)$ for some node v.
Correctness (Continuation)

- W.l.o.g. let now be $\rho(x) < \rho(y)$.
- Then holds: $\max\{\rho(v) \mid v \in A\} = \rho(x) < \rho(z)$ for all $z \in C$.
- Show now $C(x) = C$
 - i.e. show: $\forall z \in C : \{x, z\} \in E \cup F_\rho$.
- Let $x = x_1 x_2 \ldots x_{j-1} x_j = z$ be the shortest path in G_ρ with $x_1, x_2, \ldots, x_{j-1} \in A$.
- If $j \geq 3$ holds, then we have $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j - 1$.
 - This is contradiction to $\rho(z) > \rho(x)$.
- Thus $j = 2$ and $\{x, z\} \in E \cup F_\rho$.

If G has a clique-separator, then is it $C(v)$ for some node v.
Correctness (Continuation)

- W.l.o.g. let now be $\rho(x) < \rho(y)$.
- Then holds: $\max\{\rho(v) \mid v \in A\} = \rho(x) < \rho(z)$ for all $z \in C$.
- Show now $C(x) = C$
 - I.e. show: $\forall z \in C : \{x, z\} \in E \cup F_\rho$.
- Let $x = x_1x_2 \ldots x_{j-1}x_j = z$ be the shortest path in G_ρ with $x_1, x_2, \ldots, x_{j-1} \in A$.
 - If $j \geq 3$ holds, then we have $\rho(x_i) > \rho(x_{i+1})$ for $i = 1, 2, \ldots, j - 1$.
 - This is contradiction to $\rho(z) > \rho(x)$.
 - Thus $j = 2$ and $\{x, z\} \in E \cup F_\rho$.
The above algorithm has running-time $O(n(n + m))$ for computing the clique-separator-tree.

By using the clique-separator-tree are the following problems are reduced to the atoms:

- Clique-Problem
- Independent-Set Problem
- Colouring-Problem
The above algorithm has running-time $O(n(n + m))$ for computing the clique-separator-tree.

By using the clique-separator-tree are the following problems are reduced to the atoms:

- Clique-Problem
- Independent-Set Problem
- Colouring-Problme
The above algorithm has running-time $O(n(n + m))$ for computing the clique-separator-tree.

By using the clique-separator-tree are the following problems are reduced to the atoms:

- Clique-Problem
- Independent-Set Problem
- Colouring-Problem
Theorem:

The above algorithm has running-time $O(n(n + m))$ for computing the clique-separator-tree.

Theorem:

By using the clique-separator-tree are the following problems are reduced to the atoms:

- Clique-Problem
- Independent-Set Problem
- Colouring-Problem
The above algorithm has running-time $O(n(n + m))$ for computing the clique-separator-tree.

By using the clique-separator-tree are the following problems are reduced to the atoms:

- Clique-Problem
- Independent-Set Problem
- Colouring-Problem
The above algorithm has running-time $O(n(n + m))$ for computing the clique-separator-tree.

By using the clique-separator-tree are the following problems are reduced to the atoms:
- Clique-Problem
- Independent-Set Problem
- Colouring-Problem
Clique-Separable

Definition

A graph $G = (V, E)$ is of type T_1, iff:
- V could be partitioned in V_1, V_2.
- $G[V_1]$ is a bipartite graph.
- $G[V_2]$ is a clique.
- Between V_1 and V_2 exist all possible edges.

Definition

A graph $G = (V, E)$ is of type T_2, iff it is complete k-partite.
Definition

A graph $G = (V, E)$ is of type T_1, iff:

- V could be partitioned in V_1, V_2.
- $G[V_1]$ is a bipartite graph.
- $G[V_2]$ is a clique.
- Between V_1 and V_2 exist all possible edges.

Definition

A graph $G = (V, E)$ is of type T_2, iff it is complete k-partite.
Clique-Separable

Definition

A graph $G = (V, E)$ is of type T_1, iff:

- V could be partitioned in V_1, V_2.
- $G[V_1]$ is a bipartite graph.
- $G[V_2]$ is a clique.
- Between V_1 and V_2 exist all possible edges.

Definition

A graph $G = (V, E)$ is of type T_2, iff it is complete k-partite.
Clique-Separable

Definition

A graph $G = (V, E)$ is of type T_1, iff:

- V could be partitioned in V_1, V_2.
- $G[V_1]$ is a bipartite graph.
- $G[V_2]$ is a clique.
- Between V_1 and V_2 exist all possible edges.

Definition

A graph $G = (V, E)$ is of type T_2, iff it is complete k-partite.
Clique-Separable

Definition
A graph $G = (V, E)$ is of type T_1, iff:
- V could be partitioned in V_1, V_2.
- $G[V_1]$ is a bipartite graph.
- $G[V_2]$ is a clique.
- Between V_1 and V_2 exist all possible edges.

Definition
A graph $G = (V, E)$ is of type T_2, iff it is complete k-partite.
Definition

A graph $G = (V, E)$ is of type T_1, iff:

- V could be partitioned in V_1, V_2.
- $G[V_1]$ is a bipartite graph.
- $G[V_2]$ is a clique.
- Between V_1 and V_2 exist all possible edges.

Definition

A graph $G = (V, E)$ is of type T_2, iff it is complete k-partite.
Clique-Separable

Definition

A graph \(G = (V, E) \) is of type \(T_1 \), iff:

- \(V \) could be partitioned in \(V_1, V_2 \).
- \(G[V_1] \) is a bipartite graph.
- \(G[V_2] \) is a clique.
- Between \(V_1 \) and \(V_2 \) exist all possible edges.

Definition

A graph \(G = (V, E) \) is of type \(T_2 \), iff it is complete \(k \)-partite.
Definition

A graph $G = (V, E)$ is clique-separable, iff all Atoms are of Type T_1 or T_2.

Theorem

Clique-separable graphs could be recognized in time $O(n^4)$. The Clique-Problem, Independent-Set Problem and Colouring-Problem are solvable in polynomial time on clique-separable graphs.
Definition

A graph $G = (V, E)$ is clique-separable, iff all Atoms are of Type T_1 or T_2.

Theorem

Clique-separable graphs could be recognized in time $O(n^4)$. The Clique-Problem, Independent-Set Problem and Colouring-Problem are solvable in polynomial time on clique-separable graphs.
Definition

A graph $G = (V, E)$ is clique-separable, iff all Atoms are of Type T_1 or T_2.

Theorem

Clique-separable graphs could be recognized in time $O(n^4)$. The Clique-Problem, Independent-Set Problem and Colouring-Problem are solvable in polynomial time on clique-separable graphs.
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- What is a perfect graph?
- Which graph classes are perfect?
- How hard is the recognition of perfect graphs?
- How hard is the colouring on perfect graphs?
- What is a minimal imperfect graph?
- Which graphs are minimal imperfect?
- What is a chordal graph?
- What is known about chordal graph?
- Why are chordal graphs not perfect?
Questions

- How hard is the recognition of chordal graphs?
- What is a PES?
- Which problems are easy on chordal graphs?
- Give an alternative representation for chordal graphs?
- What are comparability graphs?
- What is known about comparability graphs and interval graphs?
- What is the idea of the proof to show that perfect graphs are closes under complement?
Questions

- How hard is the recognition of chordal graphs?
- What is a PES?
- Which problems are easy on chordal graphs?
- Give an alternative representation for chordal graphs?
- What are comparability graphs?
- What is known about comparability graphs and interval graphs?
- What is the idea of the proof to show that perfect graphs are closes under complement?
Questions

- How hard is the recognition of chordal graphs?
- What is a PES?
- Which problems are easy on chordal graphs?
- Give an alternative representation for chordal graphs?
- What are comparability graphs?
- What is known about comparability graphs and interval graphs?
- What is the idea of the proof to show that perfect graphs are closes under complement?
Questions

- How hard is the recognition of chordal graphs?
- What is a PES?
- Which problems are easy on chordal graphs?
- Give an alternative representation for chordal graphs?
- What are comparability graphs?
- What is known about comparability graphs and interval graphs?
- What is the idea of the proof to show that perfect graphs are closed under complement?
Questions

- How hard is the recognition of chordal graphs?
- What is a PES?
- Which problems are easy on chordal graphs?
- Give an alternative representation for chordal graphs?
- What are comparability graphs?
- What is known about comparability graphs and interval graphs?
- What is the idea of the proof to show that perfect graphs are closes under complement?
Questions

- How hard is the recognition of chordal graphs?
- What is a PES?
- Which problems are easy on chordal graphs?
- Give an alternative representation for chordal graphs?
- What are comparability graphs?
- What is known about comparability graphs and interval graphs?
- What is the idea of the proof to show that perfect graphs are closes under complement?
Questions

- How hard is the recognition of chordal graphs?
- What is a PES?
- Which problems are easy on chordal graphs?
- Give an alternative representation for chordal graphs?
- What are comparability graphs?
- What is known about comparability graphs and interval graphs?
- What is the idea of the proof to show that perfect graphs are closes under complement?
Legend

- : Not of relevance
- : implicitly used basics
- : idea of proof or algorithm
- : structure of proof or algorithm
- : Full knowledge