Contents I

1. Introduction and Networks
 - Basics
 - Motivation
 - Paths, Cycles, Grids
 - Trees
 - Hypercube

2. Paths and Cycles in...
 - ... in Trees
 - ... in Cubes
 - ... in Grids

3. Trees in...
 - ... Paths and Cycles
 - ... Cubes

4. Cube-like Networks in...

5. Embeddings
 - SE, DB, HQ
 - TR, G and HQ
 - Arbitrary Trees

6. Optical Networks
 - Basics
 - Specifications
 - Devices
 - Problem
 - Introduction
 - Wavelength-Assignment
 - Lines and Cycles
 - Trees
Definition

Let $G = (V, E)$ and $H = (W, F)$ be graphs. An embedding (embedding-function) from G into H is: $f : V \mapsto W$. We use for embeddings the following cost-functions:

- $|W|/|V|$ (Expansion)
- $\max_{w \in W} |\{v \mid f(v) = w\}|$ (Load)
- $\max \{\text{dist}_H(f(a), f(b)) \mid \{a, b\} \in E\}$ (Dilation)

Definition

A routing for an embedding $f : V \mapsto W$ is a function: $r : E \mapsto \{\text{Paths in } H\}$ with: $r(\{a, b\})$ is a path from $f(a)$ to $f(b)$. Note the cost-functions:

- $\max \{|r(\{a, b\})| \mid \{a, b\} \in E\}$ (Dilation)
- $\max \{|\{e \mid e \in E, e' \in r(e)\}| \mid e' \in F\}$ (Congestion)
Embeddings

Definition

Let $G = (V, E)$ and $H = (W, F)$ be graphs.
An embedding (embedding-function) from G into H is: $f : V \mapsto W$.
We use for embeddings the following cost-functions:

- $|W|/|V|$ (Expansion)
- $\max_{w \in W} |\{v \mid f(v) = w\}|$ (Load)
- $\max\{|\text{dist}_H(f(a), f(b))| \mid \{a, b\} \in E\}$ (Dilation)

Definition

A routing for an embedding $f : V \mapsto W$ is a function:
$r : E \mapsto \{\text{Paths in } H\}$ with: $r(\{a, b\})$ is a path from $f(a)$ to $f(b)$.
Note the cost-functions:

- $\max\{|r(\{a, b\})| \mid \{a, b\} \in E\}$ (Dilation)
- $\max\{|\{e \mid e \in E, e' \in r(e)\}| \mid e' \in F\}$ (Congestion)
Embeddings

Definition

Let $G = (V, E)$ and $H = (W, F)$ be graphs. An embedding (embedding-function) from G into H is: $f : V \mapsto W$. We use for embeddings the following cost-functions:

- $|W|/|V|$ (Expansion)
- $\max_{w \in W} |\{v \mid f(v) = w\}|$ (Load)
- $\max\{dist_H(f(a), f(b)) \mid \{a, b\} \in E\}$ (Dilation)

Definition

A routing for an embedding $f : V \mapsto W$ is a function:

$r : E \mapsto \{\text{Paths in } H\}$ with: $r(\{a, b\})$ is a path from $f(a)$ to $f(b)$. Note the cost-functions:

- $\max\{|r(\{a, b\})| \mid \{a, b\} \in E\}$ (Dilation)
- $\max\{|\{e \mid e \in E, e' \in r(e)\}| \mid e' \in F\}$ (Congestion)
Embeddings

Definition

Let $G = (V, E)$ and $H = (W, F)$ be graphs.
An embedding (embedding-function) from G into H is: $f : V \mapsto W$.
We use for embeddings the following cost-functions:

- $|W|/|V|$ (Expansion)
- $\max_{w \in W} |\{v \mid f(v) = w\}|$ (Load)
- $\max \{\text{dist}_H(f(a), f(b)) \mid \{a, b\} \in E\}$ (Dilation)

Definition

A routing for an embedding $f : V \mapsto W$ is a function:
$r : E \mapsto \{\text{Paths in } H\}$ with: $r(\{a, b\})$ is a path from $f(a)$ to $f(b)$.
Note the cost-functions:

- $\max \{|r(\{a, b\})| \mid \{a, b\} \in E\}$ (Dilation)
- $\max \{|\{e \mid e \in E, e' \in r(e)\}| \mid e' \in F\}$ (Congestion)
Embeddings

Definition

Let $G = (V, E)$ and $H = (W, F)$ be graphs.
An embedding (embedding-function) from G into H is: $f : V \mapsto W$.
We use for embeddings the following cost-functions:

- $|W|/|V|$ (Expansion)
- $\max_{w \in W} |\{v \mid f(v) = w\}|$ (Load)
- $\max\{dist_H(f(a), f(b)) \mid \{a, b\} \in E\}$ (Dilation)

Definition

A routing for an embedding $f : V \mapsto W$ is a function: $r : E \mapsto \{\text{Paths in } H\}$ with: $r(\{a, b\})$ is a path from $f(a)$ to $f(b)$.
Note the cost-functions:

- $\max\{|r(\{a, b\})| \mid \{a, b\} \in E\}$ (Dilation)
- $\max\{||\{e \mid e \in E, e' \in r(e)\}|| \mid e' \in F\}$ (Congestion)
Embeddings

Definition

Let $G = (V, E)$ and $H = (W, F)$ be graphs. An embedding (embedding-function) from G into H is: $f : V \mapsto W$.

We use for embeddings the following cost-functions:

- $|W|/|V|$ (Expansion)
- $\max_{w \in W} |\{v \mid f(v) = w\}|$ (Load)
- $\max\{\text{dist}_H(f(a), f(b)) \mid \{a, b\} \in E\}$ (Dilation)

Definition

A routing for an embedding $f : V \mapsto W$ is a function: $r : E \mapsto \{\text{Paths in } H\}$ with: $r(\{a, b\})$ is a path from $f(a)$ to $f(b)$.

Note the cost-functions:

- $\max\{|r(\{a, b\})| \mid \{a, b\} \in E\}$ (Dilation)
- $\max\{|\{e \mid e \in E, e' \in r(e)\}| \mid e' \in F\}$ (Congestion)
Embeddings

Definition

Let \(G = (V, E) \) and \(H = (W, F) \) be graphs.

An embedding (embedding-function) from \(G \) into \(H \) is: \(f : V \mapsto W \).

We use for embeddings the following cost-functions:

- \(|W|/|V| \) (Expansion)
- \(\max_{w \in W} |\{v \mid f(v) = w\}| \) (Load)
- \(\max\{\text{dist}_H(f(a), f(b)) \mid \{a, b\} \in E\} \) (Dilation)

Definition

A routing for an embedding \(f : V \mapsto W \) is a function:

\(r : E \mapsto \{\text{Paths in } H\} \) with: \(r(\{a, b\}) \) is a path from \(f(a) \) to \(f(b) \).

Note the cost-functions:

- \(\max\{|r(\{a, b\})| \mid \{a, b\} \in E\} \) (Dilation)
- \(\max\{|\{e \mid e \in E, e' \in r(e)\}| \mid e' \in F\} \) (Congestion)
Embeddings

Definition

Let \(G = (V, E) \) and \(H = (W, F) \) be graphs.
An embedding (embedding-function) from \(G \) into \(H \) is: \(f : V \mapsto W \).
We use for embeddings the following cost-functions:

- \(\frac{|W|}{|V|} \) (Expansion)
- \(\max_{w \in W} |\{v \mid f(v) = w\}| \) (Load)
- \(\max \{ \text{dist}_H(f(a), f(b)) \mid \{a, b\} \in E \} \) (Dilation)

Definition

A routing for an embedding \(f : V \mapsto W \) is a function:
\(r : E \mapsto \{\text{Paths in } H\} \) with: \(r(\{a, b\}) \) is a path from \(f(a) \) to \(f(b) \).
Note the cost-functions:

- \(\max \{|r(\{a, b\})| \mid \{a, b\} \in E \} \) (Dilation)
- \(\max \{|\{e \mid e \in E, e' \in r(e)\}| \mid e' \in F\} \) (Congestion)
Example

- Load:
- Dilation:
- Congestion:
Example

- Load:
- Dilation:
- Congestion:
Example

- Load: 1
- Dilation:
- Congestion:
Example

- Load: 1
- Dilation: 5
- Congestion:
Example

- Load: 1
- Dilation: 5
- Congestion: 2
Example

- Load:
- Dilation:
- Congestion:
Example

- Load: 2
- Dilation:
- Congestion:
Example

- Load: 2
- Dilation: 1
- Congestion:
Example

- Load: 2
- Dilation: 1
- Congestion: 2
Example

- Load:
- Dilation:
- Congestion:
Example

- Load: 1
- Dilation:
- Congestion:
Example

- Load: 1
- Dilation: 1
- Congestion:
Example

- Load: 1
- Dilation: 1
- Congestion: 1
Iterated Embeddings

Let $G_i = (V_i, E_i)$ be graphs for $i \in \{1, 2, 3\}$

- Let G_1 in G_2 with dilation d, load l and congestion c embeddable.
- Let G_2 in G_3 with dilation d', load l' and congestion c' embeddable.
- Then is G_1 in G_3 embeddable with:
 - Dilation $d \cdot d'$,
 - Load $l \cdot l'$ and
 - Congestion $c \cdot c'$.

Proof obvious.
Iterated Embeddings

Let $G_i = (V_i, E_i)$ be graphs for $i \in \{1, 2, 3\}$

- Let G_1 in G_2 with dilation d, load l and congestion c embeddable.
- Let G_2 in G_3 with dilation d', load l' and congestion c' embeddable.
- Then is G_1 in G_3 embeddable with:
 - Dilation $d \cdot d'$,
 - Load $l \cdot l'$ and
 - Congestion $c \cdot c'$.

Proof obvious.
Iterated Embeddings

Let $G_i = (V_i, E_i)$ be graphs for $i \in \{1, 2, 3\}$

- Let G_1 in G_2 with dilation d, load l and congestion c embeddable.
- Let G_2 in G_3 with dilation d', load l' and congestion c' embeddable.
- Then is G_1 in G_3 embeddable with:
 - Dilation $d \cdot d'$,
 - Load $l \cdot l'$ and
 - Congestion $c \cdot c'$.

Proof obvious.
Iterated Embeddings

Let $G_i = (V_i, E_i)$ be graphs for $i \in \{1, 2, 3\}$

- Let G_1 in G_2 with dilation d, load l and congestion c embeddable.
- Let G_2 in G_3 with dilation d', load l' and congestion c' embeddable.
- Then is G_1 in G_3 embeddable with:
 - Dilation $d \cdot d'$,
 - Load $l \cdot l'$ and
 - Congestion $c \cdot c'$.

Proof obvious.
Iterated Embeddings

Let $G_i = (V_i, E_i)$ be graphs for $i \in \{1, 2, 3\}$

- Let G_1 in G_2 with dilation d, load l and congestion c embeddable.
- Let G_2 in G_3 with dilation d', load l' and congestion c' embeddable.
- Then is G_1 in G_3 embeddable with:
 - Dilation $d \cdot d'$,
 - Load $l \cdot l'$ and
 - Congestion $c \cdot c'$.

Proof obvious.
Iterated Embeddings

Let $G_i = (V_i, E_i)$ be graphs for $i \in \{1, 2, 3\}$

- Let G_1 in G_2 with dilation d, load l and congestion c embeddable.
- Let G_2 in G_3 with dilation d', load l' and congestion c' embeddable.
- Then is G_1 in G_3 embeddable with:
 - Dilation $d \cdot d'$,
 - Load $l \cdot l'$ and
 - Congestion $c \cdot c'$.

Proof obvious.
Iterated Embeddings

Let \(G_i = (V_i, E_i) \) be graphs for \(i \in \{1, 2, 3\} \)

- Let \(G_1 \) in \(G_2 \) with dilation \(d \), load \(l \) and congestion \(c \) embeddable.
- Let \(G_2 \) in \(G_3 \) with dilation \(d' \), load \(l' \) and congestion \(c' \) embeddable.
- Then is \(G_1 \) in \(G_3 \) embeddable with:
 - Dilation \(d \cdot d' \),
 - Load \(l \cdot l' \) and
 - Congestion \(c \cdot c' \).

Proof obvious.
Iterated Embeddings

Let $G_i = (V_i, E_i)$ be graphs for $i \in \{1, 2, 3\}$

- Let G_1 in G_2 with dilation d, load l and congestion c embeddable.
- Let G_2 in G_3 with dilation d', load l' and congestion c' embeddable.
- Then is G_1 in G_3 embeddable with:
 - Dilation $d \cdot d'$,
 - Load $l \cdot l'$ and
 - Congestion $c \cdot c'$.

Proof obvious.
Definition (Embedding-Problem)

Given: G, H graphs and d, c, $l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Theorem

The embedding-problem is in NP.

Proof:

- Let $d = c = l = 1$.
- Choose G to be a cycle (or path) of length $|V(H)|$.
- We will investigate in the following some special networks.
 - pathes, cycles, grids, ...
 - trees and extended trees, ...
 - hyper-cubes and related structures, ...
Definition (Embedding-Problem)

Given: \(G, H \) graphs and \(d, c, l \in \mathbb{N} \). Questions: Could \(G \) be embedded into \(H \) with dilation \(d \), load \(l \) and congestion \(c \).

Theorem

The embedding-problem is in \(NP \).

Proof:

- Let \(d = c = l = 1 \).
- Choose \(G \) to be a cycle (or path) of length \(|V(H)| \).
- We will investigate in the following some special networks.
 - pathes, cycles, grids, ...
 - trees and extended trees, ...
 - hyper-cubes and related structures, ...
Definition (Embedding-Problem)

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Theorem

The embedding-problem is in \mathcal{NPC}.

Proof:

- Let $d = c = l = 1$.
- Choose G to be a cycle (or path) of length $|V(H)|$.
- We will investigate in the following some special networks.
 - pathes, cycles, grids, ...
 - trees and extended trees, ...
 - hyper-cubes and related structures, ...
Definition (Embedding-Problem)

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Theorem

The embedding-problem is in NP.

Proof:

- Let $d = c = l = 1$.
- Choose G to be a cycle (or path) of length $|V(H)|$.
- We will investigate in the following some special networks.
 - pathes, cycles, grids, ...
 - trees and extended trees, ...
 - hyper-cubes and related structures, ...

Motivation

- Paths, Cycles in ...
- Trees in ...
- Cube-like Netw...
- Embeddings
- Optical Networks

6:4 Motivation 4/10

Definition (Embedding-Problem)

Given: \(G, H \) graphs and \(d, c, l \in \mathbb{N} \). Questions: Could \(G \) be embedded into \(H \) with dilation \(d \), load \(l \) and congestion \(c \).

Theorem

The embedding-problem is in \(\mathcal{NPC} \).

Proof:

- Let \(d = c = l = 1 \).
- Choose \(G \) to be a cycle (or path) of length \(|V(H)| \).
- We will investigate in the following some special networks.
 - pathes, cycles, grids, ...
 - trees and extended trees, ...
 - hyper-cubes and related structures, ...
Motivation

Definition (Embedding-Problem)

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Theorem

The embedding-problem is in \mathcal{NP}.

Proof:

- Let $d = c = l = 1$.
- Choose G to be a cycle (or path) of length $|V(H)|$.
- We will investigate in the following some special networks.
- pathes, cycles, grids, ...
- trees and extended trees, ...
- hyper-cubes and related structures, ...
Definition (Embedding-Problem)

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Theorem

The embedding-problem is in NP.

Proof:

- Let $d = c = l = 1$.
- Choose G to be a cycle (or path) of length $|V(H)|$.

We will investigate in the following some special networks.

- paths, cycles, grids, ...
- trees and extended trees, ...
- hyper-cubes and related structures, ...
Definition (Embedding-Problem)

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Theorem

The embedding-problem is in \mathcal{NPC}.

Proof:

- Let $d = c = l = 1$.
- Choose G to be a cycle (or path) of length $|V(H)|$.
- We will investigate in the following some special networks.
 - pathes, cycles, grids, ...
 - trees and extended trees, ...
 - hyper-cubes and related structures, ...
Definition (Embedding-Problem)

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Theorem

The embedding-problem is in \mathcal{NPC}.

Proof:

- Let $d = c = l = 1$.
- Choose G to be a cycle (or path) of length $|V(H)|$.
- We will investigate in the following some special networks.
 - pathes, cycles, grids, ...
 - trees and extended trees, ...
 - hyper-cubes and related structures, ...
Definition (Embedding-Problem)

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.

Theorem

The embedding-problem is in \mathcal{NP}.

Proof:

- Let $d = c = l = 1$.
- Choose G to be a cycle (or path) of length $|V(H)|$.
- We will investigate in the following some special networks.
 - pathes, cycles, grids, ...
 - trees and extended trees, ...
 - hyper-cubes and related structures, ...
Properties of the Networks to be considered

- **Number of nodes.**
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
 - May be the graph is based on some group-structure.
 - How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
 - May be the graph is based on some group-structure.
 - How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- **Degree**.
 - Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottleneck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
- May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- **Length of paths in the network:**
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
- May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of pathes in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
- May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.

Length of pathes in the network:
- Diameter, i.e. the longest of all shortest paths.
- Radius, i.e. the shortest of all longest paths.

Connectivity, i.e. is there a bottle-neck.
- Node-connectivity
- Edge-connectivity

Regularity,
- May be all nodes look ‘similar’.
- May be all edges look ‘similar’.

Easy routing
- May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
- May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.

Length of paths in the network:
- Diameter, i.e. the longest of all shortest paths.
- Radius, i.e. the shortest of all longest paths.

Connectivity, i.e. is there a bottle-neck.
- Node-connectivity
- Edge-connectivity

Regularity,
- May be all nodes look ‘similar’.
- May be all edges look ‘similar’.

Easy routing
- May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
- May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottleneck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
 - May be the graph is based on some group-structure.
 - How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
 - May be the graph is based on some group-structure.
 - How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
- May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
 - May be the graph is based on some group-structure.
 - How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottle-neck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
 - May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Properties of the Networks to be considered

- Number of nodes.
- Number of edges.
- Degree.
- Length of paths in the network:
 - Diameter, i.e. the longest of all shortest paths.
 - Radius, i.e. the shortest of all longest paths.
- Connectivity, i.e. is there a bottleneck.
 - Node-connectivity
 - Edge-connectivity
- Regularity,
 - May be all nodes look ‘similar’.
 - May be all edges look ‘similar’.
- Easy routing
 - May be the graph is based on some group-structure.
- How many graphs are in some family of networks?
Paths and cycles with n nodes

- **Path:**
 \[
 L(n) = (V_{L(n)}, E_{L(n)})
 \]
 \[
 V_{L(n)} = \{0, 1, 2, \ldots, n - 1\}
 \]
 \[
 E_{L(n)} = \{\{i, i + 1\} \mid 0 \leq i < n - 1\}
 \]

- **Cycle:**
 \[
 C(n) = (V_{C(n)}, E_{C(n)})
 \]
 \[
 V_{C(n)} = \{0, 1, 2, \ldots, n - 1\}
 \]
 \[
 E_{C(n)} = \{\{i, (i + 1) \text{ mod } n\} \mid 0 \leq i < n\}
 \]
Paths and cycles with \(n \) nodes

- **Path:**
 \[
 L(n) = (V_{L(n)}, E_{L(n)})
 \]
 \[
 V_{L(n)} = \{0, 1, 2, \cdots, n - 1\}
 \]
 \[
 E_{L(n)} = \{\{i, i + 1\} \mid 0 \leq i < n - 1\}
 \]

 Number of nodes: \(n \)
 Degrees: \(\{1, 2\} \)
 Number of edges: \(n - 1 \)
 Diameter: \(n - 1 \)
 Node-con.: 1
 Edge-con.: 1

- **Cycle:**
 \[
 C(n) = (V_{C(n)}, E_{C(n)})
 \]
 \[
 V_{C(n)} = \{0, 1, 2, \cdots, n - 1\}
 \]
 \[
 E_{C(n)} = \{\{i, (i + 1) \mod n\} \mid 0 \leq i < n\}
 \]
Paths and cycles with n nodes

Path:
\[L(n) = (V_{L(n)}, E_{L(n)}) \]
\[V_{L(n)} = \{0, 1, 2, \ldots, n - 1\} \]
\[E_{L(n)} = \{\{i, i + 1\} \mid 0 \leq i < n - 1\} \]

- Number of nodes: n
- Degrees: \{1, 2\}
- Number of edges: $n - 1$
- Diameter: $n - 1$
- Node-con.: 1
- Edge-con.: 1

$L(8)$:

Cycle:
\[C(n) = (V_{C(n)}, E_{C(n)}) \]
\[V_{C(n)} = \{0, 1, 2, \ldots, n - 1\} \]
\[E_{C(n)} = \{\{i, (i + 1) \mod n\} \mid 0 \leq i < n\} \]

- Number of nodes: n
- Degrees: 2
- Number of edges: n
- Diameter: $\lfloor n / 2 \rfloor$
- Node-con.: 2
- Edge-con.: 2

$C(8)$:
Paths and cycles with \(n \) nodes

- **Path:**
 \[
 L(n) = (V_{L(n)}, E_{L(n)})
 \]
 \[
 V_{L(n)} = \{0, 1, 2, \ldots, n - 1\}
 \]
 \[
 E_{L(n)} = \{\{i, i + 1\} \mid 0 \leq i < n - 1\}
 \]
 Number of nodes: \(n \)
 Number of edges: \(n - 1 \)
 Degrees: \(\{1, 2\} \)
 Diameter: \(n - 1 \)
 Node-con.: 1
 Edge-con.: 1

- **Cycle:**
 \[
 C(n) = (V_{C(n)}, E_{C(n)})
 \]
 \[
 V_{C(n)} = \{0, 1, 2, \ldots, n - 1\}
 \]
 \[
 E_{C(n)} = \{\{i, (i + 1) \mod n\} \mid 0 \leq i < n\}
 \]
 Number of nodes: \(n \)
 Number of edges: \(n \)
 Degree: 2
 Diameter: \(\lfloor n/2 \rfloor \)
 Node-con.: 2
 Edge-con.: 2
Product of Graphs

Definition:

Let $G = (V, E)$ and $G' = (V', E')$ be graphs. With $G \times G'$ we denote the product of G and G':

- $G \times G' = (V \times V', E_1 \cup E_2)$.
- $E_1 = \{((a, a'), (b, b')) | a' = b' \land (a, b) \in E\}$.
- $E_2 = \{((a, a'), (b, b')) | a = b \land (a', b') \in E'\}$.

Example $L(10) \times C(4)$:
Definition:

Let $G = (V, E)$ and $G' = (V', E')$ be graphs. With $G \times G'$ we denote the product of G and G':

- $G \times G' = (V \times V', E_1 \cup E_2)$.
- $E_1 = \{(a, a'), (b, b') | a' = b' \land (a, b) \in E\}$.
- $E_2 = \{(a, a'), (b, b') | a = b \land (a', b') \in E'\}$.

Example $L(10) \times C(4)$:
Definition:
Let $G = (V, E)$ and $G' = (V', E')$ be graphs. With $G \times G'$ we denote the product of G and G':

- $G \times G' = (V \times V', E_1 \cup E_2)$.
- $E_1 = \{((a, a'), (b, b')) | a' = b' \land (a, b) \in E\}$.
- $E_2 = \{((a, a'), (b, b')) | a = b \land (a', b') \in E'\}$.

Example $L(10) \times C(4)$:
Product of Graphs

Definition:

Let \(G = (V, E) \) and \(G' = (V', E') \) be graphs. With \(G \times G' \) we denote the product of \(G \) and \(G' \):

- \(G \times G' = (V \times V', E_1 \cup E_2) \).
- \(E_1 = \{((a, a'), (b, b')) \mid a' = b' \land (a, b) \in E\} \).
- \(E_2 = \{((a, a'), (b, b')) \mid a = b \land (a', b') \in E'\} \).

Example \(L(10) \times C(4) \):
Definition:

Let $G = (V, E)$ and $G' = (V', E')$ be graphs. With $G \times G'$ we denote the product of G and G':

- $G \times G' = (V \times V', E_1 \cup E_2)$.
- $E_1 = \{((a, a'), (b, b')) \mid a' = b' \land (a, b) \in E\}$.
- $E_2 = \{((a, a'), (b, b')) \mid a = b \land (a', b') \in E'\}$.

Example $L(10) \times C(4)$:

![Diagram](attachment://example.png)
Definition:

Let $G = (V, E)$ and $G' = (V', E')$ be graphs. With $G \times G'$ we denote the product of G and G':

- $G \times G' = (V \times V', E_1 \cup E_2)$.
- $E_1 = \{((a, a'), (b, b')) \mid a' = b' \land (a, b) \in E\}$.
- $E_2 = \{((a, a'), (b, b')) \mid a = b \land (a', b') \in E'\}$.

Example $L(10) \times C(4)$:
Definition:

Let $G = (V, E)$ and $G' = (V', E')$ be graphs. With $G \times G'$ we denote the product of G and G':

- $G \times G' = (V \times V', E_1 \cup E_2)$.
- $E_1 = \{((a, a'), (b, b')) | a' = b' \land (a, b) \in E\}$.
- $E_2 = \{((a, a'), (b, b')) | a = b \land (a', b') \in E'\}$.

Example $L(10) \times C(4)$:
Definition:

Let $G = (V, E)$ and $G' = (V', E')$ be graphs. With $G \times G'$ we denote the product of G and G':

- $G \times G' = (V \times V', E_1 \cup E_2)$.
- $E_1 = \{((a, a'), (b, b')) | a' = b' \land (a, b) \in E\}$.
- $E_2 = \{((a, a'), (b, b')) | a = b \land (a', b') \in E'\}$.

Example $L(10) \times C(4)$:
Grid of dimension d

- **Grids:** $G(n_1, n_2, \cdots, n_d) = L(n_1) \times L(n_2) \times \cdots \times L(n_d)$ with $n_i > 1$

Grid: $G(14, 4)$:

```
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0
0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1
0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2
0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3
```
Grid of dimension d

- **Grids:** $G(n_1, n_2, \ldots, n_d) = L(n_1) \times L(n_2) \times \cdots \times L(N_d)$ with $n_i > 1$

 - Number of nodes: $\prod_{i=1}^{d} n_i$
 - Degrees: $\{d, \ldots, 2 \cdot d\}$

 - Number of edges: $\sum_{i=1}^{d} (n_i - 1) \prod_{j=1, j \neq i}^{d} n_j$
 - Diameter: $\sum_{i=1}^{d} (n_i - 1)$

 - Node-con.: d
 - Edge-con.: d

- **Grid:** $G(14, 4)$:

```
  0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3
  0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2
  0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1
  0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0
```
Torus of dimension \(d \)

- Torus: \(Tr(n_1, n_2, \cdots, n_d) = C(n_1) \times C(n_2) \times \cdots \times C(N_d) \) with \(n_i > 1 \)

- Torus: \(Tr(14, 4) \):

![Torus Diagram]

- Torus of dimension \(d \)

- Torus: \(Tr(n_1, n_2, \cdots, n_d) = C(n_1) \times C(n_2) \times \cdots \times C(N_d) \) with \(n_i > 1 \)

- Torus: \(Tr(14, 4) \):

![Torus Diagram]

- Torus of dimension \(d \)

- Torus: \(Tr(n_1, n_2, \cdots, n_d) = C(n_1) \times C(n_2) \times \cdots \times C(N_d) \) with \(n_i > 1 \)

- Torus: \(Tr(14, 4) \):

![Torus Diagram]
Torus of dimension \(d\)

- Torus: \(Tr(n_1, n_2, \ldots, n_d) = C(n_1) \times C(n_2) \times \cdots \times C(N_d)\) with \(n_i > 1\)
 - Number of nodes: \(\prod_{i=1}^d n_i\)
 - Degree: \(2 \cdot d\)
 - Number of edges: \(\prod_{i=1}^d n_i\)
 - Diameter: \(\sum_{i=1}^d \lfloor n_i/2 \rfloor\)
 - Node-con.: \(2 \cdot d\)
 - Edge-con.: \(2 \cdot d\)

- Torus: \(Tr(14, 4)\):

```
0,0 | 0,1 | 0,2 | 0,3 | 1,0 | 1,1 | 1,2 | 1,3 | 2,0 | 2,1 | 2,2 | 2,3 | 3,0 | 3,1 | 3,2 | 3,3
0,1 | 1,1 | 2,1 | 3,1 | 4,1 | 5,1 | 6,1 | 7,1 | 8,1 | 9,1 | 10,1 | 11,1 | 12,1 | 13,1
0,2 | 1,2 | 2,2 | 3,2 | 4,2 | 5,2 | 6,2 | 7,2 | 8,2 | 9,2 | 10,2 | 11,2 | 12,2 | 13,2
0,3 | 1,3 | 2,3 | 3,3 | 4,3 | 5,3 | 6,3 | 7,3 | 8,3 | 9,3 | 10,3 | 11,3 | 12,3 | 13,3
```
Complete binary tree

\[T(d) = (V_{T(d)}, E_{T(d)}) \]
\[V_{T(d)} = \{ w \in \{0, 1\}^* \mid |w| \leq d \} \]
\[E_{T(d)} = \{ \{w, wa\} \mid w, wa \in V, a \in \{0, 1\} \} \]
Complete binary tree

\[T(d) = (V_{T(d)}, E_{T(d)}) \]
\[V_{T(d)} = \{ w \in \{0, 1\}^* \mid |w| \leq d \} \]
\[E_{T(d)} = \{ \{w, wa\} \mid w, wa \in V, a \in \{0, 1\} \} \]
Complete binary tree

\[T(d) = (V_{T(d)}, E_{T(d)}) \]
\[V_{T(d)} = \{ w \in \{0, 1\}^* \mid |w| \leq d \} \]
\[E_{T(d)} = \{ \{w, wa\} \mid w, wa \in V, a \in \{0, 1\} \} \]
Complete binary tree

\[T(d) = (V_{T(d)}, E_{T(d)}) \]
\[V_{T(d)} = \{ w \in \{0, 1\}^* | |w| \leq d \} \]
\[E_{T(d)} = \{ \{w, wa\} | w, wa \in V, a \in \{0, 1\} \} \]
Complete binary tree

\[T(d) = (V_{T(d)}, E_{T(d)}) \]
\[V_{T(d)} = \{ w \in \{0, 1\}^* \mid |w| \leq d \} \]
\[E_{T(d)} = \{ \{w, wa\} \mid w, wa \in V, a \in \{0, 1\} \} \]
Complete binary tree

\[T(d) = (V_{T(d)}, E_{T(d)}) \]
\[V_{T(d)} = \{ w \in \{0, 1\}^* \mid |w| \leq d \} \]
\[E_{T(d)} = \{ \{w, wa\} \mid w, wa \in V, a \in \{0, 1\} \} \]
Complete binary tree

\[T(d) = (V_T(d), E_T(d)) \]

\[V_T(d) = \{ w \in \{0, 1\}^* | |w| \leq d \} \]

\[E_T(d) = \{ \{w, wa\} | w, wa \in V, a \in \{0, 1\} \} \]

Number of nodes: \(2^{d+1} - 1 \)
Degrees: \(\{1, 2, 3\} \)
Number of edges: \(2^{d+1} - 2 \)
Diameter: \(2 \cdot d \)
Node-con.: 1
Edge-con.: 1
Complete k-nary tree

$$T_k(d) = (V_{T_k(d)}, E_{T_k(d)})$$

$$V_{T_k(d)} = \{w \in \{0, 1, \ldots, k - 1\}^* \mid |w| \leq d\}$$

$$E_{T_k(d)} = \{\{w, wa\} \mid w, wa \in V_{T_k(d)}, a \in \{0, 1, \ldots, k - 1\}\}$$
Complete k-nary tree

\[
T_k(d) = (V_{T_k(d)}, E_{T_k(d)})
\]

\[
V_{T_k(d)} = \{w \in \{0, 1, \ldots, k - 1\}^* \mid |w| \leq d\}
\]

\[
E_{T_k(d)} = \{\{w, wa\} \mid w, wa \in V_{T_k(d)}, a \in \{0, 1, \ldots, k - 1\}\}
\]
Complete k-nary tree

\[
T_k(d) = (V_{T_k(d)}, E_{T_k(d)})
\]
\[
V_{T_k(d)} = \{ w \in \{0, 1, \cdots, k - 1 \}^* \mid |w| \leq d \}
\]
\[
E_{T_k(d)} = \{ \{w, wa\} \mid w, wa \in V_{T_k(d)}, a \in \{0, 1, \cdots, k - 1 \}\}
\]
Complete k-nary tree

$$T_k(d) = (V_{T_k(d)}, E_{T_k(d)})$$

$$V_{T_k(d)} = \{ w \in \{0, 1, \ldots, k-1\}^* \mid |w| \leq d \}$$

$$E_{T_k(d)} = \{ \{w, wa\} \mid w, wa \in V_{T_k(d)}, a \in \{0, 1, \ldots, k-1\} \}$$
Complete k-nary tree

$$T_k(d) = (V_{T_k(d)}, E_{T_k(d)})$$

$$V_{T_k(d)} = \{w \in \{0,1,\cdots,k-1\}^* \mid |w| \leq d\}$$

$$E_{T_k(d)} = \{\{w, wa\} \mid w, wa \in V_{T_k(d)}, a \in \{0,1,\cdots,k-1\}\}$$
Complete k-nary tree

$$T_k(d) = (V_{T_k(d)}, E_{T_k(d)})$$

$$V_{T_k(d)} = \{w \in \{0, 1, \ldots, k-1\}^* | |w| \leq d\}$$

$$E_{T_k(d)} = \{\{w, wa\} | w, wa \in V_{T_k(d)}, a \in \{0, 1, \ldots, k-1\}\}$$

Number of nodes: $\sum_{i=0}^{d} k^i$
Degrees: $\{1, k, k+1\}$
Number of edges: $\sum_{i=0}^{d} k^i - 1$
Diameter: $2 \cdot d$
Node-con.: 1
Edge-con.: 1
X-Tree

\[\begin{align*}
X_T(d) &= (V_{XT(d)}, E_{XT(d)}^1 \cup E_{XT(d)}^2) \\
V_{XT(d)} &= \{ w \in \{0, 1\}^* \mid |w| \leq d \} \\
E_{XT(d)}^1 &= \{ \{ w, wa \} \mid w, wa \in V, a \in \{0, 1\} \} \\
E_{XT(d)}^2 &= \{ \{ w, w' \} \mid w, w' \in V_{XT(d)}, |w| = |w'|, \text{int}(w) + 1 = \text{int}(w') \}
\end{align*} \]
X-Tree

\[XT(d) = (V_{XT(d)}, E^1_{XT(d)} \cup E^2_{XT(d)}) \]

\[V_{XT(d)} = \{ w \in \{0, 1\}^* | |w| \leq d \} \]

\[E^1_{XT(d)} = \{ \{w, wa\} | w, wa \in V, a \in \{0, 1\} \} \]

\[E^2_{XT(d)} = \{ \{w, w'\} | w, w' \in V_{XT(d)}, |w| = |w'|, \text{int}(w) + 1 = \text{int}(w') \} \]
X-Tree

\[X_T(d) = (V_{X_T(d)}, E_{X_T(d)}^1 \cup E_{X_T(d)}^2) \]

\[V_{X_T(d)} = \{ w \in \{0, 1\}^* \mid |w| \leq d \} \]

\[E_{X_T(d)}^1 = \{\{w, wa\} \mid w, wa \in V, a \in \{0, 1\}\} \]

\[E_{X_T(d)}^2 = \{\{w, w'\} \mid w, w' \in V_{X_T(d)}, |w| = |w'|, \text{int}(w) + 1 = \text{int}(w')\} \]
\[XT(d) = (V_{XT(d)}, E^1_{XT(d)} \cup E^2_{XT(d)}) \]

\[V_{XT(d)} = \{ w \in \{0, 1\}^* | |w| \leq d \} \]

\[E^1_{XT(d)} = \{ \{ w, wa \} | w, wa \in V, a \in \{0, 1\} \} \]

\[E^2_{XT(d)} = \{ \{ w, w' \} | w, w' \in V_{XT(d)}, |w| = |w'|, \text{int}(w) + 1 = \text{int}(w') \} \]
\[\begin{align*}
X_T(d) &= (V_{XT(d)}; E^1_{XT(d)} \cup E^2_{XT(d)}) \\
V_{XT(d)} &= \{ w \in \{0,1\}^* \mid |w| \leq d \} \\
E^1_{XT(d)} &= \{ \{w, wa\} \mid w, wa \in V, a \in \{0,1\} \} \\
E^2_{XT(d)} &= \{ \{w, w'\} \mid w, w' \in V_{XT(d)}, |w| = |w'|, \text{int}(w) + 1 = \text{int}(w') \}
\end{align*} \]
X-Tree

\[
X_T(d) = (V_{X_T(d)}, E_{X_T(d)}^1 \cup E_{X_T(d)}^2)
\]

\[
V_{X_T(d)} = \{ w \in \{0, 1\}^* \mid |w| \leq d \}
\]

\[
E_{X_T(d)}^1 = \{ \{w, wa\} \mid w, wa \in V, a \in \{0, 1\} \}
\]

\[
E_{X_T(d)}^2 = \{ \{w, w'\} \mid w, w' \in V_{X_T(d)}, |w| = |w'|, \text{int}(w) + 1 = \text{int}(w') \}
\]
X-Tree

\[X_T(d) = (V_{XT(d)}, E^1_{XT(d)} \cup E^2_{XT(d)}) \]
\[V_{XT(d)} = \{ w \in \{0, 1\}^* | |w| \leq d \} \]
\[E^1_{XT(d)} = \{ \{w, wa\} | w, wa \in V, a \in \{0, 1\} \} \]
\[E^2_{XT(d)} = \{ \{w, w'\} | w, w' \in V_{XT(d)}, |w| = |w'|, \text{int}(w) + 1 = \text{int}(w') \} \]

Number of nodes: \(2^{d+1} - 1\)
Degrees: \(\{2, 3, 4, 5\}\)
Number of edges: \(2^{d+2} - 4 - d\)
Diameter: \(2 \cdot d - 1\)
Node-con.: 2
Edge-con.: 2
Hypercube of dimension d

$$\begin{align*}
HQ(d) & = (V_{HQ(d)}, E_{HQ(d)}) \\
V_{HQ(d)} & = \{0, 1\}^d \\
E_{HQ(d)} & = \{\{w0', w1'\} \mid w0', w1' \in V_{HQ(d)}\}
\end{align*}$$
Hypercube of dimension d

$$HQ(d) = (V_{HQ(d)}, E_{HQ(d)})$$

$$V_{HQ(d)} = \{0, 1\}^d$$

$$E_{HQ(d)} = \{\{w0, w1\} \mid w0, w1 \in V_{HQ(d)}\}$$
Hypercube of dimension d

\[HQ(d) = (V_{HQ(d)}, E_{HQ(d)}) \]
\[V_{HQ(d)} = \{0, 1\}^d \]
\[E_{HQ(d)} = \{\{w0, w1\}' | w0, w1, w1' \in V_{HQ(d)}\} \]
Hypercube of dimension d

\[HQ(d) = (V_{HQ(d)}, E_{HQ(d)}) \]
\[V_{HQ(d)} = \{0,1\}^d \]
\[E_{HQ(d)} = \\{\{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)}\} \]
Hypercube of dimension d

\[HQ(d) = (V_{HQ(d)}, E_{HQ(d)}) \]
\[V_{HQ(d)} = \{0, 1\}^d \]
\[E_{HQ(d)} = \{\{w0', w1'\} | w0', w1' \in V_{HQ(d)}\} \]
Hypercube of dimension d

\[
HQ(d) = (V_{HQ(d)}, E_{HQ(d)}) \\
V_{HQ(d)} = \{0, 1\}^d \\
E_{HQ(d)} = \\{\{w0w', w1w'\} | w0w', w1w' \in V_{HQ(d)}\}
\]
Hypercube of dimension d

$$HQ(d) = \left(V_{HQ(d)}, E_{HQ(d)} \right)$$

$$V_{HQ(d)} = \{0, 1\}^d$$

$$E_{HQ(d)} = \{ \{w0w', w1w'\} | w0w', w1w' \in V_{HQ(d)} \}$$

Note the Gray-Code.
Hypercube of dimension d

$$HQ(d) = (V_{HQ(d)}, E_{HQ(d)})$$

$$V_{HQ(d)} = \{0, 1\}^d$$

$$E_{HQ(d)} = \{\{w0w', w1w'\} | w0w', w1w' \in V_{HQ(d)}\}$$

Number of nodes: 2^d
Degree: d
Node-con.: d
Number of edges: $d \cdot 2^{d-1}$
Diameter: d
Edge-con.: d
Hypercube of dimension d (alternative view)

\[
\begin{align*}
HQ(d) &= (V_{HQ(d)}, E_{HQ(d)}) \\
V_{HQ(d)} &= \{0, 1\}^d \\
E_{HQ(d)} &= \{\{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)}\}
\end{align*}
\]
Hypercube of dimension \(d\) (alternative view)

\[
HQ(d) = (V_{HQ(d)}, E_{HQ(d)})
\]

\[
V_{HQ(d)} = \{0, 1\}^d
\]

\[
E_{HQ(d)} = \{\{w0w', w1w'\} | w0w', w1w' \in V_{HQ(d)}\}
\]
Hypercube of dimension d (alternative view)

$$HQ(d) = (V_{HQ(d)}, E_{HQ(d)})$$

$$V_{HQ(d)} = \{0, 1\}^d$$

$$E_{HQ(d)} = \{\{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)}\}$$
Hypercube of dimension d (alternative view)

$$
HQ(d) = (V_{HQ(d)}, E_{HQ(d)})
$$

$$
V_{HQ(d)} = \{0, 1\}^d
$$

$$
E_{HQ(d)} = \{\{w0', w1'\} | w0', w1' \in V_{HQ(d)}\}
$$
Hypercube of dimension d (alternative view)

\[
HQ(d) = (V_{HQ(d)}, E_{HQ(d)})
\]

\[
V_{HQ(d)} = \{0, 1\}^d
\]

\[
E_{HQ(d)} = \{\{w0w', w1w'\} | w0w', w1w' \in V_{HQ(d)}\}
\]
Hypercube of dimension d (alternative view)

$$HQ(d) = (V_{HQ(d)}, E_{HQ(d)})$$

$$V_{HQ(d)} = \{0, 1\}^d$$

$$E_{HQ(d)} = \{\{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)}\}$$
Hypercube of dimension d (alternative view)

$$HQ(d) = (V_{HQ(d)}, E_{HQ(d)})$$

$$V_{HQ(d)} = \{0, 1\}^d$$

$$E_{HQ(d)} = \{\{w0', w1'\} \mid w0', w1' \in V_{HQ(d)}\}$$
Hypercube of dimension d (alternative view)

$$HQ(d) = (V_{HQ(d)}, E_{HQ(d)})$$

$$V_{HQ(d)} = \{0, 1\}^d$$

$$E_{HQ(d)} = \{\{w0w', w1w'\} | w0w', w1w' \in V_{HQ(d)}\}$$
Hypercube of dimension d (alternative view)

$$HQ(d) = (V_{HQ(d)}, E_{HQ(d)})$$
$$V_{HQ(d)} = \{0, 1\}^d$$
$$E_{HQ(d)} = \{\{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)}\}$$
Hypercube of dimension d (alternative view)

\[HQ(d) = (V_{HQ(d)}, E_{HQ(d)}) \]
\[V_{HQ(d)} = \{0, 1\}^d \]
\[E_{HQ(d)} = \{\{w0w', w1w'\} | w0w', w1w' \in V_{HQ(d)}\} \]
Hypercube of dimension d (alternative view)

$$HQ(d) = (V_{HQ(d)}, E_{HQ(d)})$$

$$V_{HQ(d)} = \{0, 1\}^d$$

$$E_{HQ(d)} = \{\{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)}\}$$
Cube-Connected Cycles of dimension d

\[
\begin{align*}
CC(d) & = (V_{\text{CCC}(d)}, E_{\text{CCC}(d)}^c \cup E_{\text{CCC}(d)}^h) \\
V_{\text{CCC}(d)} & = \{0, 1, \cdots, d - 1\} \times \{0, 1\}^d \\
E_{\text{CCC}(d)}^c & = \{((i, w), ((i + 1) \mod n, w)) \mid w \in \{0, 1\}^d, 0 \leq i < n\} \\
E_{\text{CCC}(d)}^h & = \{((i, w0w'), (i, w1w')) \mid w' \in \{0, 1\}^i, w \in \{0, 1\}^{n - i - 1}\}
\end{align*}
\]
Cube-Connected Cycles of dimension d

\[
CCC(d) = (V_{CCC(d)}, E^c_{CCC(d)} \cup E^h_{CCC(d)})
\]

\[
V_{CCC(d)} = \{0, 1, \cdots, d-1\} \times \{0, 1\}^d
\]

\[
E^c_{CCC(d)} = \{(i, w), ((i + 1) \mod n, w)\} \mid w \in \{0, 1\}^d, 0 \leq i < n
\]

\[
E^h_{CCC(d)} = \{(i, w0w'), (i, w1w')\} \mid w' \in \{0, 1\}^i, w \in \{0, 1\}^{n-i-1}
\]
Cube-Connected Cycles of dimension \(d\)

\[
CCC(d) = (V_{CCC(d)}, E^c_{CCC(d)} \cup E^h_{CCC(d)})
\]

\[
V_{CCC(d)} = \{0, 1, \cdots, d - 1\} \times \{0, 1\}^d
\]

\[
E^c_{CCC(d)} = \{(i, w), ((i + 1) \mod n, w)\} \mid w \in \{0, 1\}^d, 0 \leq i < n
\]

\[
E^h_{CCC(d)} = \{(i, w0w'), (i, w1w')\} \mid w' \in \{0, 1\}^i, w \in \{0, 1\}^n-i-1
\]
Cube-Connected Cycles of dimension d

$$
\begin{align*}
CCC(d) &= (V_{CCC(d)}, E^c_{CCC(d)} \cup E^h_{CCC(d)}) \\
V_{CCC(d)} &= \{0, 1, \cdots, d-1\} \times \{0, 1\}^d \\
E^c_{CCC(d)} &= \{(i, w), ((i+1) \mod n, w) \mid w \in \{0, 1\}^d, 0 \leq i < n\} \\
E^h_{CCC(d)} &= \{(i, w0w'), (i, w1w') \mid w' \in \{0, 1\}^i, w \in \{0, 1\}^{n-i-1}\}
\end{align*}
$$
Cube-Connected Cycles of dimension d

$$CCC(d) = (V_{CCC(d)}, E_{CCC(c)}^c \cup E_{CCC(d)}^h)$$

$$V_{CCC(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d$$

$$E_{CCC(c)}^c = \{((i, w), ((i + 1) \mod n, w)) \mid w \in \{0, 1\}^d, 0 \leq i < n\}$$

$$E_{CCC(d)}^h = \{((i, w0w'), (i, w1w')) \mid w' \in \{0, 1\}^i, w \in \{0, 1\}^{n-i-1}\}$$
Cube-Connected Cycles of dimension d

\[
CCC(d) = (V_{CCC(d)}, E^c_{CCC(d)} \cup E^h_{CCC(d)})
\]

\[
V_{CCC(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d
\]

\[
E^c_{CCC(d)} = \{((i, w), ((i + 1) \mod n, w)) \mid w \in \{0, 1\}^d, 0 \leq i < n\}
\]

\[
E^h_{CCC(d)} = \{((i, w0w'), (i, w1w')) \mid w' \in \{0, 1\}^i, w \in \{0, 1\}^{n-i-1}\}
\]

Number of nodes: $d \cdot 2^d$
Degree: 3
Number of edges: $3 \cdot d \cdot 2^{d-1}$
Diameter: $2 \cdot d - 2 + \lceil d/2 \rceil$
Node-con.: 3
Edge-con.: 3
Butterfly of dimension d

$$BF(d) = (V_{BF(d)}, E_{BF(d)}^c \cup E_{BF(d)}^h)$$

$$V_{BF(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d$$

$$E_{BF(d)}^c = \{(i, w), ((i + 1) \mod n, w)\} \mid w \in \{0, 1\}^d, 0 \leq i < n$$

$$E_{BF(d)}^h = \{(i, w0w'), ((i + 1) \mod n, w1w')\} \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}$$

$E_{CCC}(d) = \{(i, w0w'), (i, w1w')\} \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}$
Butterfly of dimension d

$$BF(d) = (V_{BF(d)}, E^c_{BF(d)} \cup E^h_{BF(d)})$$

$V_{BF(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d$

$E^c_{BF(d)} = \{((i, w), ((i + 1) \mod n, w)) \mid w \in \{0, 1\}^d, 0 \leq i < n\}$

$E^h_{BF(d)} = \{((i, w0w'), ((i + 1) \mod n, w1w')) \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}\}$
Butterfly of dimension d

$$BF(d) = (V_{BF(d)}, E^c_{BF(d)} \cup E^h_{BF(d)})$$

$$V_{BF(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d$$

$$E^c_{BF(d)} = \{(i, w), ((i + 1) \mod n, w)\} \mid w \in \{0, 1\}^d, 0 \leq i < n$$

$$E^h_{BF(d)} = \{(i, w0w'), ((i + 1) \mod n, w1w')\} \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}$$
Butterfly of dimension d

$$BF(d) = (V_{BF(d)}, E^c_{BF(d)} \cup E^h_{BF(d)})$$

$$V_{BF(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d$$

$$E^c_{BF(d)} = \{((i, w), ((i + 1) \mod n, w)) \mid w \in \{0, 1\}^d, 0 \leq i < n\}$$

$$E^h_{BF(d)} = \{((i, w0w'), ((i + 1) \mod n, w1w')) \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}\}$$
Butterfly of dimension d

\[
BF(d) = (V_{BF(d)}, E_{BF(d)}^c \cup E_{BF(d)}^h)
\]

\[
V_{BF(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d
\]

\[
E_{BF(d)}^c = \{((i, w), ((i + 1) \mod n, w)) \mid w \in \{0, 1\}^d, 0 \leq i < n\}
\]

\[
E_{BF(d)}^h = \{((i, w0w'), ((i + 1) \mod n, w1w')) \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}\}
\]

\[
E_{CCC(d)} = \{(i, w0w'), (i, w1w')\} \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}\}
\]
Butterfly of dimension d

$$BF(d) = (V_{BF(d)}, E^c_{BF(d)} \cup E^h_{BF(d)})$$

$$V_{BF(d)} = \{0, 1, \cdots , d - 1\} \times \{0, 1\}^d$$

$$E^c_{BF(d)} = \{((i, w), ((i + 1) \mod n, w)) \mid w \in \{0, 1\}^d, 0 \leq i < n\}$$

$$E^h_{BF(d)} = \{((i, w0w'), ((i + 1) \mod n, w1w')) \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}\}$$
Butterfly of dimension d

$BF(d) = (V_{BF(d)}, E^c_{BF(d)} \cup E^h_{BF(d)})$

$V_{BF(d)} = \{0, 1, \cdots, d-1\} \times \{0, 1\}^d$

$E^c_{BF(d)} = \{(i, w), ((i+1) \mod n, w)\} \mid w \in \{0, 1\}^d, 0 \leq i < n$

$E^h_{BF(d)} = \{(i, w0w'), ((i+1) \mod n, w1w')\} \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}$

$E^h_{CCC(d)} = \{(i, w0w'), (i, w1w')\} \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}$
Butterfly of dimension d

$$BF(d) = (V_{BF(d)}, E^c_{BF(d)} \cup E^h_{BF(d)})$$

$$V_{BF(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d$$

$$E^c_{BF(d)} = \{((i, w), ((i + 1) \mod n, w)) \mid w \in \{0, 1\}^d, 0 \leq i < n\}$$

$$E^h_{BF(d)} = \{((i, w0w'), ((i + 1) \mod n, w1w')) \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}\}$$

Number of nodes: $d \cdot 2^d$
Degree: 4

Number of edges: $d \cdot 2^d + 1$
Diameter: $d + \lfloor \frac{d}{2} \rfloor$
Node-con.: 4
Edge-con.: 4
Butterfly of dimension d

$$BF(d) = (V_{BF(d)}, E^c_{BF(d)} \cup E^h_{BF(d)})$$

$$V_{BF(d)} = \{0, 1, \ldots, d - 1\} \times \{0, 1\}^d$$

$$E^c_{BF(d)} = \{(i, w), ((i + 1) \mod n, w)\} \mid w \in \{0, 1\}^d, 0 \leq i < n$$

$$E^h_{BF(d)} = \{(i, w0w'), ((i + 1) \mod n, w1w')\} \mid w \in \{0, 1\}^i, w' \in \{0, 1\}^{n-i-1}$$

Number of nodes: $d \cdot 2^d$

Number of edges: $d \cdot 2^{d+1}$

Degree: 4

Diameter: $d + \lfloor d/2 \rfloor$

Node-con.: 4

Edge-con.: 4
DeBruijn network of dimension d

$$DB(d) = (V_{DB(d)}, E^s_{DB(d)} \cup E^{se}_{DB(d)})$$

$$V_{DB(d)} = \{0, 1\}^d$$

$$E^s_{DB(d)} = \{(aw, wa) \mid a \in \{0, 1\}, aw, wa \in V_{DB(d)}\}$$

$$E^{se}_{DB(d)} = \{(aw, wb) \mid a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\}$$
DeBruijn network of dimension d

$$DB(d) = (V_{DB(d)}, E^s_{DB(d)} \cup E^{se}_{DB(d)})$$

- $V_{DB(d)} = \{0, 1\}^d$
- $E^s_{DB(d)} = \{(aw, wa) | a \in \{0, 1\}, aw, wa \in V_{DB(d)}\}$
- $E^{se}_{DB(d)} = \{(aw, wb) | a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\}$
DeBruijn network of dimension d

DeBruijn network:

$$DB(d) = (V_{DB(d)}, E_{DB(d)}^s \cup E_{DB(d)}^{se})$$

$$V_{DB(d)} = \{0, 1\}^d$$

$$E_{DB(d)}^s = \{(aw, wa) | a \in \{0, 1\}, aw, wa \in V_{DB(d)}\}$$

$$E_{DB(d)}^{se} = \{(aw, wb) | a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\}$$
DeBruijn network of dimension d

- DeBruijn network:

$$DB(d) = (V_{DB(d)}, E^{s}_{DB(d)} \cup E^{se}_{DB(d)})$$

- $V_{DB(d)} = \{0, 1\}^d$

- $E^{s}_{DB(d)} = \{(aw, wa) \mid a \in \{0, 1\}, aw, wa \in V_{DB(d)}\}$

- $E^{se}_{DB(d)} = \{(aw, wb) \mid a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\}$

![DeBruijn network diagram]
DeBruijn network of dimension d

$$DB(d) = (V_{DB(d)}, E^s_{DB(d)} \cup E^{se}_{DB(d)})$$

$V_{DB(d)} = \{0, 1\}^d$

$E^s_{DB(d)} = \{(aw, wa) \mid a \in \{0, 1\}, aw, wa \in V_{DB(d)}\}$

$E^{se}_{DB(d)} = \{(aw, wb) \mid a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\}$

Number of nodes: 2^d
Number of edges: 2^{d+1}
Degree: 2 + 2
Diameter: d
DeBruijn network of dimension d

- Undirected DeBruijn network:

$$DB'(d) = (V_{DB(d)}, E^I_{DB(d)} \cup E^{Ise}_{DB(d)})$$

$$E^I_{DB(d)} = \{\{aw, wa\} \mid a \in \{0, 1\}, aw, wa \in V_{DB(d)}\}$$

$$E^{Ise}_{DB(d)} = \{\{aw, wb\} \mid a \in \{0, 1\}, b = 1 - a, aw, wb \in V_{DB(d)}\}$$

Number of nodes: 2^d

Degree: \{2, 3, 4\}

Number of edges: $2^{d+1} - 3$

Diameter: d
Shuffle-Exchange network of dimension d

- **Shuffle-Exchange network:**

 $$SE(d) = (V_{SE(d)}, E^s_{SE(d)} \cup E^e_{SE(d)})$$

 - $V_{SE(d)} = \{0,1\}^d$
 - $E^s_{SE(d)} = \{(aw, wa) \mid a \in \{0,1\}, aw, wa \in V_{SE(d)}\}$
 - $E^e_{SE(d)} = \{(wa, wb) \mid a \in \{0,1\}, b = 1 - a, wa, wb \in V_{SE(d)}\}$
Shuffle-Exchange network of dimension d

$$SE(d) = (V_{SE(d)}, E^s_{SE(d)} \cup E^e_{SE(d)})$$

- $V_{SE(d)} = \{0, 1\}^d$
- $E^s_{SE(d)} = \{(aw, wa) \mid a \in \{0, 1\}, aw, wa \in V_{SE(d)}\}$
- $E^e_{SE(d)} = \{(wa, wb) \mid a \in \{0, 1\}, b = 1 - a, wa, wb \in V_{SE(d)}\}$
Shuffle-Exchange network of dimension d

$$SE(d) = \left(V_{SE(d)}, E^s_{SE(d)} \cup E^e_{SE(d)} \right)$$

- $V_{SE(d)} = \{0, 1\}^d$
- $E^s_{SE(d)} = \{(aw, wa) \mid a \in \{0, 1\}, aw, wa \in V_{SE(d)}\}$
- $E^e_{SE(d)} = \{(wa, wb) \mid a \in \{0, 1\}, b = 1 - a, wa, wb \in V_{SE(d)}\}$
Shuffle-Exchange network of dimension d

$SE(d) = (V_{SE(d)}, E_{SE(d)}^s \cup E_{SE(d)}^e)$

$V_{SE(d)} = \{0, 1\}^d$

$E_{SE(d)}^s = \{(aw, wa) \mid a \in \{0, 1\}, aw, wa \in V_{SE(d)}\}$

$E_{SE(d)}^e = \{(wa, wb) \mid a \in \{0, 1\}, b = 1 - a, wa, wb \in V_{SE(d)}\}$

- Number of nodes: 2^d
- Number of edges: 2^{d+1}
- Degree: $2 + 2$
- Diameter: $2 \cdot d - 1$
Shuffle-Exchange network of dimension \(d \)

- **Undirected Shuffle-Exchange network:**

\[
SE'(d) = (V_{SE(d)}, E^{fs}_{SE(d)} \cup E^{fe}_{SE(d)})
\]

\[
E^{fs}_{SE(d)} = \{ \{aw, wa\} | a \in \{0,1\}, aw, wa \in V_{SE(d)} \}
\]

\[
E^{fe}_{SE(d)} = \{ \{wa, wb\} | a \in \{0,1\}, b = 1 - a, wa, wb \in V_{SE(d)} \}
\]

- **Number of nodes:** \(2^d \)
- **Degree:** \{1, 2, 3\}
- **Number of edges:** \(2^{d+1}/3 \)
- **Diameter:** \(2 \cdot d - 1 \)
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof:

[Diagram showing the embedding process]
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

$C(2^d + 1 - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

\(C(2^{d+1} - 1) \) may be embedded into \(T(d) \) with load 1 and dilation 3.

Proof: Embed a path recursively with dilation \(\leq 3 \) from the root to a son of the root.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

\(C(2^{d+1} - 1) \) may be embedded into \(T(d) \) with load 1 and dilation 3.

Proof: Embed a path recursively with dilation \(\leq 3 \) from the root to a son of the root.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embedd a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $T(d)$ with load 1 and dilation 3.

Proof: Embed a path recursively with dilation ≤ 3 from the root to a son of the root.
Lemma:

$C(3 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 3 and dilation 1.

Proof:
Lemma:

$C(3 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

\[C(3 \cdot (2^{d+1} - 1)) \] may be embedded into \(T(d) \) with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

$C(3 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

$C(3 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

\[C(3 \cdot (2^{d+1} - 1)) \] may be embedded into \(T(d) \) with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

\(C(3 \cdot (2^{d+1} - 1)) \) may be embedded into \(T(d) \) with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

$C(3 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

$C(3 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

\[C(3 \cdot (2^{d+1} - 1)) \] may be embedded into \(T(d) \) with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

$C(3 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 3 and dilation 1.

Proof: Use the in-order traversal through the tree.
Lemma:

$C(2 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 2 and dilation 2.

Proof:
Lemma:

\[C(2 \cdot (2^{d+1} - 1)) \] may be embedded into \(T(d) \) with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the 'in-order’ nodes.
Lemma:

\(C(2 \cdot (2^{d+1} - 1)) \) may be embedded into \(T(d) \) with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the ‘in-order’ nodes.
Lemma:

\[C(2 \cdot (2^{d+1} - 1)) \] may be embedded into \(T(d) \) with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the ‘in-order” nodes.
Lemma:

$C(2 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the ‘in-order” nodes.
Lemma:

\[C(2 \cdot (2^{d+1} - 1)) \] may be embedded into \(T(d) \) with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the ‘in-order” nodes.
Lemma:

$C(2 \cdot (2^d+1 - 1))$ may be embedded into $T(d)$ with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the ‘in-order’ nodes.
Lemma:

$C(2 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the ‘in-order’ nodes.
Lemma:

$C(2 \cdot (2^{d+1} - 1))$ may be embedded into $T(d)$ with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the ‘in-order” nodes.
Lemma:

\(C(2 \cdot (2^{d+1} - 1)) \) may be embedded into \(T(d) \) with load 2 and dilation 2.

Proof: Use the in-order traversal through the tree and jump the 'in-order" nodes.
Lemma:

$L(2^{d+1} - 1)$ may be embedded into $XT(d)$ with load 1 and dilation 1.

Proof:

```
L(n) into XT(d)
```

Graphical representation of the embedding process.
Lemma:

$L(2^{d+1} - 1)$ may be embedded into $XT(d)$ with load 1 and dilation 1.

Proof: Place the path in levels through the tree.
Lemma:

\(C(2^{d+1} - 1) \) may be embedded into \(XT(d) \) with load 1 and dilation 1.

Proof: Place the path in levels through the left part and through the right part and connect both to a cycle.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $X_T(d)$ with load 1 and dilation 1.

Proof: Place the path in levels through the left part and through the right part and connect both to a cycle.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $XT(d)$ with load 1 and dilation 1.

Proof: Place the path in levels through the left part and through the right part and connect both to a cycle.
Lemma:

$C(2^{d+1} - 1)$ may be embedded into $XT(d)$ with load 1 and dilation 1.

Proof: Place the path in levels through the left part and through the right part and connect both to a cycle.
Lemma:

\(C(2^{d+1} - 1) \) may be embedded into \(XT(d) \) with load 1 and dilation 1.

Proof: Place the path in levels through the left part and through the right part and connect both to a cycle.
Lemma:

$C(2^d)$ may be embedded into $HQ(d)$ with load 1 and dilation 1.

Proof: Gray-code.
Lemma:

$C(2^d)$ may be embedded into $HQ(d)$ with load 1 and dilation 1.

Proof: Gray-code.
Lemma:

$C(2^d)$ may be embedded into $HQ(d)$ with load 1 and dilation 1.

Proof: Gray-code.
Lemma:

If $2n \leq 2^d$ holds, then $C(2n)$ could be embedded into $HQ(d)$ with load 1 and dilation 1.

Proof: recursive structure of $HQ(d)$
Lemma:
If $2n \leq 2^d$ holds, then $C(2n)$ could be embedded into $HQ(d)$ with load 1 and dilation 1.

Proof: recursive structure of $HQ(d)$
Lemma:

If $2n \leq 2^d$ holds, then $C(2n)$ could be embedded into $HQ(d)$ with load 1 and dilation 1.

Proof: recursive structure of $HQ(d)$
Lemma:
If $2n \leq 2^d$ holds, then $C(2n)$ could be embedded into $HQ(d)$ with load 1 and dilation 1.

Proof: recursive structure of $HQ(d)$
Alternative proof: $G(2, 2^{d-1})$ is a sub-graph of $HQ(d)$.
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof:
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof: Join cycles of length $d, 2d, 4d, ...$.
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof: Join cycles of length $d, 2d, 4d, ...$.
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof: Join cycles of length $d, 2d, 4d, \ldots$.

$C(n)$ into $BF(d)$
Lemma:

\(C(d \cdot 2^d) \) may be embedded into \(BF(d) \) with load 1 and dilation 1.

Proof: Join cycles of length \(d, 2d, 4d, \ldots \)
Lemma:

\(C(d \cdot 2^d) \) may be embedded into \(BF(d) \) with load 1 and dilation 1.

Proof: Join cycles of length \(d, 2d, 4d, \ldots \).
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof: Join cycles of length d, $2d$, $4d$,
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof:
Lemma:

\[C(d \cdot 2^d) \] may be embedded into \(BF(d) \) with load 1 and dilation 1.

Proof: Join cycles of length \(d, 2d, 4d, \ldots \) (view using the gray-code).
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof: Join cycles of length $d, 2d, 4d, ...$ (view using the gray-code).
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof: Join cycles of length $d, 2d, 4d, \ldots$ (view using the gray-code).
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof: Join cycles of length $d, 2d, 4d, \ldots$ (view using the gray-code).
Lemma:

\[C(d \cdot 2^d) \] may be embedded into \(BF(d) \) with load 1 and dilation 1.

Proof: Join cycles of length \(d, 2d, 4d, \ldots \) (view using the gray-code).
Lemma:

$C(d \cdot 2^d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

Proof: Join cycles of length $d, 2d, 4d, \ldots$ (view using the gray-code).
Lemma:

$C(d \cdot 2^d)$ may be embedded into $CCC(d)$ with load 1 and dilation 2.

Proof:

[Diagram showing the embedding process]

$C(n)$ into $CCC(d)$
Lemma:

$C(d \cdot 2^d)$ may be embedded into $CCC(d)$ with load 1 and dilation 2.

Proof: Embed cycles in $BF(d)$ and embed $BF(d)$ in $CCC(d)$ with dilation 2.
Lemma:

$L(n \cdot n_2 \cdots n_d)$ may be embedded into $G(n_1, n_2, \ldots, n_d)$ with load 1 and dilation 1.

Proof:

```
0, 0  1, 0  2, 0  3, 0  4, 0  5, 0  6, 0  7, 0  8, 0  9, 0 10, 0 11, 0 12, 0 13, 0
0, 1  1, 1  2, 1  3, 1  4, 1  5, 1  6, 1  7, 1  8, 1  9, 1 10, 1 11, 1 12, 1 13, 1
0, 2  1, 2  2, 2  3, 2  4, 2  5, 2  6, 2  7, 2  8, 2  9, 2 10, 2 11, 2 12, 2 13, 2
0, 3  1, 3  2, 3  3, 3  4, 3  5, 3  6, 3  7, 3  8, 3  9, 3 10, 3 11, 3 12, 3 13, 3
```
Lemma:

$L(n_1 \cdot n_2 \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Proof: Place the path snake-wise through the grid.
Lemma:

$L(n)$ into $G(n_1, n_2, \cdots, n_d)$

Lemma:

$L(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:

$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:

$C(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embed cycle in the path with dilation 2.
- Embed the path in the grid with dilation 1.
Lemma:

$L(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:

$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:

$C(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embedd cycle in the path with dilation 2.
- Embedd the path in the grid with dilation 1.
Lemma:

$L(n \cdot n_2 \cdots n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:

$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:

$C(n_1 \cdot n_2 \cdots n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embed cycle in the path with dilation 2.
- Embed the path in the grid with dilation 1.
Lemma:

$L(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:

$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:

$C(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embedd cycle in the path with dilation 2.
- Embedd the path in the grid with dilation 1.
Lemma:
$L(n \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:
$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:
$C(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embed cycle in the path with dilation 2.
- Embed the path in the grid with dilation 1.
Lemma:

$L(n) \ into \ G(n_1, n_2, \cdots, n_d)$

Lemma:

$L(n_1 \cdot n_2 \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:

$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:

$C(n_1 \cdot n_2 \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embed cycle in the path with dilation 2.
- Embed the path in the grid with dilation 1.
Lemma:

$L(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:

$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:

$C(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embedd cycle in the path with dilation 2.
- Embedd the path in the grid with dilation 1.
Lemma:
$L(n_1 \cdot n_2 \cdots n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:
$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:
$C(n_1 \cdot n_2 \cdots n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embed cycle in the path with dilation 2.
- Embedd the path in the grid with dilation 1.
Lemma:

$L(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:

$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:

$C(n_1 \cdot n_2 \cdot \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embed cycle in the path with dilation 2.
- Embedd the path in the grid with dilation 1.
Lemma:

$L(n_1 \cdot n_2 \cdots n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1.

Lemma:

$C(n)$ may be embedded into $L(n)$ with load 1 and dilation 2.

- For each direction of the path, use every second node.
- Or: use the bandwidth 2 embedding of the cycle.

Lemma:

$C(n_1 \cdot n_2 \cdots n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 2.

- Embed cycle in the path with dilation 2.
- Embed the path in the grid with dilation 1.
Lemma:

\(C(n_1 \cdot n_2 \cdots n_d) \) may be embedded into \(G(n_1, n_2, \cdots, n_d) \) with load 1 and dilation 1, if at least one \(n_i \) is even.

Proof:

\[
\begin{array}{cccccccccccccccc}
0,3 & 1,3 & 2,3 & 3,3 & 4,3 & 5,3 & 6,3 & 7,3 & 8,3 & 9,3 & 10,3 & 11,3 & 12,3 & 13,3 \\
0,2 & 1,2 & 2,2 & 3,2 & 4,2 & 5,2 & 6,2 & 7,2 & 8,2 & 9,2 & 10,2 & 11,2 & 12,2 & 13,2 \\
0,1 & 1,1 & 2,1 & 3,1 & 4,1 & 5,1 & 6,1 & 7,1 & 8,1 & 9,1 & 10,1 & 11,1 & 12,1 & 13,1 \\
0,0 & 1,0 & 2,0 & 3,0 & 4,0 & 5,0 & 6,0 & 7,0 & 8,0 & 9,0 & 10,0 & 11,0 & 12,0 & 13,0 \\
\end{array}
\]
Lemma:

\(C(n_1 \cdot n_2 \cdots n_d) \) may be embedded into \(G(n_1, n_2, \cdots, n_d) \) with load 1 and dilation 1, if at least one \(n_i \) is even.

Proof: Place the path snake-wise through the grid.
Lemma:

\(C(n_1 \cdot n_2 \cdots \cdot n_d) \) may be embedded into \(G(n_1, n_2, \cdots, n_d) \) with load 1 and dilation 1, if at least one \(n_i \) is even.

Lemma:

\(C(n_1 \cdot n_2 \cdots \cdot n_d) \) may not be embedded into \(G(n_1, n_2, \cdots, n_d) \) with load 1 and dilation 1, if all \(n_i \) are odd.

Proof:
Lemma:

$C(n_1 \cdot n_2 \cdots \cdot n_d)$ may be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1, if at least one n_i is even.

Lemma:

$C(n_1 \cdot n_2 \cdots \cdot n_d)$ may not be embedded into $G(n_1, n_2, \cdots, n_d)$ with load 1 and dilation 1, if all n_i are odd.

Proof: Consider the 2-colouring of the grid.

\[
\begin{array}{cccccccccccccccc}
0,0 & 1,0 & 2,0 & 3,0 & 4,0 & 5,0 & 6,0 & 7,0 & 8,0 & 9,0 & 10,0 & 11,0 & 12,0 & 13,0 & 14,0 \\
0,1 & 1,1 & 2,1 & 3,1 & 4,1 & 5,1 & 6,1 & 7,1 & 8,1 & 9,1 & 10,1 & 11,1 & 12,1 & 13,1 & 14,1 \\
0,2 & 1,2 & 2,2 & 3,2 & 4,2 & 5,2 & 6,2 & 7,2 & 8,2 & 9,2 & 10,2 & 11,2 & 12,2 & 13,2 & 14,2 \\
0,3 & 1,3 & 2,3 & 3,3 & 4,3 & 5,3 & 6,3 & 7,3 & 8,3 & 9,3 & 10,3 & 11,3 & 12,3 & 13,3 & 14,3 \\
0,4 & 1,4 & 2,4 & 3,4 & 4,4 & 5,4 & 6,4 & 7,4 & 8,4 & 9,4 & 10,4 & 11,4 & 12,4 & 13,4 & 14,4 \\
\end{array}
\]
Lemma:

$T(d)$ may be embedded into $L(2^{d+1} - 1)$ with load 1 and dilation $\lceil 2^{d+1}/2d \rceil$.

Idea of Proof:

- Stretch the longest path of $T(d)$ on the path.
- Or use the bandwidth-embedding of the $T(d)$.
Lemma:

$T(d)$ may be embedded into $L(2^{d+1} - 1)$ with load 1 and dilation $\lceil 2^{d+1}/2d \rceil$.

Idea of Proof:

- Stretch the longest path of $T(d)$ on the path.
- Or use the bandwidth-embedding of the $T(d)$.
Lemma:

$T(d)$ may be embedded into $L(2^{d+1} - 1)$ with load 1 and dilation $\lceil 2^{d+1}/2d \rceil$.

Idea of Proof:

- Stretch the longest path of $T(d)$ on the path.
- Or use the bandwidth-embedding of the $T(d)$.

$$
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}

\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
0
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
\begin{array}{c}
1
\end{array}
Lemma:

\(T(d)\) may be embedded into \(HQ(d+1)\) with load 1 and dilation 2.

Proof:

- \(f : \{w \in \{0,1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0,1\}^* \mid |w| = d + 1\}\).
- Add to \(w\) a bit-sequence of length \(x(w) = d + 1 - |w| \geq 1\).
- \(f(w) = w10^{x(w)-1}\).
- Edges: \(f((w,wa)) = f((w10^{x(w)-1}, wa10^{x(wa)-1}))\)
- Dilation is 2.
Lemma:

\(T(d) \) may be embedded into \(HQ(d + 1) \) with load 1 and dilation 2.

Proof:

- \(f : \{w \in \{0,1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0,1\}^* \mid |w| = d + 1\} \).
- Add to \(w \) a bit-sequence of length \(x(w) = d + 1 - |w| \geq 1 \).
- \(f(w) = w10^{x(w)-1} \).
- Edges: \(f((w, wa)) = f((w10^{x(w)}-1, wa10^{x(wa)}-1)) \).
- Dilation is 2.
Lemma:

\[T(d) \text{ may be embedded into } HQ(d + 1) \text{ with load 1 and dilation 2.} \]

Proof:

- \(f : \{ w \in \{0,1\}^* \mid |w| \leq d \} \mapsto \{ w \in \{0,1\}^* \mid |w| = d + 1 \}. \)
- Add to \(w \) a bit-sequence of length \(x(w) = d + 1 - |w| \geq 1. \)
- \(f(w) = w10^{x(w)-1}. \)
- Edges: \(f((w, wa)) = f((w10^{x(w)-1}, wa10^{x(wa)-1})) \)
- Dilation is 2.
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2.

Proof:

- $f : \{w \in \{0, 1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0, 1\}^* \mid |w| = d + 1\}$.
- Add to w a bit-sequence of length $x(w) = d + 1 - |w| \geq 1$.
- $f(w) = w10^{x(w)-1}$.
- Edges: $f((w, wa)) = f((w10^{x(w)-1}, wa10^{x(wa)-1}))$.
- Dilation is 2.
Lemma:

\(T(d) \) may be embedded into \(HQ(d + 1) \) with load 1 and dilation 2.

Proof:

- \(f : \{w \in \{0,1\}^* \mid |w| \leq d \} \mapsto \{w \in \{0,1\}^* \mid |w| = d + 1\} \).
- Add to \(w \) a bit-sequence of length \(x(w) = d + 1 - |w| \geq 1 \).
- \(f(w) = w10^{x(w)-1} \).
- Edges: \(f((w, wa)) = f((w10^{x(w)-1}, wa10^{x(wa)-1})) \).
- Dilation is 2.
Lemma:

\(T(d) \) may be embedded into \(HQ(d + 1) \) with load 1 and dilation 2.

Proof:

- \(f : \{ w \in \{0, 1\}^* \mid |w| \leq d \} \mapsto \{ w \in \{0, 1\}^* \mid |w| = d + 1 \} \).
- Add to \(w \) a bit-sequence of length \(x(w) = d + 1 - |w| \geq 1 \).
- \(f(w) = w10^{x(w)-1} \).
- Edges: \(f((w, wa)) = f((w10^{x(w)-1}, wa10^{x(wa)-1})) \)
- Dilation is 2.
Lemma:

$XT(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2.

- $f : \{w \in \{0, 1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0, 1\}^* \mid |w| = d + 1\}$.
- Add to w a bit-sequence of length $x(w) = d + 1 - |w| \geq 1$.
- $f(w) = \text{GrayCode}(w)10^{x(w)-1}$.
- Edges: $f((w, wa)) = f((\text{GrayCode}(w)10^{x(w)-1}, \text{GrayCode}(wa)10^{x(wa)-1}))$.
- Dilation is 2, because $\text{GrayCode}(wa) = \text{GrayCode}(w)a_{w,b}$.
Lemma:

$XT(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2.

- $f : \{w \in \{0,1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0,1\}^* \mid |w| = d + 1\}$.
- Add to w a bit-sequence of length $x(w) = d + 1 - |w| \geq 1$.
- $f(w) = \text{GrayCode}(w)10^{x(w)-1}$.
- Edges: $f((w, wa)) = f((\text{GrayCode}(w)10^{x(w)-1}, \text{GrayCode}(wa)10^{x(wa)-1}))$
- Dilation is 2, because $\text{GrayCode}(wa) = \text{GrayCode}(w)a_{w,b}$.
Lemma:

$XT(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2.

- $f : \{w \in \{0, 1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0, 1\}^* \mid |w| = d + 1\}.$
- Add to w a bit-sequence of length $x(w) = d + 1 - |w| \geq 1$.
- $f(w) = \text{GrayCode}(w)10^{x(w)-1}$.
- Edges: $f((w, wa)) = f((\text{GrayCode}(w)10^{x(w)-1}, \text{GrayCode}(wa)10^{x(wa)-1}))$
- Dilation is 2, because $\text{GrayCode}(wa) = \text{GrayCode}(w)a_{w, b}$.

$$
E_{T(d)} = \{\{w, wa\} \mid w, wa \in V, a \in \{0, 1\}\}
$$

$$
E_{HQ(d)} = \{\{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)}\}
$$
Lemma:

$XT(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2.

- $f : \{w \in \{0,1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0,1\}^* \mid |w| = d + 1\}$.
- Add to w a bit-sequence of length $x(w) = d + 1 − |w| \geq 1$.
- $f(w) = \text{GrayCode}(w)10^{x(w)−1}$.
- Edges: $f((w, wa)) = f((\text{GrayCode}(w)10^{x(w)−1}, \text{GrayCode}(wa)10^{x(wa)−1}))$.
- Dilation is 2, because $\text{GrayCode}(wa) = \text{GrayCode}(w)a_w,b$.

$$
E_T(d) = \{\{w, wa\} \mid w, wa \in V, a \in \{0, 1\}\} \text{ and } E_{HQ(d)} = \{\{w0w', w1w'\} \mid w0w', w1w' \in V_{HQ(d)}\}
$$
Lemma:

$XT(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2.

- $f : \{w \in \{0, 1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0, 1\}^* \mid |w| = d + 1\}$.
- Add to w a bit-sequence of length $x(w) = d + 1 − |w| \geq 1$.
- $f(w) = \text{GrayCode}(w)10^{x(w)−1}$.
- Edges: $f((w, wa)) = f((\text{GrayCode}(w)10^{x(w)−1}, \text{GrayCode}(wa)10^{x(wa)−1}))$
- Dilation is 2, because $\text{GrayCode}(wa) = \text{GrayCode}(w)a_w,b$.
Lemma:

$XT(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2.

- $f : \{w \in \{0,1\}^* \mid |w| \leq d\} \mapsto \{w \in \{0,1\}^* \mid |w| = d + 1\}$.
- Add to w a bit-sequence of length $x(w) = d + 1 - |w| \geq 1$.
- $f(w) = \text{GrayCode}(w)10^{x(w)-1}$.
- Edges: $f((w, wa)) = f((\text{GrayCode}(w)10^{x(w)-1}, \text{GrayCode}(wa)10^{x(wa)-1}))$
- Dilation is 2, because $\text{GrayCode}(wa) = \text{GrayCode}(w)a_{w,b}$.
Lemma:

\(T(d) \) may not be embedded into \(HQ(d+1) \) for \(d > 1 \) with load 1 and dilation 1.

Proof:

\begin{align*}
T(d) & \rightarrow HQ(d+1) \\
00 & \rightarrow 000, 001, 010, 011 \\
01 & \rightarrow 010, 011, 100, 101 \\
10 & \rightarrow 101, 110, 111, 100 \\
11 & \rightarrow 111, 110, 111, 100 \\
\end{align*}
Lemma:

$T(d)$ may not be embedded into $HQ(d+1)$ for $d > 1$ with load 1 and dilation 1.

Proof: Consider the 2-colouring of $T(d)$ in $HQ(d+1)$.
Lemma:

\[T(d) \] may be embedded into \(HQ(d + 1) \) with load 1 and dilation 2, such that only one edge is stretched.

Proof:

```
00 - 00 - 000
01 - 01 - 001
010 - 010 - 011
011 - 011 - 010
100 - 100 - 101
101 - 101 - 110
110 - 110 - 111
```

```
000
001
010
011
100
101
110
111
```
Lemma:

\(T(d) \) may be embedded into \(HQ(d + 1) \) with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the \(HQ \).
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2, such that only one edge is stretched.

Proof:
Lemma:

\(T(d) \) may be embedded into \(HQ(d + 1) \) with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the \(HQ \).
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the HQ.

$$\begin{array}{c}
\text{T(d) into HQ(d + 1)}
\end{array}$$
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the HQ.
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the HQ.

$$T(d) \text{ into } HQ(d + 1)$$
Lemma:

\(T(d)\) may be embedded into \(HQ(d + 1)\) with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the \(HQ\).
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the HQ.
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the HQ.

\[T(d) \text{ into } HQ(d + 1) \]
Lemma:

\(T(d)\) may be embedded into \(HQ(d + 1)\) with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the \(HQ\).
Lemma:

$T(d)$ may be embedded into $HQ(d + 1)$ with load 1 and dilation 2, such that only one edge is stretched.

Proof: Recursive embedding of the double-rooted tree as a sub-graph of the HQ.

![Diagram of tree and hypercube embeddings](attachment:image.png)
Lemma:

T(d) may be embedded into *DB(d + 1)* with load 1 and dilation 1.

Proof: \(f(w) \rightarrow 0^{d-|w|-1}1w \)

- Show: Edge of the tree is placed to an edge of the DeBruijn.
- Edge of the tree: \(w \) nach \(wa \)
- Placed to: \(0^{n-|w|-1}1w \) and \(0^{n-|w|-2}1wa \)
- That is a shuffle or shuffle-exchange edge in the DeBruijn.
- Note: there is a second edge-disjoined tree in the DeBruijn.
Lemma:

T(d) may be embedded into *DB(d + 1)* with load 1 and dilation 1.

Proof: \(f(w) \rightarrow 0^{d-|w|-1}1w \)

- **Show**: Edge of the tree is placed to an edge of the DeBruijn.
- Edge of the tree: \(w \) nach \(wa \)
- Placed to: \(0^{n-|w|-1}1w \) and \(0^{n-|w|-2}1wa \)
- That is a shuffle or shuffle-exchange edge in the DeBruijn.
- Note: there is a second edge-disjoined tree in the DeBruijn.
Lemma:

$T(d)$ may be embedded into $DB(d + 1)$ with load 1 and dilation 1.

Proof: $f(w) \rightarrow 0^{d-|w|-1}1w$

- Show: Edge of the tree is placed to an edge of the DeBruijn.
- Edge of the tree: w nach wa
- Placed to: $0^{n-|w|-1}1w$ and $0^{n-|w|-2}1wa$
- That is a shuffle or shuffle-exchange edge in the DeBruijn.
- Note: there is a second edge-disjoined tree in the DeBruijn.
$T(d)$ into $DB(d + 1)$

Lemma:

$T(d)$ may be embedded into $DB(d + 1)$ with load 1 and dilation 1.

Proof: $f(w) \rightarrow 0^{d-|w|-1}1w$

- Show: Edge of the tree is placed to an edge of the DeBruijn.
- Edge of the tree: w nach wa
- Placed to: $0^{n-|w|-1}1w$ and $0^{n-|w|-2}1wa$
- That is a shuffle or shuffle-exchange edge in the DeBruijn.
- Note: there is a second edge-disjoined tree in the DeBruijn.
Lemma:

$T(d)$ may be embedded into $DB(d + 1)$ with load 1 and dilation 1.

Proof: $f(w) \rightarrow 0^{d-|w|-1} 1w$

- Show: Edge of the tree is placed to an edge of the DeBruijn.
- Edge of the tree: w nach wa
- Placed to: $0^{n-|w|-1} 1w$ and $0^{n-|w|-2} 1wa$
- That is a shuffle or shuffle-exchange edge in the DeBruijn.
- Note: there is a second edge-disjoined tree in the DeBruijn.
Lemma:

$T(d)$ may be embedded into $DB(d+1)$ with load 1 and dilation 1.

Proof: $f(w) \rightarrow 0^{d-|w|-1}1w$

- Show: Edge of the tree is placed to an edge of the DeBruijn.
- Edge of the tree: w nach wa
- Placed to: $0^{n-|w|-1}1w$ and $0^{n-|w|-2}1wa$
- That is a shuffle or shuffle-exchange edge in the DeBruijn.
- Note: there is a second edge-disjoined tree in the DeBruijn.
Lemma:

\[\text{CCC}(2d) \text{ may be embedded into } HQ(2d + \lceil \log 2d \rceil) \text{ with load 1 and dilation 1.} \]

Proof:

[Diagram showing the embedding process]
Lemma:

CCC(2d) may be embedded into HQ(2d + ⌈log 2d⌉) with load 1 and dilation 1.

Proof: Embed the cycles into sub-cubes.
CCC(4) into HQ (Example)
Steps of the Proof:

- **Embedd the cycles of length** $2d$ **into the** $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2^{\lceil \log 2d \rceil}$.
- **Note:**
 - IF G is embedded in H with dilation k and
 - if G' is embedded H' with dilation k', the we may
 - embed $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
 - Holds due to the definition of the product of graphs.

- Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.
- Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Steps of the Proof:

- Embed the cycles of length $2d$ into the $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2^{\lceil \log 2d \rceil}$.
- Note:
 - If G is embedded in H with dilation k and
 - if G' is embedded in H' with dilation k', then we may
 - embed $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
 - Holds due to the definition of the product of graphs.

- Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.
- Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Steps of the Proof:

- Embed the cycles of length $2d$ into the $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2^{\lceil \log 2d \rceil}$.
- **Note:**
 - If G is embedded in H with dilation k and if G' is embedded in H' with dilation k', then we may
 - embed $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
 - Holds due to the definition of the product of graphs.

- Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.
- Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Steps of the Proof:

- Embed the cycles of length $2d$ into the $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2^{\lceil \log 2d \rceil}$.
- Note:
 - IF G is embedded in H with dilation k and
 - if G' is embedded H' with dilation k', the we may
 - embed $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
 - Holds due to the definition of the product of graphs.

Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.
Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Steps of the Proof:

- Embed the cycles of length $2d$ into the $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2 \lceil \log 2d \rceil$.

Note:

- IF G is embedded in H with dilation k and G' is embedded in H' with dilation k', then we may embed $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
- Holds due to the definition of the product of graphs.

Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.
Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Steps of the Proof:

- Embed the cycles of length $2d$ into the $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2^{\lceil \log 2d \rceil}$.
- Note:
 - IF G is embedded in H with dilation k and
 - if G' is embedded H' with dilation k', then we may
 - embed $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
- Holds due to the definition of the product of graphs.

Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.

Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Steps of the Proof:

- Embed the cycles of length $2d$ into the $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2^\lceil \log 2d \rceil$.
- Note:
 - IF G is embedded in H with dilation k and
 - if G' is embedded H' with dilation k', the we may
 - embed $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
 - Holds due to the definition of the product of graphs.
- Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.
- Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Steps of the Proof:

- Embedd the cycles of length $2d$ into the $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2^{\lceil \log 2d \rceil}$.
- **Note:**
 - IF G is embedded in H with dilation k and
 - if G' is embedded H' with dilation k', the we may
 - embedd $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
 - Holds due to the definition of the product of graphs.

- Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.
- Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Steps of the Proof:

- Embed the cycles of length $2d$ into the $HQ(\lceil \log 2d \rceil)$.
- Use the recursive embedding of the cycle of length $2^\lceil \log 2d \rceil$.
- **Note:**
 - If G is embedded in H with dilation k and
 - if G' is embedded H' with dilation k', then we may
 - embed $G \times G'$ in $H \times H'$ with dilation $\max(k, k')$.
 - Holds due to the definition of the product of graphs.

- Furthermore we have: $CCC(2d)$ is a sub-graph of $C_{2d} \times HQ(2d)$.
- Also we have: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
CCC(3) into HQ (Example)
Lemma:

CCC(2d − 1) may be embedded into HQ(2d − 1 + ⌈\log 2d − 1⌉) with load 1 and dilation 2.

Proof:

- Note: ⌈\log 2d⌉ = ⌈\log 2d − 1⌉.
- We have: CCC(2d − 1) is sub-graph of C_{2d−1} × HQ(2d − 1).
- Embed C(2d − 1) with dilation 2 in C(2d).
- The we get: C_{2d−1} × HQ(2d − 1) could be embedded with dilation 2 in C_{2d} × HQ(2d − 1).
- Already known: C_{2d} × HQ(2d) is sub-graph of HQ(2d + ⌈\log 2d⌉).
- Thus we get: C_{2d} × HQ(2d − 1) is sub-graph of HQ(2d + ⌈\log 2d⌉).
Lemma:

CCC$(2d - 1)$ may be embedded into **HQ**$(2d - 1 + \lceil \log 2d - 1 \rceil)$ with load 1 and dilation 2.

Proof:

- **Note:** $\lceil \log 2d \rceil = \lceil \log 2d - 1 \rceil$.
- We have: **CCC**$(2d - 1)$ is sub-graph of **$C_{2d-1} \times HQ(2d - 1)$**.
- Embedd **$C(2d - 1)$** with dilation 2 in **$C(2d)$**.
- The we get: **$C_{2d-1} \times HQ(2d - 1)$** could be embedded with dilation 2 in **$C_{2d} \times HQ(2d - 1)$**.
- Already known: **$C_{2d} \times HQ(2d)$** is sub-graph of **HQ**$(2d + \lceil \log 2d \rceil)$.
- Thus we get: **$C_{2d} \times HQ(2d - 1)$** is sub-graph of **HQ**$(2d + \lceil \log 2d \rceil)$.
Lemma:

CCC\((2d - 1)\) may be embedded into HQ\((2d - 1 + \lceil \log 2d - 1 \rceil)\) with load 1 and dilation 2.

Proof:

- Note: \(\lceil \log 2d \rceil = \lceil \log 2d - 1 \rceil\).
- We have: CCC\((2d - 1)\) is sub-graph of \(C_{2d-1} \times HQ(2d - 1)\).
- Embedd \(C(2d - 1)\) with dilation 2 in \(C(2d)\).
- The we get: \(C_{2d-1} \times HQ(2d - 1)\) could be embedded with dilation 2 in \(C_{2d} \times HQ(2d - 1)\).
- Already known: \(C_{2d} \times HQ(2d)\) is sub-graph of HQ\((2d + \lceil \log 2d \rceil)\).
- Thus we get: \(C_{2d} \times HQ(2d - 1)\) is sub-graph of HQ\((2d + \lceil \log 2d \rceil)\).
CCC into HQ

Lemma:

CCC$(2d - 1)$ may be embedded into $HQ(2d - 1 + \lceil \log 2d - 1 \rceil)$ with load 1 and dilation 2.

Proof:

- **Note:** $\lceil \log 2d \rceil = \lceil \log 2d - 1 \rceil$.
- We have: CCC$(2d - 1)$ is sub-graph of $C_{2d-1} \times HQ(2d - 1)$.
- Embedd $C(2d - 1)$ with dilation 2 in $C(2d)$.
- The we get: $C_{2d-1} \times HQ(2d - 1)$ could be embedded with dilation 2 in $C_{2d} \times HQ(2d - 1)$.
- Already known: $C_{2d} \times HQ(2d)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
- Thus we get: $C_{2d} \times HQ(2d - 1)$ is sub-graph of $HQ(2d + \lceil \log 2d \rceil)$.
Lemma:

CCC\((2d - 1)\) may be embedded into \(HQ(2d - 1 + \lceil\log 2d - 1\rceil)\) with load 1 and dilation 2.

Proof:

- Note: \(\lceil\log 2d\rceil = \lceil\log 2d - 1\rceil\).
- We have: \(CCC(2d - 1)\) is sub-graph of \(C_{2d-1} \times HQ(2d - 1)\).
- Embedd \(C(2d - 1)\) with dilation 2 in \(C(2d)\).
- The we get: \(C_{2d-1} \times HQ(2d - 1)\) could be embedded with dilation 2 in \(C_{2d} \times HQ(2d - 1)\).
- Already known: \(C_{2d} \times HQ(2d)\) is sub-graph of \(HQ(2d + \lceil\log 2d\rceil)\).
- Thus we get: \(C_{2d} \times HQ(2d - 1)\) is sub-graph of \(HQ(2d + \lceil\log 2d\rceil)\).
Lemma:

$\text{CCC}(2d - 1)$ may be embedded into $\text{HQ}(2d - 1 + \lceil \log 2d - 1 \rceil)$ with load 1 and dilation 2.

Proof:

- Note: $\lceil \log 2d \rceil = \lceil \log 2d - 1 \rceil$.
- We have: $\text{CCC}(2d - 1)$ is sub-graph of $C_{2d-1} \times \text{HQ}(2d - 1)$.
- Embed $C(2d - 1)$ with dilation 2 in $C(2d)$.
- The we get: $C_{2d-1} \times \text{HQ}(2d - 1)$ could be embedded with dilation 2 in $C_{2d} \times \text{HQ}(2d - 1)$.
- Already known: $C_{2d} \times \text{HQ}(2d)$ is sub-graph of $\text{HQ}(2d + \lceil \log 2d \rceil)$.
- Thus we get: $C_{2d} \times \text{HQ}(2d - 1)$ is sub-graph of $\text{HQ}(2d + \lceil \log 2d \rceil)$.
CCC into HQ

Lemma:

\[\text{CCC}(2d - 1) \text{ may be embedded into } \text{HQ}(2d - 1 + \lceil \log 2d - 1 \rceil) \text{ with load } 1 \text{ and dilation } 2. \]

Proof:

- Note: \(\lceil \log 2d \rceil = \lceil \log 2d - 1 \rceil. \)
- We have: \(\text{CCC}(2d - 1) \) is sub-graph of \(C_{2d-1} \times \text{HQ}(2d - 1). \)
- Embedd \(C(2d - 1) \) with dilation 2 in \(C(2d). \)
- The we get: \(C_{2d-1} \times \text{HQ}(2d - 1) \) could be embedded with dilation 2 in \(C_{2d} \times \text{HQ}(2d - 1). \)
- Already known: \(C_{2d} \times \text{HQ}(2d) \) is sub-graph of \(\text{HQ}(2d + \lceil \log 2d \rceil). \)
- Thus we get: \(C_{2d} \times \text{HQ}(2d - 1) \) is sub-graph of \(\text{HQ}(2d + \lceil \log 2d \rceil). \)
Lemma:

\(BF(d) \) may be embedded into \(HQ(d + \lceil \log d \rceil) \) with load 1 and dilation 2.

Proof:

- Embed \(BF(d) \) in \(CCC(d) \) with dilation 2 (trivial).
- Embed \(CCC(d) \) in \(HQ(d + \lceil \log d \rceil) \) with dilation 1.
Lemma:

$BF(d)$ may be embedded into $HQ(d + \lceil \log d \rceil)$ with load 1 and dilation 2.

Proof:

- Embed $BF(d)$ in $CCC(d)$ with dilation 2 (trivial).
- Embed $CCC(d)$ in $HQ(d + \lceil \log d \rceil)$ with dilation 1.
Lemma:

$BF(d)$ may be embedded into $HQ(d + \lceil \log d \rceil)$ with load 1 and dilation 2.

Proof:

- Embed $BF(d)$ in $CCC(d)$ with dilation 2 (trivial).
- Embed $CCC(d)$ in $HQ(d + \lceil \log d \rceil)$ with dilation 1.
Lemma:

$BF(2d)$ may be embedded into $HQ(2d + \lceil \log 2d \rceil)$ with load 1 and dilation 1.
BF(4) in HQ (Beispiel)
Steps of the Proof:

- **Embed cycle** C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- **Embed** BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:
 \[
 (i, w) \mapsto f_{2d}(i)w
 \]

- **Assume** that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- **For** i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
Steps of the Proof:

- Embedd cycle C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- Embedd BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:

$$(i, w) \mapsto f_{2d}(i)w$$

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
BF into HQ

Steps of the Proof:

- Embed cycle C_{2d} into $HQ(\lceil\log 2d\rceil)$ as a subgraph by some function f_C.
- Embed BF_{2d} into $HQ(2d + \lceil\log 2d\rceil)$:
 \[
 (i, w) \mapsto f_{2d}(i)w
 \]

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
Steps of the Proof:

- Embed cycle C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- Embed BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:
 \[(i, w) \mapsto f_{2d}(i)w\]

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
BF into HQ

Steps of the Proof:

- Embed cycle C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- Embed BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:

 $$(i, w) \mapsto f_{2d}(i)w$$

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:

 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
BF into HQ

Steps of the Proof:

- Embed cycle C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- Embed BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:
 \[(i, w) \mapsto f_{2d}(i)w\]

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \text{ mod } 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
Steps of the Proof:

- Embed cycle C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- Embed BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:

 $$(i, w) \mapsto f_{2d}(i)w$$

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
BF into HQ

Steps of the Proof:

- Embed cycle C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- Embed BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:

 $$(i, w) \mapsto f_{2d}(i)w$$

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
BF into HQ

Steps of the Proof:

- Embed cycle C_{2d} into $HQ(\lceil\log 2d\rceil)$ as a subgraph by some function f_C.
- Embed BF_{2d} into $HQ(2d + \lceil\log 2d\rceil)$:

 $$(i, w) \mapsto f_{2d}(i)w$$

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:

 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
BF into HQ

Steps of the Proof:

- Embed cycle C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- Embed BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:

 $$(i, w) \mapsto f_{2d}(i)w$$

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \text{ mod } 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form $\{(i, w'0w''), (i', w'1w'')\}$ have now a dilation of 1.
BF into HQ

Steps of the Proof:

- Embed cycle C_{2d} into $HQ(\lceil \log 2d \rceil)$ as a subgraph by some function f_C.
- Embed BF_{2d} into $HQ(2d + \lceil \log 2d \rceil)$:
 \[(i, w) \mapsto f_{2d}(i)w\]

- Assume that (i, w) is now embedded onto cw for $0 \leq i < 2d$ and $w \in \{0, 1\}^{2d}$.
- For i from 0 to $2d - 1$ do the following:
 - Let $i' = (i + 1) \mod 2d$.
 - Exchange now node of the form (i, w) with (i', w) for $w = w'1w''$ with $|w'| = i$.
 - Let $t = f_{2d}(i) \oplus f_{2d}(i')$.
 - Let $cw'1w''$ be a node of the hypercube.
 - The move $cw'1w''$ to $(c \oplus t)w'1w''$.
 - Note, the dilation is not enlarged for any edge.
 - The edges of the form \{$(i, w'0w''), (i', w'1w'')$\} have now a dilation of 1.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

- Let $P(w) := \#_1(w) \mod 2$.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
- Consider the edges on the cycles: $\{(i, w), ((i + 1) \mod d, w)\}$:
 - w_i has the i^{th} bit of w flipped.
 - $f(i, w) = (i, w)$ if $P(w) = 0$.
 - $f((i + 1) \mod d, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
 - $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
 - $f((i + 1) \mod d, w) = ((i + 2) \mod d, w)$ if $P(w) = 1$.
Lemma:

CCC(d) may be embedded into **BF**(d) with load 1 and dilation 1.

- Let $P(w) := \#_1(w) \mod 2$.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.

Consider the edges on the cycles: $\{(i, w), ((i + 1) \mod d, w)\}$:

- w_i has the i^{th} bit of w flipped.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(((i + 1) \mod d, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
- $f(((i + 1) \mod d, w) = ((i + 2) \mod d, w)$ if $P(w) = 1$.
Lemma:

\(\text{CCC}(d) \) may be embedded into \(\text{BF}(d) \) with load 1 and dilation 1.

- Let \(P(w) := \#_1(w) \mod 2 \).
- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
- Consider the edges on the cycles: \(\{(i, w), ((i + 1) \mod d, w)\} \):
 - \(w_i \) has the \(i^{\text{th}} \) bit of \(w \) flipped.
 - \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
 - \(f(((i + 1) \mod d, w) = ((i + 1) \mod d, w) \) if \(P(w) = 0 \).
 - \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
 - \(f(((i + 1) \mod d, w) = ((i + 2) \mod d, w) \) if \(P(w) = 1 \).
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

- Let $P(w) := \#_1(w) \mod 2$.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
- Consider the edges on the cycles: $\{(i, w), ((i + 1) \mod d, w)\}$:
 - w_i has the i^{th} bit of w flipped.
 - $f(i, w) = (i, w)$ if $P(w) = 0$.
 - $f(((i + 1) \mod d, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
 - $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
 - $f(((i + 1) \mod d, w) = ((i + 2) \mod d, w)$ if $P(w) = 1$.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

- Let $P(w) := \#_1(w) \mod 2$.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
- Consider the edges on the cycles: $\{(i, w), ((i + 1) \mod d, w)\}$:
 - w_i has the i^{th} bit of w flipped.
 - $f(i, w) = (i, w)$ if $P(w) = 0$.
 - $f((i + 1) \mod d, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
 - $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
 - $f((i + 1) \mod d, w) = ((i + 2) \mod d, w)$ if $P(w) = 1$.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

- Let $P(w) := \#_1(w) \mod 2$.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
- Consider the edges on the cycles: $\{(i, w), ((i + 1) \mod d, w)\}$:
 - w_i has the i^{th} bit of w flipped.
 - $f(i, w) = (i, w)$ if $P(w) = 0$.
 - $f(((i + 1) \mod d, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
 - $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
 - $f(((i + 1) \mod d, w) = ((i + 2) \mod d, w)$ if $P(w) = 1$.
Lemma:

\[\text{CCC}(d) \] may be embedded into \[\text{BF}(d) \] with load 1 and dilation 1.

- Let \(P(w) := \#_1(w) \mod 2. \)
- \(f(i, w) = (i, w) \) if \(P(w) = 0. \)
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1. \)
- Consider the edges on the cycles: \(\{(i, w), ((i + 1) \mod d, w)\} \):
 - \(w \) has the \(i \)th bit of \(w \) flipped.
 - \(f(i, w) = (i, w) \) if \(P(w) = 0. \)
 - \(f(((i + 1) \mod d, w) = ((i + 1) \mod d, w) \) if \(P(w) = 0. \)
 - \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1. \)
 - \(f(((i + 1) \mod d, w) = ((i + 2) \mod d, w) \) if \(P(w) = 1. \).
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

- Let $P(w) := \#_1(w) \mod 2$.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
- Consider the edges on the cycles: $\{(i, w), ((i + 1) \mod d, w)\}$:
 - w_i has the i^{th} bit of w flipped.
 - $f(i, w) = (i, w)$ if $P(w) = 0$.
 - $f(((i + 1) \mod d, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
 - $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
 - $f(((i + 1) \mod d, w) = ((i + 2) \mod d, w)$ if $P(w) = 1$.
Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

- Let $P(w) := \#_1(w) \mod 2$.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
- Consider the edges on the cycles: $\{(i, w), ((i + 1) \mod d, w)\}$:
 - w_i has the i^{th} bit of w flipped.
 - $f(i, w) = (i, w)$ if $P(w) = 0$.
 - $f((i + 1) \mod d, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
 - $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
 - $f((i + 1) \mod d, w) = ((i + 2) \mod d, w)$ if $P(w) = 1$.

Lemma:

$CCC(d)$ may be embedded into $BF(d)$ with load 1 and dilation 1.

- Let $P(w) := \#_1(w) \mod 2$.
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
- Consider the edges on the cycles: $\{(i, w), ((i + 1) \mod d, w)\}$:
 - w_i has the i^{th} bit of w flipped.
 - $f(i, w) = (i, w)$ if $P(w) = 0$.
 - $f((i + 1) \mod d, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
 - $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
 - $f((i + 1) \mod d, w) = ((i + 2) \mod d, w)$ if $P(w) = 1$.
CCC into BF

- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
- Consider the cube-edges: \(\{(i, w), (i, w_i)\} \):
 - \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
 - \(f(i, w_i) = ((i + 1) \mod d, w_i) \) if \(P(w) = 0 \).
 - \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
 - \(f(i, w_i) = (i, w_i) \) if \(P(w) = 1 \).
CCC into BF

- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.

Consider the cube-edges: $\{(i, w), (i, w_i)\}$:
- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w_i) = ((i + 1) \mod d, w_i)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.
- $f(i, w_i) = (i, w_i)$ if $P(w) = 1$.
CCC into BF

- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).

Consider the cube-edges: \(\{(i, w), (i, w_i)\} \):

- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w_i) = ((i + 1) \mod d, w_i) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
- \(f(i, w_i) = (i, w_i) \) if \(P(w) = 1 \).
CCC into BF

- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).

Consider the cube-edges: \(\{(i, w), (i, w_i)\} \):
 - \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
 - \(f(i, w_i) = ((i + 1) \mod d, w_i) \) if \(P(w) = 0 \).
 - \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
 - \(f(i, w_i) = (i, w_i) \) if \(P(w) = 1 \).
CCC into BF

- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).

Consider the cube-edges: \(\{(i, w), (i, w_i)\} \):

- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w_i) = ((i + 1) \mod d, w_i) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
- \(f(i, w_i) = (i, w_i) \) if \(P(w) = 1 \).
CCC into BF

- \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
- \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
- Consider the cube-edges: \(\{ (i, w), (i, w_i) \} \):
 - \(f(i, w) = (i, w) \) if \(P(w) = 0 \).
 - \(f(i, w_i) = ((i + 1) \mod d, w_i) \) if \(P(w) = 0 \).
 - \(f(i, w) = ((i + 1) \mod d, w) \) if \(P(w) = 1 \).
 - \(f(i, w_i) = (i, w_i) \) if \(P(w) = 1 \).
CCC into BF

- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 1$.

Consider the cube-edges: $\{(i, w), (i, w_i)\}$:

- $f(i, w) = (i, w)$ if $P(w) = 0$.
- $f(i, w_i) = ((i + 1) \mod d, w_i)$ if $P(w) = 0$.
- $f(i, w) = ((i + 1) \mod d, w)$ if $P(w) = 0$.
- $f(i, w_i) = (i, w_i)$ if $P(w) = 1$.

Lemma:

$SE(d)$ may be embedded into $DB(d)$ with load 1 and dilation 1.

Proof: Exercise
Lemma:

$DB(d)$ may be embedded into $HQ(d)$ with load 1 and dilation $\lceil d/4 \rceil$.

Proof:

- Consider edge in DB: $aw \leftrightarrow wb$.
- Split the node-strings into blocks: $awa'w' \leftrightarrow wbw'b'$ with $b = a'$.
- This makes small virtual DeBruijn within the original DeBruijn.
- Each virtual part is embedded in a hyper-cubes.
- The dilation sums up during this process.
- The proof is done by embedding the $DB(8)$ into the $HQ(8)$ with dilation 2.
Lemma:

$DB(d)$ may be embedded into $HQ(d)$ with load 1 and dilation $\lceil d/4 \rceil$.

Proof:

- Consider edge in DB: $aw \leftrightarrow wb$.
- Split the node-strings into blocks: $awa'w' \leftrightarrow wbw'b'$ with $b = a'$.
- This makes small virtual DeBruijn within the original DeBruijn.
- Each virtual part is embedded in a hyper-cubes.
- The dilation sums up during this process.
- The proof is done by embedding the $DB(8)$ into the $HQ(8)$ with dilation 2.
Lemma:

$DB(d)$ may be embedded into $HQ(d)$ with load 1 and dilation $\lceil d/4 \rceil$.

Proof:

- Consider edge in DB: $aw \leftrightarrow wb$.
- Split the node-strings into blocks: $awa'w' \leftrightarrow wbw'b'$ with $b = a'$.
- This makes small virtual DeBruijn within the original DeBruijn.
- Each virtual part is embedded in a hyper-cubes.
- The dilation sums up during this process.
- The proof is done by embedding the $DB(8)$ into the $HQ(8)$ with dilation 2.
Lemma:

$DB(d)$ may be embedded into $HQ(d)$ with load 1 and dilation $\lceil d/4 \rceil$.

Proof:

- Consider edge in DB: $aw \leftrightarrow wb$.
- Split the node-strings into blocks: $awa'w' \leftrightarrow wbw'b'$ with $b = a'$.
- This makes small virtual DeBruijn within the original DeBruijn.
- Each virtual part is embedded in a hyper-cubes.
- The dilation sums up during this process.
- The proof is done by embedding the $DB(8)$ into the $HQ(8)$ with dilation 2.
Lemma:

DB\(d\) may be embedded into HQ\(d\) with load 1 and dilation \(\lceil d/4 \rceil\).

Proof:

- Consider edge in DB: \(aw \leftrightarrow wb\).
- Split the node-strings into blocks: \(awa'w' \leftrightarrow wbw'b'\) with \(b = a'\).
- This makes small virtual DeBruijn within the original DeBruijn.
- Each virtual part is embedded in a hyper-cubes.
- The dilation sums up during this process.
- The proof is done by embedding the DB\(8\) into the HQ\(8\) with dilation 2.
Lemma:

$DB(d)$ may be embedded into $HQ(d)$ with load 1 and dilation $\lceil d/4 \rceil$.

Proof:

- Consider edge in DB: $aw \leftrightarrow wb$.
- Split the node-strings into blocks: $awa'w' \leftrightarrow wbw'b'$ with $b = a'$.
- This makes small virtual DeBruijn within the original DeBruijn.
- Each virtual part is embedded in a hyper-cubes.
- The dilation sums up during this process.
- The proof is done by embedding the $DB(8)$ into the $HQ(8)$ with dilation 2.
Lemma:

$DB(d)$ may be embedded into $HQ(d)$ with load 1 and dilation $\lceil d/4 \rceil$.

Proof:
- Consider edge in DB: $aw \leftrightarrow wb$.
- Split the node-strings into blocks: $awa'w' \leftrightarrow wbw'b'$ with $b = a'$.
- This makes small virtual DeBruijn within the original DeBruijn.
- Each virtual part is embedded in a hyper-cubes.
- The dilation sums up during this process.
- The proof is done by embedding the $DB(8)$ into the $HQ(8)$ with dilation 2.
Lemma:

$G(n_1, n_2, \ldots, n_t)$ may be embedded into $HQ(d)$ with load 1 and dilation 1, iff $d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil$.

Proof:

- Check the dimension-changes of the edges of the grid:
- In each square are precisely 2 dimensions.
- Thus each path of the form $L(n_i)$ has to be embedded into a sub-cube.

Lemma:

$TR(n_1, n_2, \ldots, n_t)$ may be embedded into $HQ(d)$ with load 1 and dilation 1, iff $d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil$ and all n_i are even.
Torus and Hypercube

Lemma:

\[G(n_1, n_2, \cdots, n_t) \] may be embedded into \(HQ(d) \) with load 1 and dilation 1, iff \(d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil \).

Proof:

- Check the dimension-changes of the edges of the grid:
- In each square are precisely 2 dimensions.
- Thus each path of the form \(L(n_i) \) has to be embedded into a sub-cube.

Lemma:

\[TR(n_1, n_2, \cdots, n_t) \] may be embedded into \(HQ(d) \) with load 1 and dilation 1, iff \(d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil \) and all \(n_i \) are even.
Torus and Hypercube

Lemma:

\[G(n_1, n_2, \ldots, n_t) \text{ may be embedded into } HQ(d) \text{ with load 1 and dilation 1, iff } d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil. \]

Proof:

- Check the dimension-changes of the edges of the grid:
- In each square are precisely 2 dimensions.
- Thus each path of the form \(L(n_i) \) has to be embedded into a sub-cube.

Lemma:

\[TR(n_1, n_2, \ldots, n_t) \text{ may be embedded into } HQ(d) \text{ with load 1 and dilation 1, iff } d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil \text{ and all } n_i \text{ are even.} \]
Lemma:

\[G(n_1, n_2, \cdots, n_t) \text{ may be embedded into } HQ(d) \text{ with load 1 and dilation 1, iff } d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil. \]

Proof:

- Check the dimension-changes of the edges of the grid:
- In each square are precisely 2 dimensions.
- Thus each path of the form \(L(n_i) \) has to be embedded into a sub-cube.

Lemma:

\[TR(n_1, n_2, \cdots, n_t) \text{ may be embedded into } HQ(d) \text{ with load 1 and dilation 1, iff } d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil \text{ and all } n_i \text{ are even.} \]
Lemma:

\[G(n_1, n_2, \cdots, n_t) \] may be embedded into \(HQ(d) \) with load 1 and dilation 1, iff \(d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil \).

Proof:

- Check the dimension-changes of the edges of the grid:
- In each square are precisely 2 dimensions.
- Thus each path of the form \(L(n_i) \) has to be embedded into a sub-cube.

Lemma:

\[TR(n_1, n_2, \cdots, n_t) \] may be embedded into \(HQ(d) \) with load 1 and dilation 1, iff \(d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil \) and all \(n_i \) are even.
Torus and Hypercube

Lemma:

\(G(n_1, n_2, \ldots, n_t) \) may be embedded into \(HQ(d) \) with load 1 and dilation 1, iff \(d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil \).

Proof:

- Check the dimension-changes of the edges of the grid:
- In each square are precisely 2 dimensions.
- Thus each path of the form \(L(n_i) \) has to be embedded into a sub-cube.

Lemma:

\(TR(n_1, n_2, \ldots, n_t) \) may be embedded into \(HQ(d) \) with load 1 and dilation 1, iff \(d \geq \sum_{i=1}^{t} \lceil \log n_i \rceil \) and all \(n_i \) are even.
Theorem:

A binary tree may be embedded with dilation 3 and expansion 8 into the Hypercube.

Theorem:

A binary tree may be embedded with dilation 7 and expansion 1 into the Hypercube.
Theorem:
A binary tree may be embedded with dilation 3 and expansion 8 into the Hypercube.

Theorem:
A binary tree may be embedded with dilation 7 and expansion 1 into the Hypercube.
Theorem:
A binary tree may be embedded with dilation 3 and expansion 8 into the Hypercube.

Theorem:
A binary tree may be embedded with dilation 7 and expansion 1 into the Hypercube.
Caterpillars

Definition:
A binary tree is called caterpillar, iff all nodes with degree 3 are on a simple path. The hair-length denotes the distance of the nodes to the path.

Definition:
A graph G is called balanced, iff there exists a 2-colouring of G, which has as many red nodes as black nodes.
Caterpillars

Definition:

A binary tree is called caterpillar, iff all nodes with degree 3 are on a simple path. The hair-length denotes the distance of the nodes to the path.

Definition:

A graph G is called balanced, iff there exists a 2-colouring of G, which has as many red nodes as black nodes.
Theorem:

Balanced caterpillars with hair-length 1 are sub-graphs of the hypercube.

Idea of proof: Cut the caterpillar in two balanced pieces.

Theorem:

Caterpillars with $4 \cdot n$ nodes may be embedded with congestion 1 and load 1 into $G(2, 2, n)$.

Proof: Embedd step by step 4 nodes of the caterpillar into the grid.
Caterpillars

Theorem:
Balanced caterpillars with hair-length 1 are sub-graphs of the hypercube.

Idea of proof: Cut the caterpillar in two balanced pieces.

Theorem:
Caterpillars with $4 \cdot n$ nodes may be embedded with congestion 1 and load 1 into $G(2, 2, n)$.

Proof: Embedd step by step 4 nodes of the caterpillar into the grid.
Caterpillars

Theorem:
Balanced caterpillars with hair-length 1 are sub-graphs of the hypercube.

Idea of proof: Cut the caterpillar in two balanced pieces.

Theorem:
Caterpillars with $4 \cdot n$ nodes may be embedded with congestion 1 and load 1 into $G(2, 2, n)$.

Proof: Embedd step by step 4 nodes of the caterpillar into the grid.
Definition:

Given: G, H graphs and $d, c, l \in \mathbb{N}$. Questions: Could G be embedded into H with dilation d, load l and congestion c.
Embedding-Problem

Theorem:

The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanciert tree, H a hyper-cube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
Embedding-Problem

Theorem:

The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanced tree, H a hyper-cube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanced tree, H a hyper-cube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
Embedding-Problem

Theorem:

The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanced tree, H a hyper-cube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
Embedding-Problem

Theorem:

The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanced tree, H a hypercube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
Embedding-Problem

Theorem:

The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanced tree, H a hyper-cube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
Embedding-Problem

Theorem:

The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanced tree, H a hyper-cube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
Embedding-Problem

Theorem:

The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanced tree, H a hyper-cube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
Theorem:

The embedding-problem is NP-complete into the following cases:

- G is a cycle, $d = c = l = 1$ and H has the same number of nodes as G.
- G, H arbitrary, d a constant, $l = 1$, c arbitrary.
- G, H arbitrary, c a constant, $l = 1$, d arbitrary.
- G, H arbitrary, d, c, l constants.
- G a balanciert tree, H a hyper-cube, $d = l = 1$.
- G arbitrary, H a path, d a constant, $l = 1$, c arbitrary.
- G a tree, H a path, d a constant, $l = 1$, c arbitrary.
- G a caterpillar, H a path, d a constant, $l = 1$, c arbitrary.
Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1} \frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
The Technic

- **Optical Fibers**
- **Optical Sender**
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1} \frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
The Technic

- Optical Fibers
- Optical Sender
- **Optical Receiver**
 - Optical Amplifiers
 - Wavelengths: 1450–1650 nm (Nanometer)
 - C-Band: 1530–1565 nm (currently used)
 - L-Band: 1565–1625 nm (used soon)
 - Width of a channel: about 10 GHz.
 - Distance between channels: about 100 GHz.
 - About 80 channels in the C-Band.
 - With a channel-distance of 25 GHz about 200 channels in the C-Band
 - Critical Angle: $\sin^{-1}\frac{\mu_2}{\mu_1}$
 - Technic known as “wavelength division multiplexing” (WDM)
 - Nodes of an optical network: Transmitters and Routers.
 - Optical paths (“lightpath”) via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- **Optical Amplifiers**
 - Wavelengths: 1450–1650 nm (Nanometer)
 - C-Band: 1530–1565 nm (currently used)
 - L-Band: 1565–1625 nm (used soon)
 - Width of a channel: about 10 GHz.
 - Distance between channels: about 100 GHz.
 - About 80 channels in the C-Band.
 - With a channel-distance of 25 GHz about 200 channels in the C-Band
 - Critical Angle: $\sin^{-1}\frac{\mu_2}{\mu_1}$
 - Technic known as “wavelength division multiplexing” (WDM)
 - Nodes of an optical network: Transmitters and Routers.
 - Optical paths ("lightpath") via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers

- **Wavelengths: 1450–1650 nm (Nanometer)**
 - C-Band: 1530–1565 nm (currently used)
 - L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1}\frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths ("lightpath") via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
 - C-Band: 1530–1565 nm (currently used)
 - L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1}\mu_2/\mu_1$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1} \frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- **Width of a channel:** about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1} \frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $sin^{-1}\frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths ("lightpath") via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1}\frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- **With a channel-distance of 25 GHz about 200 channels in the C-Band**
- Critical Angle: \(\sin^{-1} \frac{\mu_2}{\mu_1} \)
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
 - C-Band: 1530–1565 nm (currently used)
 - L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1} \frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths ("lightpath") via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1} \frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
Optical Fibers
Optical Sender
Optical Receiver
Optical Amplifiers

Wavelengths: 1450–1650 nm (Nanometer)
C-Band: 1530–1565 nm (currently used)
L-Band: 1565–1625 nm (used soon)

Width of a channel: about 10 GHz.
Distance between channels: about 100 GHz.

About 80 channels in the C-Band.
With a channel-distance of 25 GHz about 200 channels in the C-Band

Critical Angle: \(\sin^{-1} \frac{\mu_2}{\mu_1} \)

Technic known as “wavelength division multiplexing” (WDM)

Nodes of an optical network: Transmitters and Routers.

Optical paths ("lightpath") via routers.
The Technic

- Optical Fibers
- Optical Sender
- Optical Receiver
- Optical Amplifiers
- Wavelengths: 1450–1650 nm (Nanometer)
- C-Band: 1530–1565 nm (currently used)
- L-Band: 1565–1625 nm (used soon)
- Width of a channel: about 10 GHz.
- Distance between channels: about 100 GHz.
- About 80 channels in the C-Band.
- With a channel-distance of 25 GHz about 200 channels in the C-Band
- Critical Angle: $\sin^{-1}\frac{\mu_2}{\mu_1}$
- Technic known as “wavelength division multiplexing” (WDM)
- Nodes of an optical network: Transmitters and Routers.
- Optical paths (“lightpath”) via routers.
Advantages and Disadvantages

- High transfer-rate:
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.
- Low signal-loss: 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- More channels per fiber.
- Less disturbance by other signals.
- Fast signal distribution.
- Low cost.

- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- **Low signal-loss:** 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- More channels per fiber.
- Less disturbance by other signals.
- Fast signal distribution.
- Low cost.

- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.
- Low signal-loss: 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- More channels per fiber.
- Less disturbance by other signals.
- Fast signal distribution.
- Low cost.

- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- Low signal-loss: 0.2 db/km.

- Signal is not changed a lot (less jitter).

- Not so many optical Amplifiers are used.

- Less energy, space and less cost for the material.

- More channels per fiber.

- Less disturbance by other signals.

- Fast signal distribution.

- Low cost.

- Optical Devices are expensive (or not developed so far)

- Detour via electronic devices.
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- Low signal-loss: 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- More channels per fiber.
- Less disturbance by other signals.
- Fast signal distribution.
- Low cost.

- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- **Low signal-loss:** 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- More channels per fiber.
- Less disturbance by other signals.
- Fast signal distribution.
- Low cost.

- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Advantages and Disadvantages

- High transfer-rate:
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- Low signal-loss: 0.2 db/km.

- Signal is not changed a lot (less jitter).

- Not so many optical Amplifiers are used.

- Less energy, space and less cost for the material.

- More channels per fiber.

- Less disturbance by other signals.

- Fast signal distribution.

- Low cost.

- Optical Devices are expensive (or not developed so far)

- Detour via electronic devices.
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- **Low signal-loss:** 0.2 db/km.

- **Signal is not changed a lot (less jitter).**

- **Not so many optical Amplifiers are used.**
 - Less energy, space and less cost for the material.
 - More channels per fiber.
 - Less disturbance by other signals.
 - Fast signal distribution.
 - Low cost.

- **Optical Devices are expensive (or not developed so far)**

- **Detour via electronic devices.**
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- **Low signal-loss:** 0.2 db/km.
- **Signal is not changed a lot (less jitter).**
- **Not so many optical Amplifiers are used.**
- **Less energy, space and less cost for the material.**
 - More channels per fiber.
 - Less disturbance by other signals.
 - Fast signal distribution.
 - Low cost.

- **Optical Devices are expensive (or not developed so far)**
- **Detour via electronic devices.**
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.
- **Low signal-loss:** 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- **More channels per fiber.**
 - Less disturbance by other signals.
 - Fast signal distribution.
 - Low cost.
- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Advantages and Disadvantages

- High transfer-rate:
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- Low signal-loss: 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- More channels per fiber.
- Less disturbance by other signals.
- Fast signal distribution.
- Low cost.

- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- **Low signal-loss:** 0.2 db/km.

- **Signal is not changed a lot** (less jitter).

- **Not so many optical Amplifiers are used.**

- **Less energy, space and less cost for the material.**

- **More channels per fiber.**

- **Less disturbance by other signals.**

- **Fast signal distribution.**

- **Low cost.**

- **Optical Devices are expensive** (or not developed so far)

- **Detour via electronic devices.**
Advantages and Disadvantages

- High transfer-rate:
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- Low signal-loss: 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- More channels per fiber.
- Less disturbance by other signals.
- Fast signal distribution.
- Low cost.

- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Advantages and Disadvantages

- High transfer-rate:
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- Low signal-loss: 0.2 db/km.

- Signal is not changed a lot (less jitter).

- Not so many optical Amplifiers are used.

- Less energy, space and less cost for the material.

- More channels per fiber.

- Less disturbance by other signals.

- Fast signal distribution.

- Low cost.

- Optical Devices are expensive (or not developed so far)

- Detour via electronic devices.
Advantages and Disadvantages

- High transfer-rate:
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- Low signal-loss: 0.2 db/km.
- Signal is not changed a lot (less jitter).
- Not so many optical Amplifiers are used.
- Less energy, space and less cost for the material.
- More channels per fiber.
- Less disturbance by other signals.
- Fast signal distribution.
- Low cost.

- Optical Devices are expensive (or not developed so far)
- Detour via electronic devices.
Advantages and Disadvantages

- **High transfer-rate:**
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- **Low signal-loss:** 0.2 db/km.

- **Signal is not changed a lot (less jitter).**

- **Not so many optical Amplifiers are used.**

- **Less energy, space and less cost for the material.**

- **More channels per fiber.**

- **Less disturbance by other signals.**

- **Fast signal distribution.**

- **Low cost.**

- **Optical Devices are expensive (or not developed so far)**

- **Detour via electronic devices.**
Advantages and Disadvantages

- High transfer-rate:
 - Currently: 107 Gigabit per second.
 - Theoretical $50 \cdot 10^{12}$ bits per second.

- Low signal-loss: 0.2 db/km.

- Signal is not changed a lot (less jitter).

- Not so many optical Amplifiers are used.

- Less energy, space and less cost for the material.

- More channels per fiber.

- Less disturbance by other signals.

- Fast signal distribution.

- Low cost.

- Optical Devices are expensive (or not developed so far)

- Detour via electronic devices.
Types of WDM and Problems

- **Types of WDM**
 - Wavelength-routed Networks: the receiver determines the wavelength statically.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength.
 - Static and dynamic optical paths.
 - Single-HOP ("all-optical Network") and Multi-HOP.

- **Important Problems on WDM**
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
Types of WDM and Problems

- Types of WDM
 - Wavelength-routed Networks: the receiver determines the wavelength statically.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength.
 - Static and dynamic optical paths.
 - Single-HOP ("all-optical Network") and Multi-HOP.

- Important Problems on WDM
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
Types of WDM and Problems

- **Types of WDM**
 - Wavelength-routed Networks: the receiver determines the wavelength statically.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength.
 - Static and dynamic optical paths.
 - Single-HOP ("all-optical Network") and Multi-HOP.

- **Important Problems on WDM**
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
Types of WDM and Problems

- Types of WDM
 - Wavelength-routed Networks: the receiver determines the wavelength statically.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength
 - Static and dynamic optical paths.
 - Single-HOP ("all-optical Network") and Multi-HOP.

- Important Problems on WDM
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
Types of WDM and Problems

- **Types of WDM**
 - Wavelength-routed Networks: the receiver determines the wavelength staticly.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength
 - Static and dynamic optical paths.
 - Single-HOP ("all-optical Network") and Multi-HOP.

- **Important Problems on WDM**
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
Types of WDM and Problems

- **Types of WDM**
 - Wavelength-routed Networks: the receiver determines the wavelength statically.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength.
 - Static and dynamic optical paths.
 - Single-HOP ("all-optical Network") and Multi-HOP.

- **Important Problems on WDM**
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
Types of WDM and Problems

- **Types of WDM**
 - Wavelength-routed Networks: the receiver determines the wavelength statically.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength.
 - Static and dynamic optical paths.
 - Single-HOP (“all-optical Network”) and Multi-HOP.

- **Important Problems on WDM**
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
Types of WDM and Problems

- **Types of WDM**
 - Wavelength-routed Networks: the receiver determines the wavelength staticly.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength.
 - Static and dynamic optical paths.
 - Single-HOP (“all-optical Network”) and Multi-HOP.

- **Important Problems on WDM**
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
Types of WDM and Problems

- **Types of WDM**
 - Wavelength-routed Networks: the receiver determines the wavelength statically.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength.
 - Static and dynamic optical paths.
 - Single-HOP (“all-optical Network”) and Multi-HOP.

- **Important Problems on WDM**
 - Building the optical paths.
 - Building a logical connection-structure.
 - **Determine communication by for this logical structure.**
 - Handle errors.
Types of WDM and Problems

- **Types of WDM**
 - Wavelength-routed Networks: the receiver determines the wavelength statically.
 - Broadcasting Networks: Send with wavelength λ to all. Only the receivers use λ as input wavelength.
 - Static and dynamic optical paths.
 - Single-HOP (“all-optical Network”) and Multi-HOP.

- **Important Problems on WDM**
 - Building the optical paths.
 - Building a logical connection-structure.
 - Determine communication by for this logical structure.
 - Handle errors.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i, then outputs $O_0 \alpha \cdot P_0$ and $O_1 (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and dependent of the wavelength.

Two possible configurations:
- crossing and
- not crossing.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i,
 then outputs $O_0 \alpha \cdot P_0$ and
 $O_1 (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and
 dependent of the wavelength.
- Two possible configurations:
 - crossing and
 - not crossing.
Optical coupler has value α.

If input I_i receives a signal of strength P_i,

then outputs $O_0 \alpha \cdot P_0$ and

$O_1 (1 - \alpha) \cdot P_1$.

 Exists independent of the wavelength and
dependent of the wavelength.

Two possible configurations:

- crossing and
- not crossing.
Optical coupler has value α.

- If input I_i receives a signal of strength P_i,
- then outputs $O_0 \alpha \cdot P_0$ and
- $O_1 (1 - \alpha) \cdot P_1$.

Exists independent of the wavelength and dependent of the wavelength.

Two possible configurations:
- crossing and
- not crossing.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i,
 - then outputs $O_0 \alpha \cdot P_0$ and
 - $O_1 (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and dependent of the wavelength.

- Two possible configurations:
 - crossing and
 - not crossing.
Optical coupler has value α.

If input I_i receives a signal of strength P_i,

then outputs $O_0 \alpha \cdot P_0$ and

$O_1 (1 - \alpha) \cdot P_1$.

Exists independent of the wavelength and

dependent of the wavelength.

Two possible configurations:

crossing and

not crossing.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i, then outputs $O_0 \alpha \cdot P_0$ and $O_1 (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and dependent of the wavelength.

Two possible configurations:
- crossing and
- not crossing.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i,
 then outputs $O_0 \alpha \cdot P_0$ and
 $O_1 (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and
 dependent of the wavelength.

Two possible configurations:
- crossing and
- not crossing.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i,
- then outputs $O_0 \alpha \cdot P_0$ and $O_1 (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and dependent of the wavelength.

Two possible configurations:
- crossing and
- not crossing.
Optical coupler has value \(\alpha \).
If input \(I_i \) receives a signal of strength \(P_i \),
then outputs \(O_0 \alpha \cdot P_0 \) and
\(O_1 (1 - \alpha) \cdot P_1 \).
Exists independent of the wavelength and
dependent of the wavelength.

- Two possible configurations:
 - crossing and
 - not crossing.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i,
- then outputs $O_0 \alpha \cdot P_0$ and
- $O_1 (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and
- dependent of the wavelength.

- Two possible configurations:
 - crossing and
 - not crossing.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i, then outputs $O_0 \cdot \alpha \cdot P_0$ and $O_1 \cdot (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and dependent of the wavelength.

Two possible configurations:
- crossing and
- not crossing.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i,
 then outputs $O_0 \alpha \cdot P_0$ and
 $O_1 (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and
dependent of the wavelength.

- Two possible configurations:
 - crossing and
 - not crossing.
Optical Coupler

- Optical coupler has value α.
- If input I_i receives a signal of strength P_i, then outputs $O_0 \alpha \cdot P_0$ and $O_1 (1 - \alpha) \cdot P_1$.
- Exists independent of the wavelength and dependent of the wavelength.

- Two possible configurations:
 - crossing and
 - not crossing.
Optical coupler has value α.

- If input I_i receives a signal of strength P_i,
- then outputs $O_0 \alpha \cdot P_0$ and
- $O_1 (1 - \alpha) \cdot P_1$.

- Exists independent of the wavelength and dependent of the wavelength.

- Two possible configurations:
 - crossing and
 - not crossing.
“Crossbar” and Beneš

Theorem

A crossbar is “wide-sense nonblocking”, i.e. any permutation and any extension to a sub-permutation is possible.
Theorem
A crossbar is “wide-sense nonblocking”, i.e. any permutation and any extension to a sub-permutation is possible.
A crossbar is “wide-sense nonblocking”, i.e. any permutation and any extension to a sub-permutation is possible.
A crossbar is “wide-sense nonblocking”, i.e. any permutation and any extension to a sub-permutation is possible.
"Crossbar" and Beneš

Theorem

A crossbar is "wide-sense nonblocking", i.e. any permutation and any extension to a sub-permutation is possible.
Theorem

A crossbar is “wide-sense nonblocking”, i.e. any permutation and any extension to a sub-permutation is possible.
Theorem

A crossbar is “wide-sense nonblocking”, i.e. any permutation and any extension to a sub-permutation is possible.

Theorem

The Beneš Network is “nonblocking”, i.e. any permutation is possible.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the paths may be placed on the two sub-networks.
- The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path \(i \) has to traverse one of the sub-networks.
- Common inputs \(2 \cdot i \) and \(2 \cdot i - 1 \) may not use the same sub-network.
- Common inputs \(\pi(2 \cdot i) \) and \(\pi(2 \cdot i - 1) \) may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

- Thus the paths may be placed on the two sub-networks.
- The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

- Thus the paths may be placed on the two sub-networks.
- The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the pathes may be placed on the two sub-networks.

The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the paths may be placed on the two sub-networks.

The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the pathes may be placed on the two sub-networks.

The statement holds by a simple induction.
The Beneš Network is nonblocking.

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the pathes may be placed on the two sub-networks.
The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

- Thus the paths may be placed on the two sub-networks.
- The statement holds by a simple induction.
The Beneš Network is nonblocking.

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

- Thus the paths may be placed on the two sub-networks.
- The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

- Thus the pathes may be placed on the two sub-networks.
- The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the pathes may be placed on the two sub-networks.

The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the paths may be placed on the two sub-networks.

The statement holds by a simple induction.
The Beneš Network is nonblocking.

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

- Thus the paths may be placed on the two sub-networks.
- The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

- Thus the pathes may be placed on the two sub-networks.
- The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the paths may be placed on the two sub-networks.

The statement holds by a simple induction.
The Beneš Network is nonblocking.

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the paths may be placed on the two sub-networks.

The statement holds by a simple induction.
The Beneš Network is nonblocking

- Each path i has to traverse one of the sub-networks.
- Common inputs $2 \cdot i$ and $2 \cdot i - 1$ may not use the same sub-network.
- Common inputs $\pi(2 \cdot i)$ and $\pi(2 \cdot i - 1)$ may not use the same sub-network.
- The resulting conflict graph is bipartite (Sum of two Matchings).

Thus the paths may be placed on the two sub-networks.

The statement holds by a simple induction.
Introduction

Input

- Network: \(G = (V, E) \)
- Requests: \(I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\} \)
- Routes: \(\rho_1^i, \rho_2^i, \rho_3^i, \ldots \) paths from \(s_i \) to \(d_i \).

Routing

For the above input is a routing \(R \):

- \(R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\} \) and
- \(\rho_i \) connects \(s_i \) with \(d_i \).
Introduction

Input

- **Network:** \(G = (V, E) \)
- **Requests:** \(I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\} \)
- **Routes:** \(\rho_1^i, \rho_2^i, \rho_3^i, \ldots \) paths from \(s_i \) to \(d_i \).

Routing

For the above input is a routing \(\mathcal{R} \):

- \(\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\} \) and
- \(\rho_i \) connects \(s_i \) with \(d_i \).
Introduction

Input

- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routes: $\rho^1_i, \rho^2_i, \rho^3_i, \ldots$ paths from s_i to d_i.

Routing

For the above input is a routing R:

- $R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$ and
- ρ_i connects s_i with d_i.
Introduction

Input

- Network: \(G = (V, E) \)
- Requests: \(I = \{ (s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q \} \)
- Routes: \(\rho_1^i, \rho_2^i, \rho_3^i, \ldots \) paths from \(s_i \) to \(d_i \).

Routing

For the above input is a routing \(R \):

- \(R = \{ \rho_1, \rho_2, \rho_3, \ldots, \rho_q \} \) and
- \(\rho_i \) connects \(s_i \) with \(d_i \).
Input

- Network: \(G = (V, E) \)
- Requests: \(I = \{(s_i, d_i) | s_i, d_i \in V \land 1 \leq i \leq q\} \)
- Routes: \(\rho_1^i, \rho_2^i, \rho_3^i, \ldots \) paths from \(s_i \) to \(d_i \).

Routing

For the above input is a routing \(\mathcal{R} \):

- \(\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\} \) and
- \(\rho_i \) connects \(s_i \) with \(d_i \).
Input

- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routes: $\rho_1^i, \rho_2^i, \rho_3^i, \ldots$ paths from s_i to d_i.

Routing

For the above input is a routing R:

- $R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$ and
- ρ_i connects s_i with d_i.
Introduction

Input

- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routes: $\rho_1^i, \rho_2^i, \rho_3^i, \ldots$ paths from s_i to d_i.

Routing

For the above input is a routing \mathcal{R}:

- $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$ and
- ρ_i connects s_i with d_i.
Input

- Network: \(G = (V, E) \)
- Requests: \(I = \{ (s_i, d_i) | s_i, d_i \in V \land 1 \leq i \leq q \} \)
- Routes: \(\rho_1^i, \rho_2^i, \rho_3^i, \ldots \) paths from \(s_i \) to \(d_i \).

Routing

For the above input is a routing \(R \):

- \(R = \{ \rho_1, \rho_2, \rho_3, \ldots, \rho_q \} \) and
- \(\rho_i \) connects \(s_i \) with \(d_i \).
Wavelength-Assignment

Input

- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routing: $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$

Wavelength-Assignment

is the colouring of the conflict-graph G_R^I:

- $G_R^I = (\mathcal{R}, F) \cong (I, F)$ mit: $F = \{\{\rho_i, \rho_j\} \mid \rho_i \cap \rho_j \cap E \neq \emptyset\}$
- Each request is assigned a wavelength.
- If two request share an edge (in the same direction), then differ the wavelengths.
- $w(G_R^I)$ is the number of necessary wavelengths.
Wavelength-Assignment

Input
- Network: \(G = (V, E) \)
- Requests: \(I = \{ (s_i, d_i) | s_i, d_i \in V \land 1 \leq i \leq q \} \)
- Routing: \(R = \{ \rho_1, \rho_2, \rho_3, \ldots, \rho_q \} \)

Wavelength-Assignment

is the colouring of the conflict-graph \(G^I_R \):
- \(G^I_R = (R, F) \uplus (I, F) \) mit: \(F = \{ \rho_i, \rho_j \} | \rho_i \cap \rho_j \cap E \neq \emptyset \)
- Each request is assigned a wavelength.
- If two request share an edge (in the same direction), then differ the wavelengths.
- \(w(G^I_R) \) is the number of necessary wavelengths.
Wavelength-Assignment

Input

- Network: \(G = (V, E) \)
- Requests: \(I = \{ (s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q \} \)
- Routing: \(R = \{ \rho_1, \rho_2, \rho_3, \ldots, \rho_q \} \)

Wavelength-Assignment

is the colouring of the conflict-graph \(G_R^I \):

- \(G_R^I = (R, F) \cap (I, F) \) mit: \(F = \{ \rho_i, \rho_j \mid \rho_i \cap \rho_j \cap E \neq \emptyset \} \)
- Each request is assigned a wavelength.
- If two request share an edge (in the same direction), then differ the wavelengths.
- \(w(G_R^I) \) is the number of necessary wavelengths.
Wavelength-Assignment

Input

- Network: \(G = (V, E) \)
- Requests: \(I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\} \)
- Routing: \(R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\} \)

Wavelength-Assignment

is the colouring of the conflict-graph \(G^l_R \):

- \(G^l_R = (R, F) \cap (I, F) \) mit: \(F = \{\{\rho_i, \rho_j\} \mid \rho_i \cap \rho_j \cap E \neq \emptyset\} \)
- Each request is assigned a wavelength.
- If two requests share an edge (in the same direction), then differ the wavelengths.
- \(w(G^l_R) \) is the number of necessary wavelengths.
Wavelength-Assignment

Input
- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routing: $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$

Wavelength-Assignment

is the colouring of the conflict-graph $G^I_{\mathcal{R}}$:
- $G^I_{\mathcal{R}} = (\mathcal{R}, F) \Delta (I, F)$ mit: $F = \{\{\rho_i, \rho_j\} \mid \rho_i \cap \rho_j \cap E \neq \emptyset\}$
- Each request is assigned a wavelength.
- If two request share an edge (in the same direction), then differ the wavelengths.
- $w(G^I_{\mathcal{R}})$ is the number of necessary wavelengths.
Wavelength-Assignment

Input

- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routing: $R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$

Wavelength-Assignment

is the colouring of the conflict-graph G^I_R:

- $G^I_R = (R, F) \triangle (I, F)$ mit: $F = \{\{\rho_i, \rho_j\} \mid \rho_i \cap \rho_j \cap E \neq \emptyset\}$
- Each request is assigned a wavelength.
- If two request share an edge (in the same direction), then differ the wavelengths.
- $w(G^I_R)$ is the number of necessary wavelengths.
Wavelength-Assignment

Input

- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routing: $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$

Wavelength-Assignment

is the colouring of the conflict-graph G_R^I:

- $G_R^I = (\mathcal{R}, F) \triangleq (I, F)$ mit: $F = \{\rho_i, \rho_j \mid \rho_i \cap \rho_j \cap E \neq \emptyset\}$
- Each request is assigned a wavelength.
- If two request share an edge (in the same direction), then differ the wavelengths.
- $w(G_R^I)$ is the number of necessary wavelengths.
Wavelength-Assignment

Input

- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routing: $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$

Wavelength-Assignment

is the colouring of the conflict-graph $G_\mathcal{R}^I$:

- $G_\mathcal{R}^I = (\mathcal{R}, F) \bowtie (I, F)$ mit: $F = \{\{\rho_i, \rho_j\} \mid \rho_i \cap \rho_j \cap E \neq \emptyset\}$
- Each request is assigned a wavelength.
- If two request share an edge (in the same direction), then differ the wavelengths.
- $w(G_\mathcal{R}^I)$ is the number of necessary wavelengths.
Input

- Network: \(G = (V, E) \)
- Requests: \(I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\} \)
- Routing: \(\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\} \)

Wavelength-Assignment

is the colouring of the conflict-graph \(G^I_{\mathcal{R}} \):

- \(G^I_{\mathcal{R}} = (\mathcal{R}, F) \triangleq (I, F) \) mit: \(F = \{\{\rho_i, \rho_j\} \mid \rho_i \cap \rho_j \cap E \neq \emptyset\} \)
- Each request is assigned a wavelength.
- If two request share an edge (in the same direction), then differ the wavelengths.
- \(w(G^I_{\mathcal{R}}) \) is the number of necessary wavelengths.
Definition

Given:
- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routing: $R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$

Then we define:
- The congestion of an edge e the number of routing-paths which use e.
 - $c_e(G_I^R) = |\{r \in R \mid e \in r\}|$.
- $c(G_I^R) = \max_{e \in E} c_e(G_I^R)$.

Lemma

We have: $c(G_I^R) \leq w(G_I^R)$.
Congestion

Definition

Given:
- Network: \(G = (V, E) \)
- Requests: \(I = \{ (s_i, d_i) | s_i, d_i \in V \land 1 \leq i \leq q \} \)
- Routing: \(R = \{ \rho_1, \rho_2, \rho_3, \ldots, \rho_q \} \)

Then we define:
- The congestion of an edge \(e \) the number of routing-paths which use \(e \).
- \(c_e(G^l_R) = |\{ r \in R | e \in r \}|. \)
- \(c(G^l_R) = \max_{e \in E} c_e(G^l_R). \)

Lemma

We have: \(c(G^l_R) \leq w(G^l_R). \)
Congestion

Definition

Given:
- Network: \(G = (V, E) \)
- Requests: \(I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\} \)
- Routing: \(R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\} \)

Then we define:
- The congestion of an edge \(e \) the number of routing-paths which use \(e \).
- \(c_e(G^I_R) = |\{r \in R \mid e \in r\}| \).
- \(c(G^I_R) = \max_{e \in E} c_e(G^I_R) \).

Lemma

We have: \(c(G^I_R) \leq w(G^I_R) \).
Congestion

Definition

Given:
- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routing: $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$

Then we define:
- The congestion of an edge e the number of routing-paths which use e.
- $c_e(G_{IR}) = |\{r \in \mathcal{R} \mid e \in r\}|$.
- $c(G_{IR}) = \max_{e \in E} c_e(G_{IR})$.

Lemma

We have: $c(G_{IR}) \leq w(G_{IR})$.
Congestion

Definition

Given:
- Network: \(G = (V, E) \)
- Requests: \(I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\} \)
- Routing: \(R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\} \)

Then we define:
- The congestion of an edge \(e \) the number of routing-paths which use \(e \).
- \(c_e(G^l_R) = |\{r \in R \mid e \in r\}| \).
- \(c(G^l_R) = \max_{e \in E} c_e(G^l_R) \).

Lemma

We have: \(c(G^l_R) \leq w(G^l_R) \).
Congestion

Definition

Given:
- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) | s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routing: $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$

Then we define:
- The congestion of an edge e the number of routing-paths which use e.
 - $c_e(G^l_\mathcal{R}) = |\{r \in \mathcal{R} | e \in r\}|$
 - $c(G^l_\mathcal{R}) = \max_{e \in E} c_e(G^l_\mathcal{R})$.

Lemma

We have: $c(G^l_\mathcal{R}) \leq w(G^l_\mathcal{R})$.
Definition

Given:

- Network: \(G = (V, E) \)
- Requests: \(I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\} \)
- Routing: \(R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\} \)

Then we define:

- The congestion of an edge \(e \) the number of routing-paths which use \(e \).
- \(c_e(G_R^l) = |\{r \in R \mid e \in r\}|. \)
- \(c(G_R^l) = \max_{e \in E} c_e(G_R^l). \)

Lemma

We have: \(c(G_R^l) \leq w(G_R^l). \)
Congestion

Definition

Given:
- Network: \(G = (V,E) \)
- Requests: \(I = \{(s_i,d_i) \mid s_i,d_i \in V \land 1 \leq i \leq q\} \)
- Routing: \(R = \{\rho_1,\rho_2,\rho_3,\ldots,\rho_q\} \)

Then we define:
- The congestion of an edge \(e \) the number of routing-paths which use \(e \).
- \(c_e(G^l_R) = \{|\{r \in R \mid e \in r\}|. \)
- \(c(G^l_R) = \max_{e \in E} c_e(G^l_R) \).

Lemma

We have: \(c(G^l_R) \leq w(G^l_R) \).
Definition

Given:
- Network: $G = (V, E)$
- Requests: $I = \{(s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q\}$
- Routing: $R = \{\rho_1, \rho_2, \rho_3, \ldots, \rho_q\}$

Then we define:
- The congestion of an edge e the number of routing-paths which use e.
- $c_e(G^l_R) = |\{r \in R \mid e \in r\}|$
- $c(G^l_R) = \max_{e \in E} c_e(G^l_R)$

Lemma

We have: $c(G^l_R) \leq w(G^l_R)$.
Definition

Given:
- Network: $G = (V, E)$
- Requests: $I = \{ (s_i, d_i) \mid s_i, d_i \in V \land 1 \leq i \leq q \}$
- Routing: $R = \{ \rho_1, \rho_2, \rho_3, \ldots, \rho_q \}$

Then we define:
- The congestion of an edge e the number of routing-paths which use e.
- $c_e(G^I_R) = \{ r \in R \mid e \in r \}$.
- $c(G^I_R) = \max_{e \in E} c_e(G^I_R)$.

Lemma

*We have: $c(G^I_R) \leq w(G^I_R)$.***
Greedy

Theorem

Let L be the maximal length of a routing-path in G^l_R.

- Then we have: $w(G^l_R) \leq (c(G^l_R) - 1) \cdot L + 1$
- Is also the bound for the simple greedy algorithm.

Proof: The node degree in the conflict-graph is at most: $(c(G^l_R) - 1) \cdot L$.
Greedy

Theorem

Let L be the maximal length of a routing-path in G^l_R.

- Then we have: $w(G^l_R) \leq (c(G^l_R) - 1) \cdot L + 1$
- Is also the bound for the simple greedy algorithm.

Proof: The node degree in the conflict-graph is at most: $(c(G^l_R) - 1) \cdot L$.
Greedy

Theorem

Let L be the maximal length of a routing-path in G^l_R.

- Then we have: $w(G^l_R) \leq (c(G^l_R) - 1) \cdot L + 1$
- Is also the bound for the simple greedy algorithm.

Proof: The node degree in the conflict-graph is at most: $(c(G^l_R) - 1) \cdot L$.
Greedy

Theorem

Let L be the maximal length of a routing-path in G^l_R.

- Then we have: $w(G^l_R) \leq (c(G^l_R) - 1) \cdot L + 1$
- Is also the bound for the simple greedy algorithm.

Proof: The node degree in the conflict-graph is at most: $(c(G^l_R) - 1) \cdot L$.
Theorem

Let \(L \) be the maximal length of a routing-path in \(G^l_{IR} \).

- Then we have: \(w(G^l_{IR}) \leq (c(G^l_{IR}) - 1) \cdot L + 1 \)
- Is also the bound for the simple greedy algorithm.

Proof: The node degree in the conflict-graph is at most: \((c(G^l_{IR}) - 1) \cdot L \).
Greedy improved

- Let G^I_R be given.
- Let \mathcal{R}_1 be the paths of length $\geq \sqrt{|E|}$.
- Let \mathcal{R}_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in \mathcal{R}_1 with its own colour.
- Colour \mathcal{R}_2 with greed.

Theorem

We have: $w(G^I_R) \leq 2 \cdot \sqrt{|E|} \cdot c(G^I_R)$.

Proof:

- $|\mathcal{R}_1| \leq \sqrt{|E|} \cdot c(G^I_R)$, because
- otherwise we would have an edge e with $c_e(G^I_R) > c(G^I_R)$.
- And $w(G^I_{R_2}) \leq \sqrt{|E|} \cdot c(G^I_R)$ is easy.
Greedy improved

- Let G^I_R be given.
- Let R_1 be the paths of length $\geq \sqrt{|E|}$.
- Let R_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in R_1 with its own colour.
- Colour R_2 with greed.

Theorem

We have: $w(G^I_R) \leq 2 \cdot \sqrt{|E|} \cdot c(G^I_R)$.

Proof:

- $|R_1| \leq \sqrt{|E|} \cdot c(G^I_R)$, because
- otherwise we would have an edge e with $c_e(G^I_R) > c(G^I_R)$.
- And $w(G^I_{R_2}) \leq \sqrt{|E|} \cdot c(G^I_R)$ is easy.
Greedy improved

- Let G^I_R be given.
- Let \mathcal{R}_1 be the paths of length $\geq \sqrt{|E|}$.
- Let \mathcal{R}_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in \mathcal{R}_1 with its own colour.
- Colour \mathcal{R}_2 with greed.

Theorem

We have: $w(G^I_R) \leq 2 \cdot \sqrt{|E|} \cdot c(G^I_R)$.

Proof:

- $|\mathcal{R}_1| \leq \sqrt{|E|} \cdot c(G^I_R)$, because
- otherwise we would have an edge e with $c_e(G^I_R) > c(G^I_R)$.
- And $w(G^I_{R_2}) \leq \sqrt{|E|} \cdot c(G^I_R)$ is easy.
Greedy improved

- Let G^I_R be given.
- Let R_1 be the paths of length $\geq \sqrt{|E|}$.
- Let R_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in R_1 with its own colour.
- Colour R_2 with greed.

Theorem

We have: $w(G^I_R) \leq 2 \cdot \sqrt{|E|} \cdot c(G^I_R)$.

Proof:

- $|R_1| \leq \sqrt{|E|} \cdot c(G^I_R)$, because
- otherwise we would have an edge e with $c_e(G^I_R) > c(G^I_R)$.
- And $w(G^I_{R_2}) \leq \sqrt{|E|} \cdot c(G^I_R)$ is easy.
Greedy improved

- Let G^I_R be given.
- Let R_1 be the paths of length $\geq \sqrt{|E|}$.
- Let R_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in R_1 with its own colour.
- Colour R_2 with greed.

Theorem

We have: $w(G^I_R) \leq 2 \cdot \sqrt{|E|} \cdot c(G^I_R)$.

Proof:

- $|R_1| \leq \sqrt{|E|} \cdot c(G^I_R)$, because
- otherwise we would have an edge e with $c_e(G^I_R) > c(G^I_R)$.
- And $w(G^I_{R_2}) \leq \sqrt{|E|} \cdot c(G^I_R)$ is easy.
Greedy improved

- Let G^I_R be given.
- Let \mathcal{R}_1 be the paths of length $\geq \sqrt{|E|}$.
- Let \mathcal{R}_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in \mathcal{R}_1 with its own colour.
- Colour \mathcal{R}_2 with greed.

Theorem

\[w(G^I_R) \leq 2 \cdot \sqrt{|E|} \cdot c(G^I_R). \]

Proof:

- $|\mathcal{R}_1| \leq \sqrt{|E|} \cdot c(G^I_R)$, because
- otherwise we would have an edge e with $c_e(G^I_R) > c(G^I_R)$.
- And $w(G^I_{R_2}) \leq \sqrt{|E|} \cdot c(G^I_R)$ is easy.
Greedy improved

- Let $G_{\mathcal{R}}$ be given.
- Let \mathcal{R}_1 be the paths of length $\geq \sqrt{|E|}$.
- Let \mathcal{R}_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in \mathcal{R}_1 with its own colour.
- Colour \mathcal{R}_2 with greed.

Theorem

We have: $w(G_{\mathcal{R}}) \leq 2 \cdot \sqrt{|E|} \cdot c(G_{\mathcal{R}})$.

Proof:

- $|\mathcal{R}_1| \leq \sqrt{|E|} \cdot c(G_{\mathcal{R}})$, because
- otherwise we would have an edge e with $c_e(G_{\mathcal{R}}) > c(G_{\mathcal{R}})$.
- And $w(G_{\mathcal{R}_2}) \leq \sqrt{|E|} \cdot c(G_{\mathcal{R}})$ is easy.
Greedy improved

- Let G^I_R be given.
- Let R_1 be the paths of length $\geq \sqrt{|E|}$.
- Let R_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in R_1 with its own colour.
- Colour R_2 with greed.

Theorem

*We have: $w(G^I_R) \leq 2 \cdot \sqrt{|E|} \cdot c(G^I_R)$.***

Proof:

- $|R_1| \leq \sqrt{|E|} \cdot c(G^I_R)$, because
- otherwise we would have an edge e with $c_e(G^I_R) > c(G^I_R)$.
- And $w(G^I_{R_2}) \leq \sqrt{|E|} \cdot c(G^I_R)$ is easy.
Greedy improved

- Let G^l_R be given.
- Let R_1 be the paths of length $\geq \sqrt{|E|}$.
- Let R_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in R_1 with its own colour.
- Colour R_2 with greed.

Theorem

We have: $w(G^l_R) \leq 2 \cdot \sqrt{|E|} \cdot c(G^l_R)$.

Proof:

- $|R_1| \leq \sqrt{|E|} \cdot c(G^l_R)$, because
- otherwise we would have an edge e with $c_e(G^l_R) > c(G^l_R)$.
- And $w(G^l_{R_2}) \leq \sqrt{|E|} \cdot c(G^l_R)$ is easy.
Greedy improved

- Let G_R^I be given.
- Let R_1 be the paths of length $\geq \sqrt{|E|}$.
- Let R_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in R_1 with its own colour.
- Colour R_2 with greed.

Theorem

We have: $w(G_R^I) \leq 2 \cdot \sqrt{|E|} \cdot c(G_R^I)$.

Proof:

- $|R_1| \leq \sqrt{|E|} \cdot c(G_R^I)$, because
- otherwise we would have an edge e with $c_e(G_R^I) > c(G_R^I)$.
- And $w(G_{R_2}^I) \leq \sqrt{|E|} \cdot c(G_R^I)$ is easy.
Greedy improved

- Let G_R^1 be given.
- Let \mathcal{R}_1 be the paths of length $\geq \sqrt{|E|}$.
- Let \mathcal{R}_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in \mathcal{R}_1 with its own colour.
- Colour \mathcal{R}_2 with greed.

Theorem

We have: $w(G_R^1) \leq 2 \cdot \sqrt{|E|} \cdot c(G_R^1)$.

Proof:

- $|\mathcal{R}_1| \leq \sqrt{|E|} \cdot c(G_R^1)$, because
- otherwise we would have an edge e with $c_e(G_R^1) > c(G_R^1)$.
- And $w(G_R^2) \leq \sqrt{|E|} \cdot c(G_R^1)$ is easy.
Greedy improved

- Let G_R^I be given.
- Let \mathcal{R}_1 be the paths of length $\geq \sqrt{|E|}$.
- Let \mathcal{R}_2 be the paths of length $< \sqrt{|E|}$.
- Colour each path in \mathcal{R}_1 with its own colour.
- Colour \mathcal{R}_2 with greed.

Theorem

We have: $w(G_R^I) \leq 2 \cdot \sqrt{|E|} \cdot c(G_R^I)$.

Proof:

- $|\mathcal{R}_1| \leq \sqrt{|E|} \cdot c(G_R^I)$, because
- otherwise we would have an edge e with $c_e(G_R^I) > c(G_R^I)$.
- And $w(G_{R_2}^I) \leq \sqrt{|E|} \cdot c(G_R^I)$ is easy.
If G is a line, then we can compute $w(G^l_R)$ in polynomial time.

Proof:

- Let I_l be the requests going to the left.
- Let I_r be the requests going to the right.
- I_l and I_r are independent.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.
Theorem

If G is a line, then we can compute $w(G^l_R)$ in polynomial time.

Proof:

- Let I_l be the requests going to the left.
- Let I_r be the requests going to the right.
- I_l and I_r are independent.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.
Theorem

If \(G \) is a line, then we can compute \(w(G_{rl}^l) \) in polynomial time.

Proof:

- Let \(I_l \) be the requests going to the left.
- Let \(I_r \) be the requests going to the right.
- \(I_l \) and \(I_r \) are independent.
- \(w(G_{rl}^l) \) corresponds to the colouring of an interval-graph.
- \(w(G_{rl}^r) \) corresponds to the colouring of an interval-graph.
Theorem

If G is a line, then we can compute $w(G^l_r)$ in polynomial time.

Proof:

- Let I_l be the requests going to the left.
- Let I_r be the requests going to the right.
- I_l and I_r are independent.
- $w(G^l_r)$ corresponds to the colouring of an interval-graph.
- $w(G^r_l)$ corresponds to the colouring of an interval-graph.
If G is a line, then we can compute $w(G^l_R)$ in polynomial time.

Proof:

- Let l_l be the requests going to the left.
- Let l_r be the requests going to the right.
- l_l and l_r are independent.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.
- $w(G^r_R)$ corresponds to the colouring of an interval-graph.
Theorem

If G is a line, then we can compute $w(G^l_R)$ in polynomial time.

Proof:
- Let I_l be the requests going to the left.
- Let I_r be the requests going to the right.
- I_l and I_r are independent.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.
- $w(G^r_R)$ corresponds to the colouring of an interval-graph.
Theorem

If G is a line, then we can compute $w(G^l_R)$ in polynomial time.

Proof:

- Let I_l be the requests going to the left.
- Let I_r be the requests going to the right.
- I_l and I_r are independent.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.
Theorem

If \(G \) is a cycle, then we can approximate \(w(G^I_R) \) in polynomial time with a factor of 2.

Proof:
- Let \(e \) be an edge in \(G \).
- Let \(I_1 \) be the requests which use \(e \) in the routing.
- Let \(I_2 \) be the requests which do not use \(e \) in the routing.
- \(w(G^I_{I_1}R) \) corresponds to the colouring of an interval-graph.
- \(w(G^I_{I_2}R) \) corresponds to the colouring of an interval-graph.

Theorem

If \(G \) is a cycle, then the computation of \(w(G^I_R) \) is NP-complete.

Proof:
- \(w(G^I_R) \) corresponds to the colouring of an arc-graph.
Theorem

If G is a cycle, then we can approximate $w(G^I_\mathcal{R})$ in polynomial time with a factor of 2.

Proof:

- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G^I_\mathcal{R})$ corresponds to the colouring of an interval-graph.
- $w(G^{I_2}_\mathcal{R})$ corresponds to the colouring of an interval-graph.

Theorem

If G is a cycle, then the computation of $w(G^I_\mathcal{R})$ is NP-complete.

Proof:

- $w(G^I_\mathcal{R})$ corresponds to the colouring of an arc-graph.
Theorem

If G is a cycle, then we can approximate $w(G^l_R)$ in polynomial time with a factor of 2.

Proof:

- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.
- $w(G^l_R)$ corresponds to the colouring of an interval-graph.

Theorem

If G is a cycle, then the computation of $w(G^l_R)$ is NP-complete.

Proof:

- $w(G^l_R)$ corresponds to the colouring of an arc-graph.
Theorem

If\ G\ is\ a\ cycle,\ then\ we\ can\ approximate\ \(w(G^I_R)\)\ in\ polynomial\ time\ with\ a\ factor\ of\ 2.

Proof:

- Let \(e\) be an edge in \(G\).
- Let \(I_1\) be the requests which use \(e\) in the routing.
- Let \(I_2\) be the requests which do not use \(e\) in the routing.
- \(w(G^I_1^R)\) corresponds to the colouring of an interval-graph.
- \(w(G^I_2^R)\) corresponds to the colouring of an interval-graph.

Theorem

If\ G\ is\ a\ cycle,\ then\ the\ computation\ of\ \(w(G^I_R)\)\ is\ NP-complete.

Proof:

- \(w(G^I_R)\) corresponds to the colouring of an arc-graph.
Cycle

Theorem

If G is a cycle, then we can approximate $w(G^I_R)$ in polynomial time with a factor of 2.

Proof:

- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G^I_{1R})$ corresponds to the colouring of an interval-graph.
- $w(G^I_{2R})$ corresponds to the colouring of an interval-graph.

Theorem

If G is a cycle, then the computation of $w(G^I_R)$ is NP-complete.

Proof:

- $w(G^I_{R})$ corresponds to the colouring of an arc-graph.
Theorem

If G is a cycle, then we can approximate $w(G^I_R)$ in polynomial time with a factor of 2.

Proof:

- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G^I_1 R)$ corresponds to the colouring of an interval-graph.
- $w(G^I_2 R)$ corresponds to the colouring of an interval-graph.

Theorem

If G is a cycle, then the computation of $w(G^I_R)$ is NP-complete.

Proof:

- $w(G^I_R)$ corresponds to the colouring of an arc-graph.
Theorem

If G is a cycle, then we can approximate $w(G^I_R)$ in polynomial time with a factor of 2.

Proof:

- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G^I_R)$ corresponds to the colouring of an interval-graph.
- $w(G^{I_1}_R)$ corresponds to the colouring of an interval-graph.

Theorem

If G is a cycle, then the computation of $w(G^I_R)$ is NP-complete.

Proof:

- $w(G^I_R)$ corresponds to the colouring of an arc-graph.
Theorem

If G is a cycle, then we can approximate $w(G^I_R)$ in polynomial time with a factor of 2.

Proof:

- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G^I_1)$ corresponds to the colouring of an interval-graph.
- $w(G^I_2)$ corresponds to the colouring of an interval-graph.

Theorem

If G is a cycle, then the computation of $w(G^I_R)$ is NP-complete.

Proof:

- $w(G^I_R)$ corresponds to the colouring of an arc-graph.
Theorem

If G is a cycle, then we can approximate $w(G^l_\mathcal{R})$ in polynomial time with a factor of 2.

Proof:

- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G^l_{\mathcal{I}_1 \mathcal{R}})$ corresponds to the colouring of an interval-graph.
- $w(G^l_{\mathcal{I}_2 \mathcal{R}})$ corresponds to the colouring of an interval-graph.

Theorem

If G is a cycle, then the computation of $w(G^l_{\mathcal{R}})$ is NP-complete.

Proof:

- $w(G^l_{\mathcal{R}})$ corresponds to the colouring of an arc-graph.
Theorem

If G is a cycle, then we can approximate $w(G^I_R)$ in polynomial time with a factor of 2.

Proof:
- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G^I_R)$ corresponds to the colouring of an interval-graph.
- $w(G^I_2)$ corresponds to the colouring of an interval-graph.

Theorem

If G is a cycle, then the computation of $w(G^I_R)$ is NP-complete.

Proof:
- $w(G^I_R)$ corresponds to the colouring of an arc-graph.
Theorem

If G is a cycle, then we can approximate $w(G_{IR}^I)$ in polynomial time with a factor of 2.

Proof:

- Let e be an edge in G.
- Let I_1 be the requests which use e in the routing.
- Let I_2 be the requests which do not use e in the routing.
- $w(G_{IR}^{I_1})$ corresponds to the colouring of an interval-graph.
- $w(G_{IR}^{I_2})$ corresponds to the colouring of an interval-graph.

Theorem

If G is a cycle, then the computation of $w(G_{IR}^I)$ is NP-complete.

Proof:

- $w(G_{IR}^I)$ corresponds to the colouring of an arc-graph.
Theorem

If \(G \) is a star, then we can compute \(w(G^I_T) \) in polynomial time.

Proof:

- Let \(G = (\{0, 1, \ldots, n\}, E) \) be the star with central node 0.
- Let \(H = (\{s_1, s_2, \ldots s_n\}, \{d_1, d_2, \ldots d_n\}, F) \) be a bipartite graph,
- with: \(F = \{(s_i, d_j) \mid (i, j) \in I\} \)
- Computing of \(w(G^I_T) \) corresponds to the edge-colouring of \(H \).
- Request of the form \(0, i \) and \(i, 0 \) may be coloured later by greed.
Theorem

If G is a star, then we can compute $w(G_{IR}^I)$ in polynomial time.

Proof:

- Let $G = (\{0, 1, \ldots, n\}, E)$ be the star with central node 0.
- Let $H = (\{s_1, s_2, \ldots s_n\}, \{d_1, d_2, \ldots d_n\}, F)$ be a bipartite graph,
- with: $F = \{(s_i, d_j) \mid (i, j) \in I\}$
- Computing of $w(G_{IR}^I)$ corresponds to the edge-colouring of H.
- Request of the form $0, i$ and $i, 0$ may be coloured later by greed.
Theorem

If G is a star, then we can compute $w(G^I_{\mathcal{R}})$ in polynomial time.

Proof:

- Let $G = (\{0, 1, \ldots, n\}, E)$ be the star with central node 0.
- Let $H = (\{s_1, s_2, \ldots s_n\}, \{d_1, d_2, \ldots d_n\}, F)$ be a bipartite graph,
- with: $F = \{(s_i, d_j) | (i, j) \in I\}$
- Computing of $w(G^I_{\mathcal{R}})$ corresponds to the edge-colouring of H.
- Request of the form $0, i$ and $i, 0$ may be coloured later by greed.
Theorem

If G is a star, then we can compute $w(G^I_R)$ in polynomial time.

Proof:

- Let $G = (\{0, 1, \ldots, n\}, E)$ be the star with central node 0.
- Let $H = (\{s_1, s_2, \ldots s_n\}, \{d_1, d_2, \ldots d_n\}, F)$ be a bipartite graph, with: $F = \{(s_i, d_j) \mid (i, j) \in I\}$
- Computing of $w(G^I_R)$ corresponds to the edge-colouring of H.
- Request of the form $0, i$ and $i, 0$ may be coloured later by greed.
Theorem

If G is a star, then we can compute $w(G^l_{IR})$ in polynomial time.

Proof:

- Let $G = (\{0, 1, \ldots, n\}, E)$ be the star with central node 0.
- Let $H = (\{s_1, s_2, \ldots, s_n\}, \{d_1, d_2, \ldots, d_n\}, F)$ be a bipartite graph,
- with: $F = \{(s_i, d_j) \mid (i, j) \in I\}$
- Computing of $w(G^l_{IR})$ corresponds to the edge-colouring of H.
- Request of the form $0, i$ and $i, 0$ may be coloured later by greed.
Theorem

If G is a star, then we can compute $w(G^l_T)$ in polynomial time.

Proof:

- Let $G = (\{0, 1, \ldots, n\}, E)$ be the star with central node 0.
- Let $H = (\{s_1, s_2, \ldots s_n\}, \{d_1, d_2, \ldots d_n\}, F)$ be a bipartite graph,
- with: $F = \{(s_i, d_j) \mid (i, j) \in I\}$
- Computing of $w(G^l_T)$ corresponds to the edge-colouring of H.
- Request of the form $0, i$ and $i, 0$ may be coloured later by greed.
Star

Theorem

If G is a star, then we can compute $w(G^I_R)$ in polynomial time.

Proof:

- Let $G = (\{0, 1, \ldots, n\}, E)$ be the star with central node 0.
- Let $H = (\{s_1, s_2, \ldots s_n\}, \{d_1, d_2, \ldots d_n\}, F)$ be a bipartite graph,
- with: $F = \{(s_i, d_j) \mid (i, j) \in I\}$
- Computing of $w(G^I_R)$ corresponds to the edge-colouring of H.
- Request of the form $0, i$ and $i, 0$ may be coloured later by greed.
Theorem

If G is a spider-graph, then we can compute $w(G^1_R)$ in polynomial time.

Proof:

- Colour first the center star.
- Extend the colouring on each leg of the spider-graph by using the algorithm for paths.
Theorem

If G is a spider-graph, then we can compute $w(G_{IR})$ in polynomial time.

Proof:

- Colour first the center star.
- Extend the colouring on each leg of the spider-graph by using the algorithm for paths.
If \(G \) is a spider-graph, then we can compute \(w(G^l_R) \) in polynomial time.

Proof:

- Colour first the center star.
- Extend the colouring on each leg of the spider-graph by using the algorithm for paths.
Theorem

If G is a spider-graph, then we can compute $w(G^1_R)$ in polynomial time.

Proof:

- Colour first the center star.
- Extend the colouring on each leg of the spider-graph by using the algorithm for paths.
Theorem

If \(G \) is a tree, then the computation of \(w(G^l_R) \) is NP-complete.

Proof:

- \(w(G^l_R) \) corresponds to the colouring of an EPT-Graph.
Baum

Theorem

If G is a tree, then the computation of w(Gₐᵣ) is NP-complete.

Proof:

- w(Gₐᵣ) corresponds to the colouring of an EPT-Graph.
Theorem

If G is a tree, then the computation of $w(G_{IR})$ is NP-complete.

Proof:

- $w(G_{IR})$ corresponds to the colouring of an EPT-Graph.
If the requests are of type broadcast, then the wavelength-assignment becomes easy.

- We have: $I = \{(v, w) \mid w \in V\}$ for a start node v.
- There are $|V| - 1$ nodes to be informed from v.
- There have to be $|V| - 1$ paths starting in v.
- Let $d(w)$ be the out-degree of node $w \in V$.
- Let $d_{\min}(G) = \min_{w \in V} d(w)$.
- At least $(|V| - 1)/d(v)$ requests use the same edge of v.
- Thus we have: $w(G^I) \geq \lceil (|V| - 1)/d_{\min}(G) \rceil$.
Broadcast

- If the requests are of type broadcast, then the wavelength-assignment becomes easy.
- We have: $I = \{(v, w) \mid w \in V\}$ for a start node v.
- There are $|V| - 1$ nodes to be informed from v.
- There have to be $|V| - 1$ paths starting in v.
- Let $d(w)$ be the out-degree of node $w \in V$.
- Let $d_{\text{min}}(G) = \min_{v \in V} d(v)$.
- At least $(|V| - 1)/d(v)$ requests use the same edge of v.
- Thus we have: $w(G^I_R) \geq \lceil (|V| - 1)/d_{\text{min}}(G) \rceil$.
If the requests are of type broadcast, then the wavelength-assignment becomes easy.

We have: \(I = \{ (v, w) \mid w \in V \} \) for a start node \(v \).

There are \(|V| - 1 \) nodes to be informed from \(v \).

There have to be \(|V| - 1 \) paths starting in \(v \).

Let \(d(w) \) be the out-degree of node \(w \in V \).

Let \(d_{\min}(G) = \min_{w \in V} d(w) \).

At least \((|V| - 1)/d(v) \) requests use the same edge of \(v \).

Thus we have: \(w(G^I_R) \geq \lceil (|V| - 1)/d_{\min}(G) \rceil \).
If the requests are of type broadcast, then the wavelength-assignment becomes easy.

We have: \(I = \{ (v, w) \mid w \in V \} \) for a start node \(v \).

There are \(|V| - 1 \) nodes to be informed from \(v \).

There have to be \(|V| - 1 \) paths starting in \(v \).

Let \(d(w) \) be the out-degree of node \(w \in V \).

Let \(d_{\text{min}}(G) = \min_{w \in V} d(w) \).

At least \((|V| - 1)/d(v) \) requests use the same edge of \(v \).

Thus we have: \(w(G^I_R) \geq \lceil (|V| - 1)/d_{\text{min}}(G) \rceil \).
If the requests are of type broadcast, then the wavelength-assignment becomes easy.

- We have: \(\mathcal{I} = \{ (v, w) \mid w \in V \} \) for a start node \(v \).
- There are \(|V| - 1 \) nodes to be informed from \(v \).
- There have to be \(|V| - 1 \) paths starting in \(v \).
- Let \(d(w) \) be the out-degree of node \(w \in V \).
- Let \(d_{\text{min}}(G) = \min_{w \in V} d(w) \).
- At least \((|V| - 1)/d(v) \) requests use the same edge of \(v \).
- Thus we have: \(w(G_{\mathcal{R}}) \geq \lceil (|V| - 1)/d_{\text{min}}(G) \rceil \).
If the requests are of type broadcast, then the wavelength-assignment becomes easy.

We have: \(l = \{ (v, w) \mid w \in V \} \) for a start node \(v \).

There are \(|V| - 1\) nodes to be informed from \(v \).

There have to be \(|V| - 1\) paths starting in \(v \).

Let \(d(w) \) be the out-degree of node \(w \in V \).

Let \(d_{\text{min}}(G) = \min_{w \in V} d(w) \).

At least \((|V| - 1)/d(v)\) requests use the same edge of \(v \).

Thus we have: \(w(G_I^l) \geq \lceil (|V| - 1)/d_{\text{min}}(G) \rceil \).
If the requests are of type broadcast, then the wavelength-assignment becomes easy.

- We have: \(I = \{(v, w) \mid w \in V\} \) for a start node \(v \).
- There are \(|V| - 1\) nodes to be informed from \(v \).
- There have to be \(|V| - 1\) paths starting in \(v \).
- Let \(d(w) \) be the out-degree of node \(w \in V \).
- Let \(d_{\text{min}}(G) = \min_{w \in V} d(w) \).
- At least \((|V| - 1)/d(v)\) requests use the same edge of \(v \).
- Thus we have: \(w(G^I_R) \geq \lceil (|V| - 1)/d_{\text{min}}(G) \rceil \).
If the requests are of type broadcast, then the wavelength-assignment becomes easy.

- We have: \(I = \{(v, w) \mid w \in V\} \) for a start node \(v \).
- There are \(|V| - 1 \) nodes to be informed from \(v \).
- There have to be \(|V| - 1 \) paths starting in \(v \).
- Let \(d(w) \) be the out-degree of node \(w \in V \).
- Let \(d_{\text{min}}(G) = \min_{w \in V} d(w) \).
- At least \((|V| - 1)/d(v) \) requests use the same edge of \(v \).
- Thus we have: \(w(G_{\mathcal{R}}) \geq \lceil (|V| - 1)/d_{\text{min}}(G) \rceil \).
Theorem

For an k edge connected graph we have: $w(G_{IR}^l) \leq \lceil (|V| - 1)/k \rceil$.

Proof:

- Let v be the start-node.
- Split $V \setminus \{v\}$ into $s = \lceil (|V| - 1)/k \rceil$ subsets, with:
 - V_1, V_2, \ldots, V_s have a size of at most k.
 - For each i exist k edge-disjoined paths from v to V_i.
- Each V_i will be informed by using colour i.
- In total are $s = \lceil (|V| - 1)/k \rceil$ colours used.
Theorem

For an k edge connected graph we have: $w(G^I_R) \leq \lceil(|V| - 1)/k \rceil$.

Proof:

- Let v be the start-node.
- Split $V \setminus \{v\}$ into $s = \lceil(|V| - 1)/k \rceil$ subsets, with:
 - V_1, V_2, \ldots, V_s have a size of at most k.
 - For each i exist k edge-disjoined paths from v to V_i.
- Each V_i will be informed by using colour i.
- In total are $s = \lceil(|V| - 1)/k \rceil$ colours used.
Theorem

For an k edge connected graph we have: $w(G^r) \leq \lceil (|V| - 1)/k \rceil$.

Proof:

- Let v be the start-node.
- Split $V \setminus \{v\}$ into $s = \lceil (|V| - 1)/k \rceil$ subsets, with:
 - V_1, V_2, \ldots, V_s have a size of at most k.
 - For each i exist k edge-disjoined paths from v to V_i.
 - Each V_i will be informed by using colour i.
- In total are $s = \lceil (|V| - 1)/k \rceil$ colours used.
Theorem

For an \(k \) edge connected graph we have: \(w(G^I_R) \leq \lceil (|V| - 1)/k \rceil \).

Proof:

- Let \(v \) be the start-node.
- Split \(V \setminus \{v\} \) into \(s = \lceil (|V| - 1)/k \rceil \) subsets, with:
 - \(V_1, V_2, \ldots, V_s \) have a size of at most \(k \).
 - For each \(i \) exist \(k \) edge-disjoined paths from \(v \) to \(V_i \).
 - Each \(V_i \) will be informed by using colour \(i \).
- In total are \(s = \lceil (|V| - 1)/k \rceil \) colours used.
Broadcast

Theorem

For an k edge connected graph we have: $w(G^I_R) \leq \lceil (|V| - 1)/k \rceil$.

Proof:

- Let v be the start-node.
- Split $V \setminus \{v\}$ into $s = \lceil (|V| - 1)/k \rceil$ subsets, with:
 - V_1, V_2, \ldots, V_s have a size of at most k.
 - For each i exist k edge-disjoined paths from v to V_i.
 - Each V_i will be informed by using colour i.
- In total are $s = \lceil (|V| - 1)/k \rceil$ colours used.
Broadcast

Theorem

For an k edge connected graph we have: $w(G^l_R) \leq \lceil(|V| - 1)/k \rceil$.

Proof:

- Let v be the start-node.
- Split $V \setminus \{v\}$ into $s = \lceil(|V| - 1)/k \rceil$ subsets, with:
 - V_1, V_2, \ldots, V_s have a size of at most k.
 - For each i exist k edge-disjoined paths from v to V_i.
- Each V_i will be informed by using colour i.
- In total are $s = \lceil(|V| - 1)/k \rceil$ colours used.
Broadcast

Theorem

For an \(k \) edge connected graph we have: \(w(G^I_R) \leq \lceil (|V| - 1)/k \rceil \).

Proof:

- Let \(v \) be the start-node.
- Split \(V \setminus \{v\} \) into \(s = \lceil (|V| - 1)/k \rceil \) subsets, with:
 - \(V_1, V_2, \ldots, V_s \) have a size of at most \(k \).
 - For each \(i \) exist \(k \) edge-disjoined paths from \(v \) to \(V_i \).
 - Each \(V_i \) will be informed by using colour \(i \).
- In total are \(s = \lceil (|V| - 1)/k \rceil \) colours used.
Broadcast

Theorem

For an k edge connected graph we have: $w(G_{IR}) \leq \lceil (|V| - 1)/k \rceil$.

Proof:

- Let v be the start-node.
- Split $V \setminus \{v\}$ into $s = \lceil (|V| - 1)/k \rceil$ subsets, with:
 - V_1, V_2, \ldots, V_s have a size of at most k.
 - For each i exist k edge-disjoined paths from v to V_i.
 - Each V_i will be informed by using colour i.
- In total are $s = \lceil (|V| - 1)/k \rceil$ colours used.
For an k edge connected graph we have: $w(G^l_R) = \lceil (|V| - 1)/k \rceil$.

Proof:

- Known: $w(G^l_R) \geq \lceil (|V| - 1)/d_{\text{min}}(G) \rceil$.
- Known: $w(G^l_R) \leq \lceil (|V| - 1)/k \rceil$.
- Known: $k \leq d_{\text{min}} G$.
- Thus we have: $w(G^l_R) = \lceil (|V| - 1)/k \rceil$.

Broadcast
Theorem

For an k edge connected graph we have: $w(G^l_R) = \lceil(|V| - 1)/k \rceil$.

Proof:
- Known: $w(G^l_R) \geq \lceil(|V| - 1)/d_{min}(G) \rceil$.
- Known: $w(G^l_R) \leq \lceil(|V| - 1)/k \rceil$.
- Known: $k \leq d_{min}G$.
- Thus we have: $w(G^l_R) = \lceil(|V| - 1)/k \rceil$.
Theorem

For an k edge connected graph we have: $w(G^I_R) = \lceil (|V| - 1)/k \rceil$.

Proof:

- Known: $w(G^I_R) \geq \lceil (|V| - 1)/d_{\min}(G) \rceil$.
- Known: $w(G^I_R) \leq \lceil (|V| - 1)/k \rceil$.
- Known: $k \leq d_{\min}G$.
- Thus we have: $w(G^I_R) = \lceil (|V| - 1)/k \rceil$.

Broadcast
Theorem

For an k edge connected graph we have: $w(G_{IR}^l) = \lceil (|V| - 1)/k \rceil$.

Proof:

- Known: $w(G_{IR}^l) \geq \lceil (|V| - 1)/d_{min}(G) \rceil$.
- Known: $w(G_{IR}^l) \leq \lceil (|V| - 1)/k \rceil$.
- Known: $k \leq d_{min} G$.
- Thus we have: $w(G_{IR}^l) = \lceil (|V| - 1)/k \rceil$.
Theorem

For an k edge connected graph we have: $w(G_I^R) = \lceil (|V| - 1)/k \rceil$.

Proof:

- **Known:** $w(G_I^R) \geq \lceil (|V| - 1)/d_{\text{min}}(G) \rceil$.
- **Known:** $w(G_I^R) \leq \lceil (|V| - 1)/k \rceil$.
- **Known:** $k \leq d_{\text{min}} G$.
- Thus we have: $w(G_I^R) = \lceil (|V| - 1)/k \rceil$.

Theorem

For an k edge connected graph we have: $w(G^l_R) = \lceil (|V| - 1)/k \rceil$.

Proof:

- Known: $w(G^l_R) \geq \lceil (|V| - 1)/d_{min}(G) \rceil$.
- Known: $w(G^l_R) \leq \lceil (|V| - 1)/k \rceil$.
- Known: $k \leq d_{min}G$.
- Thus we have: $w(G^l_R) = \lceil (|V| - 1)/k \rceil$.
Theorem

For the following graphs it is NP-complete to compute $w(G_{r_{\min}}^I)$:

- cycles,
- trees,
- binary trees and
- grids.
More Results

Theorem

For the following graphs it is NP-complete to compute $w(G^I_{r_{\text{min}}})$:

- cycles,
- trees,
- binary trees and
- grids.
More Results

Theorem

For the following graphs it is NP-complete to compute $w(G^I_{\text{min}})$:

- cycles,
- trees,
- binary trees and
- grids.
More Results

Theorem

For the following graphs it is NP-complete to compute $w(G_{R_{min}}^I)$:

- cycles,
- trees,
- binary trees and
- grids.
More Results

Theorem

For the following graphs it is NP-complete to compute $w(G^I_{R_{min}})$:

- cycles,
- trees,
- binary trees and
- grids.
Theorem

Let G^I_{\min} given with $L = \max_{(x,y) \in I} \text{dist}(x,y)$. Then we have: $w(G^I_{\min}) = O(L \cdot c(G^I_{\min}))$.

Theorem

For each L and c there exists G^I_{\min} with: $L = \max_{(x,y) \in I} \text{dist}(x,y)$, $c = c(G^I_{\min})$ $w(G^I_{\min}) = \Omega(L \cdot c)$.

Theorem

Let G^I_{\min} given with I is “one-to-many” communication. Then we have: $w(G^I_{\min}) = c(G^I_{\min})$.

More Results
More Results

Theorem

Let $G_{I_{\text{min}}}^l$ given with $L = \max_{(x,y) \in I} \dist(x,y)$. Then we have: $\w(G_{I_{\text{R}}}^l) = O(L \cdot c(G_{I_{\text{R}}}^l))$.

Theorem

For each L and c there exists $G_{I_{\text{min}}}^l$ with: $L = \max_{(x,y) \in I} \dist(x,y)$, $c = c(G_{I_{\text{min}}}^l)$ $\w(G_{I_{\text{R}}}^l) = \Omega(L \cdot c)$.

Theorem

Let $G_{I_{\text{min}}}^l$ given with I is “one-to-many” communication. Then we have: $\w(G_{I_{\text{R}}}^l) = c(G_{I_{\text{R}}}^l)$.
More Results

Theorem

Let $G_{R_{\text{min}}}^I$ given with $L = \max_{(x,y) \in I} \text{dist}(x, y)$. Then we have: $w(G_{R_{\text{min}}}^I) = O(L \cdot c(G_{R_{\text{min}}}^I))$.

Theorem

For each L and c there exists $G_{R_{\text{min}}}^I$ with: $L = \max_{(x,y) \in I} \text{dist}(x, y)$, $c = c(G_{R_{\text{min}}}^I)$ $w(G_{R_{\text{min}}}^I) = \Omega(L \cdot c)$.

Theorem

Let $G_{R_{\text{min}}}^I$ given with I is “one-to-many” communication. Then we have: $w(G_{R_{\text{min}}}^I) = c(G_{R_{\text{min}}}^I)$.
Theorem

Let $G_{R_{\min}}^I$ given with $L = \max_{(x,y) \in I} \text{dist}(x,y)$. Then we have: $w(G_{R}^I) = O(L \cdot c(G_{R}^I))$.

Theorem

For each L and c there exists $G_{R_{\min}}^I$ with: $L = \max_{(x,y) \in I} \text{dist}(x,y)$, $c = c(G_{R_{\min}}^I)$ $w(G_{R}^I) = \Omega(L \cdot c)$.

Theorem

Let $G_{R_{\min}}^I$ given with I is “one-to-many” communication. Then we have: $w(G_{R}^I) = c(G_{R}^I)$.
More Results

Theorem

Let $G^I_{\text{R min}}$ given with $L = \max_{(x,y) \in I} \text{dist}(x,y)$. Then we have: $w(G^I_{\text{R}}) = O(L \cdot c(G^I_{\text{R}}))$.

Theorem

For each L and c there exists $G^I_{\text{R min}}$ with: $L = \max_{(x,y) \in I} \text{dist}(x,y)$, $c = c(G^I_{\text{R min}})$ $w(G^I_{\text{R}}) = \Omega(L \cdot c)$.

Theorem

Let $G^I_{\text{R min}}$ given with l is “one-to-many” communication. Then we have: $w(G^I_{\text{R}}) = c(G^I_{\text{R}})$.
Literature

Dissemination of Information in Optical Networks
From Technology to Algorithms
Questions

- Which problems are interesting for optical networks?
- For which is the Beneš Network used, what are it's properties?
- What is the relation between wavelength-assignment and colouring a graph?
- How is the wavelength-assignment solved on the following graphs?
 - paths and cycles.
 - stars and spider-graphs.
- On which graphs is the wavelength-assignment hard?
- May the wavelength-assignment be solved if the connection structure is of type broadcast?
Questions

- Which problems are interesting for optical networks?
- For which is the Beneš Network used, what are its properties?
- What is the relation between wavelength-assignment and colouring a graph?
- How is the wavelength-assignment solved on the following graphs?
 - paths and cycles.
 - stars and spider-graphs.
- On which graphs is the wavelength-assignment hard?
- May the wavelength-assignment be solved if the connection structure is of type broadcast?
Questions

- Which problems are interesting for optical networks?
- For which is the Beneš Network used, what are its properties?
- What is the relation between wavelength-assignment and colouring a graph?
- How is the wavelength-assignment solved on the following graphs?
 - paths and cycles.
 - stars and spider-graphs.
- On which graphs is the wavelength-assignment hard?
- May the wavelength-assignment be solved if the connection structure is of type broadcast?
Questions

- Which problems are interesting for optical networks?
- For which is the Beneš Network used, what are its properties?
- What is the relation between wavelength-assignment and colouring a graph?
- How is the wavelength-assignment solved on the following graphs?
 - paths and cycles.
 - stars and spider-graphs.
- On which graphs is the wavelength-assignment hard?
- May the wavelength-assignment be solved if the connection structure is of type broadcast?
Questions

- Which problems are interesting for optical networks?
- For which is the Beneš Network used, what are it's properties?
- What is the relation between wavelength-assignment and colouring a graph?
- How is the wavelength-assignment solved on the following graphs?
 - paths and cycles.
 - stars and spider-graphs.
- On which graphs is the wavelength-assignment hard?
- May the wavelength-assignment be solved if the connection structure is of type broadcast?
Questions

- Which problems are interesting for optical networks?
- For which is the Beneš Network used, what are it's properties?
- What is the relation between wavelength-assignment and colouring a graph?
- How is the wavelength-assignment solved on the following graphs?
 - paths and cycles.
 - stars and spider-graphs.
- On which graphs is the wavelength-assignment hard?
- May the wavelength-assignment be solved if the connection structure is of type broadcast?
Questions

- Which problems are interesting for optical networks?
- For which is the Beneš Network used, what are its properties?
- What is the relation between wavelength-assignment and colouring a graph?
- How is the wavelength-assignment solved on the following graphs?
 - paths and cycles.
 - stars and spider-graphs.
- On which graphs is the wavelength-assignment hard?
- May the wavelength-assignment be solved if the connection structure is of type broadcast?
Questions

- Which problems are interesting for optical networks?
- For which is the Beneš Network used, what are its properties?
- What is the relation between wavelength-assignment and colouring a graph?
- How is the wavelength-assignment solved on the following graphs?
 - paths and cycles.
 - stars and spider-graphs.
- On which graphs is the wavelength-assignment hard?
- May the wavelength-assignment be solved if the connection structure is of type broadcast?
Legend

- : Not of relevance
- : implicitly used basics
- : idea of proof or algorithm
- : structure of proof or algorithm
- : Full knowledge